Investigating PEM Fuel Cells as an Alternative Power Source for Electric UAVs: Modeling, Optimization, and Performance Analysis
<p>(<b>a</b>) PEMFC operation principle, (<b>b</b>) reduced order model scheme.</p> "> Figure 2
<p>Investigated UAV A.R.C.H.E.R.</p> "> Figure 3
<p>Scheme of the simulation.</p> "> Figure 4
<p>Simulation results of PEM fuel cell: current-voltage (<b>top</b>) and current-power (<b>bottom</b>) dependency.</p> "> Figure 5
<p>Specific energy of battery vs. fuel cell: (<b>a</b>) gravimetric; (<b>b</b>) volumetric.</p> "> Figure 6
<p>Total mass of the supply system vs. time of operation.</p> ">
Abstract
:1. Introduction
1.1. Unmanned Aerial Vehicle
1.2. Battery-Based Propulsion
1.3. Fuel Cells
1.4. Literature Overview
1.5. Novelty of This Paper
2. Theory
2.1. Proton Exchange Membrane Fuel Cell
2.2. Reduced Order Model
2.3. Investigated UAV
3. Model Simulation
3.1. Simulation Preparations
3.2. Scale-Up
3.3. Feasibility Study
4. Propulsion System
Fuel Cell Integration
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- No STANAG 4671; 1st ed, Unmanned Aerial Vehicle Systems Airworthiness Requirements (USAR). NATO: Brussels, Belgium, 2017.
- González-Jorge, H.; Martínez-Sánchez, J.; Bueno, M.; Arias, P. Unmanned Aerial Systems for Civil Applications: A Review. Drones 2017, 1, 2. [Google Scholar] [CrossRef]
- Shakhatreh, H.; Sawalmeh, A.H.; Al-Fuqaha, A.; Dou, Z.; Almaita, E.; Khalil, I.; Othman, N.S.; Khreishah, A.; Guizani, M. Unmanned Aerial Vehicles (UAVs): A Survey on Civil Applications and Key Research Challenges. IEEE Access 2019, 7, 48572–48634. [Google Scholar] [CrossRef]
- Vachtsevanos, G.J.; Valavanis, K.P. Military and Civilian Unmanned Aircraft. In Handbook of Unmanned Aerial Vehicles; Springer: Dordrecht, The Netherlands, 2015; pp. 93–103. [Google Scholar]
- Cwojdziński, L.; Adamski, M. Power units and power supply systems in UAV. Aviation 2014, 18, 1–8. [Google Scholar] [CrossRef]
- Abdilla, A.; Richards, A.; Burrow, S. Endurance Optimisation of Battery-Powered Rotorcraft. Lect. Notes Comput. Sci. 2015, 9287, 1–12. [Google Scholar] [CrossRef]
- Hwang, M.H.; Cha, H.R.; Jung, S.Y. Practical Endurance Estimation for Minimizing Energy Consumption of Multirotor Unmanned Aerial Vehicles. Energies 2018, 11, 2221. [Google Scholar] [CrossRef]
- Xu, X.; Zeng, Y.; Guan, Y.L.; Zhang, R. Overcoming endurance issue: UAV-Enabled communications with proactive caching. IEEE J. Sel. Areas Commun. 2018, 36, 1231–1244. [Google Scholar] [CrossRef]
- González-Espasandín, Ó.; Leo, T.J.; Navarro-Arévalo, E. Fuel Cells: A Real Option for Unmanned Aerial Vehicles Propulsion. Sci. World J. 2014, 2014, 497642. [Google Scholar] [CrossRef]
- Goriparti, S.; Miele, E.; De Angelis, F.; Di Fabrizio, E.; Proietti Zaccaria, R.; Capiglia, C. Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources 2014, 257, 421–443. [Google Scholar] [CrossRef]
- Hannan, M.A.; Hoque, M.M.; Hussain, A.; Yusof, Y.; Ker, P.J. State-of-the-Art and Energy Management System of Lithium-Ion Batteries in Electric Vehicle Applications: Issues and Recommendations. IEEE Access 2018, 6, 19362–19378. [Google Scholar] [CrossRef]
- Elton, J. Cairns in Encyclopedia of Energy; Elsevier: Amsterdam, The Netherlands, 2004; Chapter: Batteries, Overview; pp. 117–126. [Google Scholar]
- Yoshino, A. Development of the Lithium-Ion Battery and Recent Technological Trends. In Lithium-Lon Batteries; Elsevier: Amsterdam, The Netherlands, 2014; pp. 1–20. [Google Scholar]
- Zhang, R.; Li, X.; Sun, C.; Yang, S.; Tian, Y.; Tian, J. State of Charge and Temperature Joint Estimation Based on Ultrasonic Reflection Waves for Lithium-Ion Battery Applications. Batter 2023, 9, 335. [Google Scholar] [CrossRef]
- Haile, S.M. The Golden Jubilee Issue—Selected topics in Materials Science and Engineering: Past, Present and Future. In Fuel Cell Materials and Components; Suresh, S., Ed.; Elsevier: Amsterdam, The Netherlands, 2003; Volume 51, pp. 5981–6000. [Google Scholar] [CrossRef]
- Chen, H.; Cong, T.N.; Yang, W.; Tan, C.; Li, Y.; Ding, Y. Progress in electrical energy storage system: A critical review. Prog. Nat. Sci. 2009, 19, 291–312. [Google Scholar] [CrossRef]
- Pan, Z.F.; An, L.; Wen, C.Y. Recent advances in fuel cells based propulsion systems for unmanned aerial vehicles. Appl. Energy 2019, 240, 473–485. [Google Scholar] [CrossRef]
- Wang, B.; Zhao, D.; Li, W.; Wang, Z.; Huang, Y.; You, Y.; Becker, S. Current technologies and challenges of applying fuel cell hybrid propulsion systems in unmanned aerial vehicles. Prog. Aerosp. Sci. 2020, 116, 100620. [Google Scholar] [CrossRef]
- Santos, D.F.M.; Ferreira, R.B.; Falcão, D.S.; Pinto, A.M.F.R. Evaluation of a fuel cell system designed for unmanned aerial vehicles. Energy 2022, 253, 124099. [Google Scholar] [CrossRef]
- Ozbek, E.; Yalin, G.; Karaoglan, M.U.; Ekici, S.; Colpan, C.O.; Karakoc, T.H. Architecture design and performance analysis of a hybrid hydrogen fuel cell system for unmanned aerial vehicle. Int. J. Hydrogen Energy 2021, 46, 16453–16464. [Google Scholar] [CrossRef]
- Depcik, C.; Cassady, T.; Collicott, B.; Burugupally, S.P.; Li, X.; Alam, S.S.; Arandia, J.R.; Hobeck, J. Comparison of lithium ion Batteries, hydrogen fueled combustion Engines, and a hydrogen fuel cell in powering a small Unmanned Aerial Vehicle. Energy Convers. Manag. 2020, 207, 112514. [Google Scholar] [CrossRef]
- Perez-Trujillo, J.P.; Elizalde-Blancas, F.; Della Pietra, M.; McPhail, S.J. A numerical and experimental comparison of a single reversible molten carbonate cell operating in fuel cell mode and electrolysis mode. Appl. Energy 2018, 226, 1037–1055. [Google Scholar] [CrossRef]
- Watanabe, T. Development of Molten Carbonate Fuel Cells in Japan and at CRIEPI—Application of Li/Na electrolyte. Fuel Cells 2001, 1, 97–103. [Google Scholar] [CrossRef]
- Yuh, C.Y.; Selman, J.R. The Polarization of Molten Carbonate Fuel Cell Electrodes: I. Analysis of Steady-State Polarization Data. J. Electrochem. Soc. 1991, 138, 3642–3648. [Google Scholar] [CrossRef]
- Bosio, B.; Costamagna, P.; Parodi, F. Modeling and experimentation of molten carbonate fuel cell reactors in a scale-up process. Chem. Eng. Sci. 1999, 54, 2907–2916. [Google Scholar] [CrossRef]
- Bosio, B.; Di Giulio, N.; Nam, S.W.; Moreno, A. An effective semi-empiric model for MCFC kinetics: Theoretical development and experimental parameters identification. Int. J. Hydrogen Energy 2014, 39, 12273–12284. [Google Scholar] [CrossRef]
- Milewski, J.; Świrski, K.; Santarelli, M.; Leone, P. Advanced Methods of Solid Oxide Fuel Cell Modeling; Springer: London, UK, 2011; ISBN 978-0-85729-261-2. [Google Scholar]
- Ellis, M.W.; Von Spakovsky, M.R.; Nelson, D.J. Fuel cell systems: Efficient, flexible energy conversion for the 21st century. Proc. IEEE 2001, 89, 1808–1818. [Google Scholar] [CrossRef]
- Vielstich, W.; Lamm, A.; Gasteiger, H.A.; Yokokawa, H. (Eds.) Handbook of Fuel Cells; John Wiley & Sons, Ltd.: Chichester, UK, 2010; ISBN 9780470741511. [Google Scholar]
- Yandrasits, M.; Hamrock, S. Poly(Perfluorosulfonic Acid) Membranes. In Polymer Science: A Comprehensive Reference; Elsevier: Amsterdam, The Netherlands, 2012; pp. 601–619. [Google Scholar]
- Mei, J.; Meng, X.; Tang, X.; Li, H.; Hasanien, H.; Alharbi, M.; Dong, Z.; Shen, J.; Sun, C.; Fan, F.; et al. An Accurate Parameter Estimation Method of the Voltage Model for Proton Exchange Membrane Fuel Cells. Energies 2024, 17, 2917. [Google Scholar] [CrossRef]
- Hoogers, G. Fuel Cell Technology Handbook; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Yi, J.S.; Nguyen, T.V. An Along-the-Channel Model for Proton Exchange Membrane Fuel Cells. J. Electrochem. Soc. 1998, 145, 1149–1159. [Google Scholar] [CrossRef]
- Mazumder, S.; Cole, J.V. Rigorous 3D Mathematical Modeling of PEM Fuel Cells. J. Electrochem. Soc. 2003, 150, A1503. [Google Scholar] [CrossRef]
- Fuller, T.F.; Newman, J. Water and Thermal Management in Solid-Polymer-Electrolyte Fuel Cells. J. Electrochem. Soc. 1993, 140, 1218–1225. [Google Scholar] [CrossRef]
- Springer, T.E.; Zawodzinski, T.A.; Gottesfeld, S. Polymer Electrolyte Fuel Cell Model. J. Electrochem. Soc. 1991, 138, 2334–2342. [Google Scholar] [CrossRef]
- Hu, X.; Jiang, W.; Ying, X.; Eslami, M. The application of a new design of bat optimizer for energy efficiency enhancement in PEMFCs based on fractional order theory. Sustain. Energy Technol. Assess. 2023, 55, 102904. [Google Scholar] [CrossRef]
- Rezaie, M.; Karamnejadi azar, K.; Kardan sani, A.; Akbari, E.; Ghadimi, N.; Razmjooy, N.; Ghadamyari, M. Model parameters estimation of the proton exchange membrane fuel cell by a Modified Golden Jackal Optimization. Sustain. Energy Technol. Assess. 2022, 53, 102657. [Google Scholar] [CrossRef]
- Tang, X.; Yang, M.; Shi, L.; Hou, Z.; Xu, S.; Sun, C. Adaptive state-of-health temperature sensitivity characteristics for durability improvement of PEM fuel cells. Chem. Eng. J. 2024, 491, 151951. [Google Scholar] [CrossRef]
- Yang, Y.-T.; Tsai, K.-T.; Chen, C.-K. The Effects of the PEM Fuel Cell Performance with the Waved Flow Channels. J. Appl. Math. 2013, 2013, 862645. [Google Scholar] [CrossRef]
- Makridis, S.S. Hydrogen storage and compression. In Methane and Hydrogen for Energy Storage; Institution of Engineering and Technology: London, UK, 2016; pp. 1–28. [Google Scholar]
- Swider-Lyons, K.; Stroman, R.; Page, G.; Schuette, M.; Mackrell, J.; Rodgers, J. Hydrogen Fule Cell Propulsion for Long Endurance Small UVAs. In Proceedings of the AIAA Centennial of Naval Aviation Forum “100 Years of Achievement and Progress”, Reston, VA, USA, 21–22 September 2011; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2011. [Google Scholar]
- Rivard, E.; Trudeau, M.; Zaghib, K. Hydrogen Storage for Mobility: A Review. Materials 2019, 12, 1973. [Google Scholar] [CrossRef]
200+ | |||
90–155 | |||
Zn–NiOOH | 50–80 | 200–300 |
800–20,000 | 500–3000 | 500+ | 500+ |
°C | ||
Ncells | - | |
119 | mm | |
66 | ||
Mass |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shuhayeu, P.; Martsinchyk, A.; Martsinchyk, K.; Milewski, J. Investigating PEM Fuel Cells as an Alternative Power Source for Electric UAVs: Modeling, Optimization, and Performance Analysis. Energies 2024, 17, 4427. https://doi.org/10.3390/en17174427
Shuhayeu P, Martsinchyk A, Martsinchyk K, Milewski J. Investigating PEM Fuel Cells as an Alternative Power Source for Electric UAVs: Modeling, Optimization, and Performance Analysis. Energies. 2024; 17(17):4427. https://doi.org/10.3390/en17174427
Chicago/Turabian StyleShuhayeu, Pavel, Aliaksandr Martsinchyk, Katsiaryna Martsinchyk, and Jaroslaw Milewski. 2024. "Investigating PEM Fuel Cells as an Alternative Power Source for Electric UAVs: Modeling, Optimization, and Performance Analysis" Energies 17, no. 17: 4427. https://doi.org/10.3390/en17174427
APA StyleShuhayeu, P., Martsinchyk, A., Martsinchyk, K., & Milewski, J. (2024). Investigating PEM Fuel Cells as an Alternative Power Source for Electric UAVs: Modeling, Optimization, and Performance Analysis. Energies, 17(17), 4427. https://doi.org/10.3390/en17174427