Optimizing Real and Reactive Power Dispatch Using a Multi-Objective Approach Combining the ϵ-Constraint Method and Fuzzy Satisfaction
<p><math display="inline"><semantics> <mi>π</mi> </semantics></math> model of a transmission line.</p> "> Figure 2
<p>IEEE 30-Bus System.</p> "> Figure 3
<p>Generation cost vs. Active power losses.</p> "> Figure 4
<p>Voltage profile in IEEE 30-Bus System.</p> "> Figure 5
<p>Active power dispatch from the IEEE 30-Bus System.</p> "> Figure 6
<p>Reactive power dispatch from the IEEE 30-Bus System.</p> "> Figure 7
<p>Active power losses in transmission lines in IEEE 30-Bus System.</p> "> Figure 8
<p>Comparison of GAMS vs. Digsilent generation costs.</p> ">
Abstract
:1. Introduction
2. Reactive Power Dispatch
2.1. Losses’ Minimization
2.2. Cost Minimization
2.3. Constraints
3. Problem Formulation
3.1. -Constraint Method
3.2. Fuzzy Satisfying Approach
Algorithm 1 Multi-Objective Optimal Real and Reactive Power Dispatch |
|
4. Analysis of the Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Admittance at line i–j | |
Conductance at line i–j | |
Susceptance at line i–j | |
Conductance of line k connected between bus i and bus j | |
Shunt susceptance | |
Voltage at bus i | |
Voltage angle at bus i | |
Difference to Voltage angle from bus i to j | |
Apparent power flow at line i–j | |
Active power flow at line i–j | |
Reactive power flow at line i–j | |
Generator cost coefficients | |
Active power generated at bus i | |
Reactive power generated at bus i | |
Apparent power of generator | |
Active power demanded at bus i | |
Reactive power demanded at bus i | |
Busbars set | |
Generators set | |
Lines set | |
Reactive power delivered via shunt capacitor at bus i | |
Line Surge impedance loading |
Appendix A
Node i | Node j | R [p.u.] | X [p.u.] | B [p.u.] | SIL [MVA] |
---|---|---|---|---|---|
1 | 2 | 0.0192 | 0.0575 | 0.0528 | 130 |
1 | 3 | 0.0452 | 0.1852 | 0.0408 | 130 |
2 | 4 | 0.0570 | 0.1737 | 0.0368 | 65 |
3 | 4 | 0.0132 | 0.0379 | 0.0084 | 130 |
2 | 5 | 0.0472 | 0.1983 | 0.0418 | 130 |
2 | 6 | 0.0581 | 0.1763 | 0.0374 | 65 |
4 | 6 | 0.0119 | 0.0414 | 0.0090 | 90 |
5 | 7 | 0.0460 | 0.1160 | 0.0204 | 70 |
6 | 7 | 0.0267 | 0.0820 | 0.0170 | 130 |
6 | 8 | 0.0120 | 0.0420 | 0.0090 | 32 |
6 | 9 | 0.0000 | 0.2080 | 0.0000 | 65 |
6 | 10 | 0.0000 | 0.5560 | 0.0000 | 32 |
9 | 11 | 0.0000 | 0.2080 | 0.0000 | 65 |
9 | 10 | 0.0000 | 0.1100 | 0.0000 | 65 |
4 | 12 | 0.0000 | 0.2560 | 0.0000 | 65 |
12 | 13 | 0.0000 | 0.1400 | 0.0000 | 65 |
12 | 14 | 0.1231 | 0.2559 | 0.0000 | 32 |
12 | 15 | 0.0662 | 0.1304 | 0.0000 | 32 |
12 | 16 | 0.0945 | 0.1932 | 0.0000 | 32 |
14 | 15 | 0.2210 | 0.1997 | 0.0000 | 16 |
16 | 17 | 0.0824 | 0.1932 | 0.0000 | 16 |
15 | 18 | 0.1070 | 0.2185 | 0.0000 | 16 |
18 | 19 | 0.0639 | 0.1292 | 0.0000 | 16 |
19 | 20 | 0.0340 | 0.0680 | 0.0000 | 32 |
10 | 20 | 0.0936 | 0.2090 | 0.0000 | 32 |
10 | 17 | 0.0324 | 0.0845 | 0.0000 | 32 |
10 | 21 | 0.0348 | 0.0749 | 0.0000 | 32 |
10 | 22 | 0.0727 | 0.1499 | 0.0000 | 32 |
21 | 22 | 0.0116 | 0.0236 | 0.0000 | 32 |
15 | 23 | 0.1000 | 0.2020 | 0.0000 | 16 |
22 | 24 | 0.1150 | 0.1790 | 0.0000 | 16 |
23 | 24 | 0.1320 | 0.2700 | 0.0000 | 16 |
24 | 25 | 0.1885 | 0.3292 | 0.0000 | 16 |
25 | 26 | 0.2544 | 0.3800 | 0.0000 | 16 |
25 | 27 | 0.1093 | 0.2087 | 0.0000 | 16 |
28 | 27 | 0.0000 | 0.390 | 0.0000 | 65 |
27 | 29 | 0.2198 | 0.4153 | 0.0000 | 16 |
27 | 30 | 0.3202 | 0.6027 | 0.0000 | 16 |
29 | 30 | 0.2399 | 0.4533 | 0.0000 | 16 |
8 | 28 | 0.0636 | 0.2000 | 0.0428 | 32 |
6 | 28 | 0.0169 | 0.0599 | 0.0130 | 32 |
N. Gen | P_{min} [MW] | P_{max} [MW] | Q_{min} [MVAr] | Q_{max} [MVAr] | a | b | c |
---|---|---|---|---|---|---|---|
1 | 50 | 200 | −20 | 250 | 0.00375 | 2.00 | 0 |
2 | 20 | 80 | −20 | 100 | 0.01750 | 1.75 | 0 |
3 | 15 | 50 | −15 | 80 | 0.06250 | 1.00 | 0 |
4 | 10 | 35 | −15 | 60 | 0.00834 | 3.25 | 0 |
5 | 10 | 30 | −10 | 50 | 0.02500 | 3.00 | 0 |
6 | 12 | 40 | −15 | 60 | 0.02500 | 3.00 | 0 |
Node | P [MW] | Q [MVAr] | Node | P [MW] | Q [MVAr] | Node | P [MW] | Q [MVAr] |
---|---|---|---|---|---|---|---|---|
1 | 0.00 | 0.00 | 11 | 0.00 | 0.00 | 21 | 17.50 | 11.20 |
2 | 21.70 | 12.70 | 12 | 11.20 | 7.50 | 22 | 0.00 | 0.00 |
3 | 2.40 | 1.20 | 13 | 0.00 | 0.00 | 23 | 3.20 | 1.60 |
4 | 7.60 | 1.60 | 14 | 6.20 | 1.60 | 24 | 8.70 | 6.70 |
5 | 94.20 | 19.00 | 15 | 8.20 | 2.50 | 25 | 0.00 | 0.00 |
6 | 0.00 | 0.00 | 16 | 3.50 | 1.80 | 26 | 3.50 | 2.30 |
7 | 22.80 | 10.90 | 17 | 9.00 | 5.80 | 27 | 0.00 | 0.00 |
8 | 30.00 | 30.00 | 18 | 3.20 | 0.90 | 28 | 0.00 | 0.00 |
9 | 0.00 | 0.00 | 19 | 9.50 | 3.40 | 29 | 2.40 | 0.90 |
10 | 5.80 | 2.00 | 20 | 2.20 | 0.70 | 30 | 10.60 | 1.90 |
References
- Saddique, M.S.; Bhatti, A.R.; Haroon, S.S.; Sattar, M.K.; Amin, S.; Sajjad, I.A.; ul Haq, S.S.; Awan, A.B.; Rasheed, N. Solution to optimal reactive power dispatch in transmission system using meta-heuristic techniques—Status and technological review. Electr. Power Syst. Res. 2020, 178, 106031. [Google Scholar] [CrossRef]
- Hatziargyriou, N.; Milanovic, J.V.; Rahmann, C.; Ajjarapu, V.; Canizares, C.; Erlich, I.; Hill, D.; Hiskens, I.; Kamwa, I.; Pal, B.; et al. Definition and Classification of Power System Stability Revisited & Extended. IEEE Trans. Power Syst. 2020, 36, 3271–3281. [Google Scholar] [CrossRef]
- Hassan, M.H.; Kamel, S.; El-Dabah, M.A.; Khurshaid, T.; Domínguez-García, J.L. Optimal Reactive Power Dispatch With Time-Varying Demand and Renewable Energy Uncertainty Using Rao-3 Algorithm. IEEE Access 2021, 9, 23264–23283. [Google Scholar] [CrossRef]
- Jaramillo, M.D.; Carrión, D.F.; Muñoz, J.P. A Novel Methodology for Strengthening Stability in Electrical Power Systems by Considering Fast Voltage Stability Index under N-1 Scenarios. Energies 2023, 16, 3396. [Google Scholar] [CrossRef]
- Quinteros, F.; Carrión, D.; Jaramillo, M. Optimal Power Systems Restoration Based on Energy Quality and Stability Criteria. Energies 2022, 15, 2062. [Google Scholar] [CrossRef]
- Wei, Y.; Zhou, Y.; Luo, Q.; Deng, W. Optimal reactive power dispatch using an improved slime mould algorithm. Energy Rep. 2021, 7, 8742–8759. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, Y.; Ji, T.; Liu, Z.; Li, C.; Cai, Z.; Yang, P. Robust Optimal Reactive Power Dispatch With Feedback and Correction Against Uncertainty of Transmission Line Parameters. IEEE Access 2018, 6, 39452–39465. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Le, K.H.; Phan, T.M.; Duong, M.Q. An Effective Reactive Power Compensation Method and a Modern Metaheuristic Algorithm for Loss Reduction in Distribution Power Networks. Complexity 2021, 2021, 8346738. [Google Scholar] [CrossRef]
- Aravanis, A.; Shankar, B.; Arapoglou, P.; Danoy, G.; Cotis, P.; Ottersten, B. Power Allocation in Multibeam Satellite Systems: A Two-Stage Multi-Objective Optimization. IEEE Trans. Wirel. Commun. 2015, 14, 3171–3182. [Google Scholar] [CrossRef]
- Deng, Z.; Liu, M.; Ouyang, Y.; Lin, S.; Xie, M. Multi-Objective Mixed-Integer Dynamic Optimization Method Applied to Optimal Allocation of Dynamic Var Sources of Power Systems. IEEE Trans. Power Syst. 2017, 33, 1683–1697. [Google Scholar] [CrossRef]
- Mugemanyi, S.; Qu, Z.; Rugema, F.X.; Dong, Y.; Bananeza, C.; Wang, L. Optimal Reactive Power Dispatch Using Chaotic Bat Algorithm. IEEE Access 2020, 8, 65830–65867. [Google Scholar] [CrossRef]
- Mehdinejad, M.; Mohammadi-Ivatloo, B.; Dadashzadeh-Bonab, R.; Zare, K. Solution of optimal reactive power dispatch of power systems using hybrid particle swarm optimization and imperialist competitive algorithms. Int. J. Electr. Power Energy Syst. 2016, 83, 104–116. [Google Scholar] [CrossRef]
- Zhang, M.; Li, Y. Multi-Objective Optimal Reactive Power Dispatch of Power Systems by Combining Classification-Based Multi-Objective Evolutionary Algorithm and Integrated Decision Making. IEEE Access 2020, 8, 38198–38209. [Google Scholar] [CrossRef]
- Jamal, R.; Men, B.; Khan, N.H.; Raja, M.A.Z.; Muhammad, Y. Application of Shannon Entropy Implementation Into a Novel Fractional Particle Swarm Optimization Gravitational Search Algorithm (FPSOGSA) for Optimal Reactive Power Dispatch Problem. IEEE Access 2021, 9, 2715–2733. [Google Scholar] [CrossRef]
- Khan, N.H.; Wang, Y.; Tian, D.; Jamal, R.; Ebeed, M.; Deng, Q. Fractional PSOGSA Algorithm Approach to Solve Optimal Reactive Power Dispatch Problems With Uncertainty of Renewable Energy Resources. IEEE Access 2020, 8, 215399–215413. [Google Scholar] [CrossRef]
- Jamal, R.; Men, B.; Khan, N.H. A Novel Nature Inspired Meta-Heuristic Optimization Approach of GWO Optimizer for Optimal Reactive Power Dispatch Problems. IEEE Access 2020, 8, 202596–202610. [Google Scholar] [CrossRef]
- Shaheen, A.M.; El-Sehiemy, R.A.; Farrag, S.M. Integrated Strategies of Backtracking Search Optimizer for Solving Reactive Power Dispatch Problem. IEEE Syst. J. 2018, 12, 424–433. [Google Scholar] [CrossRef]
- Lashkar Ara, A.; Kazemi, A.; Gahramani, S.; Behshad, M. Optimal reactive power flow using multi-objective mathematical programming. Sci. Iran. 2012, 19, 1829–1836. [Google Scholar] [CrossRef]
- Naderi, E.; Narimani, H.; Fathi, M.; Narimani, M.R. A novel fuzzy adaptive configuration of particle swarm optimization to solve large-scale optimal reactive power dispatch. Appl. Soft Comput. 2017, 53, 441–456. [Google Scholar] [CrossRef]
- Ebeed, M.; Ali, A.; Mosaad, M.I.; Kamel, S. An Improved Lightning Attachment Procedure Optimizer for Optimal Reactive Power Dispatch With Uncertainty in Renewable Energy Resources. IEEE Access 2020, 8, 168721–168731. [Google Scholar] [CrossRef]
- Khan, N.H.; Wang, Y.; Tian, D.; Jamal, R.; Kamel, S.; Ebeed, M. Optimal Siting and Sizing of SSSC Using Modified Salp Swarm Algorithm Considering Optimal Reactive Power Dispatch Problem. IEEE Access 2021, 9, 49249–49266. [Google Scholar] [CrossRef]
- Chamba, A.; Barrera-Singaña, C.; Arcos, H. Optimal Reactive Power Dispatch in Electric Transmission Systems Using the Multi-Agent Model with Volt-VAR Control. Energies 2023, 16, 5004. [Google Scholar] [CrossRef]
- Granados, J.F.; Uturbey, W.; Valadão, R.L.; Vasconcelos, J.A. Many-objective optimization of real and reactive power dispatch problems. Int. J. Electr. Power Energy Syst. 2023, 146, 108725. [Google Scholar] [CrossRef]
- Lamont, J.W.; Fu, J. Cost Analysis of Reactive Power Support. IEEE Trans. Power Syst. 1999, 14, 890–898. [Google Scholar] [CrossRef]
- Mavrotas, G. Effective implementation of the ε-constraint method in Multi-Objective Mathematical Programming problems. Appl. Math. Comput. 2009, 213, 455–465. [Google Scholar] [CrossRef]
- Soroudi, A. Power System Optimization Modeling in GAMS, 1st ed.; Springer: Dublín, Ireland, 2017; p. 309. [Google Scholar] [CrossRef]
Solution | [MW] | [USD/h] | min (,) | |||
---|---|---|---|---|---|---|
s1 | 9.335 | 801.842 | 801.842 | 0.000 | 1.000 | 0.000 |
s2 | 6.747 | 813.698 | 813.698 | 0.420 | 0.929 | 0.420 |
s3 | 5.942 | 825.554 | 825.554 | 0.550 | 0.857 | 0.550 |
s4 | 5.389 | 837.410 | 837.410 | 0.640 | 0.786 | 0.640 |
s5 | 4.964 | 849.266 | 849.266 | 0.709 | 0.714 | 0.709 |
s6 | 4.629 | 861.122 | 861.122 | 0.763 | 0.643 | 0.643 |
s7 | 4.353 | 872.978 | 872.978 | 0.808 | 0.571 | 0.571 |
s8 | 4.118 | 884.834 | 884.834 | 0.846 | 0.500 | 0.500 |
s9 | 3.913 | 896.690 | 896.690 | 0.879 | 0.429 | 0.429 |
s10 | 3.732 | 908.546 | 908.546 | 0.909 | 0.357 | 0.357 |
s11 | 3.571 | 920.401 | 920.401 | 0.935 | 0.286 | 0.286 |
s12 | 3.428 | 932.257 | 932.257 | 0.958 | 0.214 | 0.214 |
s13 | 3.313 | 944.113 | 944.113 | 0.976 | 0.143 | 0.143 |
s14 | 3.230 | 955.969 | 955.969 | 0.990 | 0.071 | 0.071 |
s15 | 3.168 | 967.825 | 967.825 | 1.000 | 0.000 | 0.000 |
Gen | Case 1 | Case 2 | Case 3 | Case 4 | |||
---|---|---|---|---|---|---|---|
P [MW] GAMS | P [MW] Digsilent | P [MW] GAMS | P [MW] Digsilent | P [MW] GAMS | P [MW] Digsilent | P [MW] GAMS | |
1 | 176.34 | 198.95 | 51.57 | 54.23 | 176.3 | 198.96 | 108.40 |
2 | 48.83 | 47.80 | 80.00 | 78.74 | 48.82 | 47.66 | 54.50 |
3 | 21.48 | 16.06 | 50.00 | 49.79 | 21.47 | 16.01 | 35.40 |
4 | 22.05 | 10.13 | 35.00 | 34.70 | 21.97 | 10.13 | 35.00 |
5 | 12.21 | 10.05 | 30.00 | 29.73 | 12.18 | 10.05 | 30.00 |
6 | 12.00 | 12.03 | 40.00 | 39.50 | 12.00 | 12.03 | 25.10 |
Total | 292.91 | 295.01 | 286.57 | 286.69 | 292.74 | 294.83 | 288.40 |
Gen | Case 1 | Case 2 | Case 3 | Case 4 | |||
---|---|---|---|---|---|---|---|
Q [MVAr] GAMS | Q [MVAr] Digsilent | Q [MVAr] GAMS | Q [MVAr] Digsilent | Q [MVAr] GAMS | Q [MVAr] Digsilent | Q [MVAr] GAMS | |
G1 | −19.13 | −17.70 | −15.27 | −8.86 | −20.00 | −18.34 | −17.10 |
G2 | 26.22 | 25.82 | 6.79 | 6.99 | 19.56 | 20.60 | 11.30 |
G3 | 28.68 | 29.92 | 22.13 | 22.13 | 27.14 | 2864 | 24.00 |
G4 | 40.08 | 38.84 | 27.72 | 29.66 | 28.16 | 29.40 | 28.10 |
G5 | 31.85 | 32.30 | 4.37 | 8.11 | 19.08 | 14.03 | 9.10 |
G6 | 23.93 | 27.86 | 21.98 | 16.33 | 24.54 | 27.71 | 21.50 |
C1 | - | - | 23.30 | 17.88 | 18.10 | 19.63 | 22.90 |
C2 | - | - | 12.70 | 12.69 | 12.90 | 12.86 | 12.70 |
Total | 131.62 | 137.04 | 105.71 | 104.94 | 129.47 | 134.53 | 112.50 |
Gen | Case 1 | Case 2 | Case 3 | Case 4 | |||
---|---|---|---|---|---|---|---|
Cost [USD/h] GAMS | Cost [USD/h] Digsilent | Cost [USD/h] GAMS | Cost [USD/h] Digsilent | Cost [USD/h] GAMS | Cost [USD/h] Digsilent | Cost [USD/h] GAMS | |
G1 | 469.28 | 546.32 | 113.11 | 119.49 | 469.16 | 546.36 | 260.86 |
G2 | 127.19 | 123.63 | 252.00 | 246.29 | 127.14 | 123.15 | 147.35 |
G3 | 50.31 | 32.17 | 206.25 | 204.75 | 50.28 | 32.03 | 113.72 |
G4 | 75.70 | 33.77 | 123.97 | 122.82 | 75.41 | 33.76 | 123.97 |
G5 | 40.36 | 32.68 | 112.50 | 111.29 | 40.26 | 32.68 | 112.50 |
G6 | 39.60 | 39.71 | 160.00 | 157.50 | 39.60 | 39.71 | 91.05 |
Total costs | 802.45 | 808.27 | 967.82 | 962.15 | 801.84 | 807.69 | 849.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villacrés, R.; Carrión, D. Optimizing Real and Reactive Power Dispatch Using a Multi-Objective Approach Combining the ϵ-Constraint Method and Fuzzy Satisfaction. Energies 2023, 16, 8034. https://doi.org/10.3390/en16248034
Villacrés R, Carrión D. Optimizing Real and Reactive Power Dispatch Using a Multi-Objective Approach Combining the ϵ-Constraint Method and Fuzzy Satisfaction. Energies. 2023; 16(24):8034. https://doi.org/10.3390/en16248034
Chicago/Turabian StyleVillacrés, Ricardo, and Diego Carrión. 2023. "Optimizing Real and Reactive Power Dispatch Using a Multi-Objective Approach Combining the ϵ-Constraint Method and Fuzzy Satisfaction" Energies 16, no. 24: 8034. https://doi.org/10.3390/en16248034
APA StyleVillacrés, R., & Carrión, D. (2023). Optimizing Real and Reactive Power Dispatch Using a Multi-Objective Approach Combining the ϵ-Constraint Method and Fuzzy Satisfaction. Energies, 16(24), 8034. https://doi.org/10.3390/en16248034