A Review of Distributed Secondary Control Architectures in Islanded-Inverter-Based Microgrids
<p>Microgrid control architecture with: (<b>A</b>) centralized secondary control; (<b>B</b>) decentralized secondary control.</p> "> Figure 2
<p>Diagram of the implemented secondary consensus-based controller.</p> "> Figure 3
<p>Diagram of the implemented secondary consensus-based and the primary phase-independent virtual generator controllers.</p> "> Figure 4
<p>Diagram of the implemented secondary predictive controller.</p> "> Figure 5
<p>Diagram of the implemented secondary predictive controller based on an input–output linearization of the DG inverter model.</p> "> Figure 6
<p>Implemented secondary-tertiary multi-layer communication approach for a cluster of MGs.</p> "> Figure 7
<p>Implemented multi-layer communication strategy based on the vector parameter X to adjust the system’s solution.</p> "> Figure 8
<p>Time-dependent protocol for: (<b>a</b>) single event. (<b>b</b>) Multi-event scenarios.</p> "> Figure 9
<p>Diagram of the implemented secondary event-trigger controller based on generalized time-dependent protocol for singles or multiples events.</p> "> Figure 10
<p>Event-triggered time generation mechanism.</p> "> Figure 11
<p>Implemented secondary event-triggered controller based on an multiple event-triggered mechanism.</p> ">
Abstract
:1. Introduction
2. Secondary Control Methods for Power Quality
2.1. Finite-Time Consensus-Based Approach
2.2. Predictive Model Approach
3. Secondary Control Methods for Communication Robustness
3.1. Layers Coordination Approach
3.2. Event Trigger Approach
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guerrero, J.M.; Vasquez, J.C.; Matas, J.; De Vicuña, L.G.; Castilla, M. Hierarchical control of droop-controlled AC and DC microgrids—A general approach toward standardization. IEEE Trans. Ind. Electron. 2011, 58, 158–172. [Google Scholar] [CrossRef]
- Ton, D.T.; Smith, M.A. The US department of energy’s microgrid initiative. Electr. J. 2012, 25, 84–94. [Google Scholar] [CrossRef]
- Olivares, D.E.; Mehrizi-Sani, A.; Etemadi, A.H.; Cañizares, C.A.; Iravani, R.; Kazerani, M.; Hajimiragha, A.H.; Gomis-Bellmunt, O.; Saeedifard, M.; Palma-Behnke, R.; et al. Trends in microgrid control. IEEE Trans. Smart Grid 2014, 5, 1905–1919. [Google Scholar] [CrossRef]
- Ilic-Spong, M.; Christensen, J.; Eichorn, K. Secondary voltage control using pilot point information. IEEE Trans. Power Syst. 1988, 3, 660–668. [Google Scholar] [CrossRef]
- Shafiee, Q.; Guerrero, J.M.; Vasquez, J.C. Distributed secondary control for islanded microgrids—A novel approach. IEEE Trans. Power Electron. 2013, 29, 1018–1031. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Li, H.; Shen, P.; Coelho, E.A.A.; Guerrero, J.M. Review of active and reactive power sharing strategies in hierarchical controlled microgrids. IEEE Trans. Power Electron. 2017, 32, 2427–2451. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.; Kang, R.; Cao, J.; Yang, T. Primary and secondary control in DC microgrids: A review. J. Mod. Power Syst. Clean Energy 2019, 7, 227–242. [Google Scholar] [CrossRef] [Green Version]
- Patarroyo-Montenegro, J.F.; Andrade, F.; Guerrero, J.M.; Vasquez, J.C. A linear quadratic regulator with optimal reference tracking for three-phase inverter-based islanded microgrids. IEEE Trans. Power Electron. 2020, 36, 7112–7122. [Google Scholar] [CrossRef]
- Mahmud, M.A.; Hossain, M.; Pota, H.; Oo, A. Robust nonlinear distributed controller design for active and reactive power sharing in islanded microgrids. IEEE Trans. Energy Convers. 2014, 29, 893–903. [Google Scholar] [CrossRef]
- Ahmed, K.; Seyedmahmoudian, M.; Mekhilef, S.; Mubarak, N.; Stojcevski, A. A review on primary and secondary controls of inverter-interfaced microgrid. J. Mod. Power Syst. Clean Energy 2020, 9, 969–985. [Google Scholar] [CrossRef]
- Karimi, H.; Nikkhajoei, H.; Iravani, R. Control of an electronically-coupled distributed resource unit subsequent to an islanding event. IEEE Trans. Power Deliv. 2008, 23, 493–501. [Google Scholar] [CrossRef]
- Katiraei, F.; Iravani, R.; Lehn, P.W. Micro-grid autonomous operation during and subsequent to islanding process. IEEE Trans. Power Deliv. 2005, 20, 248–257. [Google Scholar] [CrossRef]
- Chandrokar, M.; Divan, D.; Banerjee, B. Control of distributed UPS systems. In Proceedings of the 1994 Power Electronics Specialist Conference, Taipei, Taiwan, 20–25 June 1994; Volume 1, pp. 197–204. [Google Scholar]
- Guerrero, J.M.; de Vicuna, L.G.; Matas, J.; Castilla, M.; Miret, J. A wireless controller to enhance dynamic performance of parallel inverters in distributed generation systems. IEEE Trans. Power Electron. 2004, 19, 1205–1213. [Google Scholar] [CrossRef]
- De Brabandere, K.; Bolsens, B.; Van den Keybus, J.; Woyte, A.; Driesen, J.; Belmans, R. A voltage and frequency droop control method for parallel inverters. IEEE Trans. Power Electron. 2007, 22, 1107–1115. [Google Scholar]
- Kundur, P. Power System Stability and Control; McGraw-Hill: New York, NY, USA, 1994. [Google Scholar]
- Yao, Y.; Ertugrul, N. An overview of hierarchical control strategies for microgrids. In Proceedings of the 2019 29th Australasian Universities Power Engineering Conference (AUPEC), Nadi, Fiji, 26–29 November 2019; pp. 1–6. [Google Scholar]
- Li, Z.; Cheng, Z.; Liang, J.; Si, J.; Dong, L.; Li, S. Distributed event-triggered secondary control for economic dispatch and frequency restoration control of droop-controlled AC microgrids. IEEE Trans. Sustain. Energy 2019, 11, 1938–1950. [Google Scholar] [CrossRef]
- Palizban, O.; Kauhaniemi, K. Hierarchical control structure in microgrids with distributed generation: Island and grid-connected mode. Renew. Sustain. Energy Rev. 2015, 44, 797–813. [Google Scholar] [CrossRef]
- de Souza, W.F.; Severo-Mendes, M.A.; Lopes, L.A. Power sharing control strategies for a three-phase microgrid in different operating condition with droop control and damping factor investigation. IET Renew. Power Gener. 2015, 9, 831–839. [Google Scholar] [CrossRef]
- Peyghami, S.; Mokhtari, H.; Loh, P.C.; Davari, P.; Blaabjerg, F. Distributed primary and secondary power sharing in a droop-controlled LVDC microgrid with merged AC and DC characteristics. IEEE Trans. Smart Grid 2018, 9, 2284–2294. [Google Scholar] [CrossRef] [Green Version]
- Kosari, M.; Hosseinian, S.H. Decentralized reactive power sharing and frequency restoration in islanded microgrid. IEEE Trans. Power Syst. 2017, 32, 2901–2912. [Google Scholar] [CrossRef]
- Guo, F.; Wen, C.; Mao, J.; Chen, J.; Song, Y.D. Distributed cooperative secondary control for voltage unbalance compensation in an islanded microgrid. IEEE Trans. Ind. Inform. 2015, 11, 1078–1088. [Google Scholar] [CrossRef]
- Marinelli, M.; Martinenas, S.; Knezović, K.; Andersen, P.B. Validating a centralized approach to primary frequency control with series-produced electric vehicles. J. Energy Storage 2016, 7, 63–73. [Google Scholar] [CrossRef]
- Jiang, H.; Kumtepeli, V.; Nguyen, D.D.; Tripathi, A.; Wang, Y. Secondary reactive power balancing and voltage stability in microgrid using prioritized centralized controller. In Proceedings of the 2018 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), Singapore, 22–25 May 2018; pp. 1209–1214. [Google Scholar]
- hassane Margoum, E.; Mharzi, H.; Faddel, S.; Saad, A.; Mohammed, O. Coordinated control scheme for electric vehicles connected to droop-controlled microgrids. In Proceedings of the 2019 IEEE Transportation Electrification Conference and Expo (ITEC), Detroit, MI, USA, 19–21 June 2019; pp. 1–6. [Google Scholar]
- Khayat, Y.; Shafiee, Q.; Heydari, R.; Naderi, M.; Dragičević, T.; Simpson-Porco, J.W.; Dörfler, F.; Fathi, M.; Blaabjerg, F.; Guerrero, J.M.; et al. On the secondary control architectures of AC microgrids: An overview. IEEE Trans. Power Electron. 2019, 35, 6482–6500. [Google Scholar] [CrossRef]
- Feng, X.; Shekhar, A.; Yang, F.; Hebner, R.E.; Bauer, P. Comparison of hierarchical control and distributed control for microgrid. Electr. Power Compon. Syst. 2017, 45, 1043–1056. [Google Scholar] [CrossRef]
- Khayat, Y.; Naderi, M.; Shafiee, Q.; Batmani, Y.; Fathi, M.; Guerrero, J.M.; Bevrani, H. Decentralized optimal frequency control in autonomous microgrids. IEEE Trans. Power Syst. 2018, 34, 2345–2353. [Google Scholar] [CrossRef]
- Espina, E.; Llanos, J.; Burgos-Mellado, C.; Cardenas-Dobson, R.; Martinez-Gomez, M.; Sáez, D. Distributed control strategies for microgrids: An overview. IEEE Access 2020, 8, 193412–193448. [Google Scholar] [CrossRef]
- Cintuglu, M.H.; Youssef, T.; Mohammed, O.A. Development and application of a real-time testbed for multiagent system interoperability: A case study on hierarchical microgrid control. IEEE Trans. Smart Grid 2016, 9, 1759–1768. [Google Scholar] [CrossRef]
- Gungor, V.C.; Sahin, D.; Kocak, T.; Ergut, S.; Buccella, C.; Cecati, C.; Hancke, G.P. Smart grid technologies: Communication technologies and standards. IEEE Trans. Ind. Inform. 2011, 7, 529–539. [Google Scholar] [CrossRef] [Green Version]
- Olfati-Saber, R.; Fax, J.A.; Murray, R.M. Consensus and cooperation in networked multi-agent systems. Proc. IEEE 2007, 95, 215–233. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Yu, X.; Lai, J.; Wang, Y.; Guerrero, J.M. A novel distributed secondary coordination control approach for islanded microgrids. IEEE Trans. Smart Grid 2018, 9, 2726–2740. [Google Scholar] [CrossRef] [Green Version]
- Simpson-Porco, J.W.; Shafiee, Q.; Dörfler, F.; Vasquez, J.C.; Guerrero, J.M.; Bullo, F. Secondary frequency and voltage control of islanded microgrids via distributed averaging. IEEE Trans. Ind. Electron. 2015, 62, 7025–7038. [Google Scholar] [CrossRef]
- Yazdanian, M.; Mehrizi-Sani, A. Distributed control techniques in microgrids. IEEE Trans. Smart Grid 2014, 5, 2901–2909. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, K.; Li, H.; Coelho, E.A.A.; Guerrero, J.M. MAS-based distributed coordinated control and optimization in microgrid and microgrid clusters: A comprehensive overview. IEEE Trans. Power Electron. 2017, 33, 6488–6508. [Google Scholar] [CrossRef] [Green Version]
- Kwasinski, A.; Andrade, F.; Castro-Sitiriche, M.J.; O’Neill-Carrillo, E. Hurricane Maria effects on Puerto Rico electric power infrastructure. IEEE Power Energy Technol. Syst. J. 2019, 6, 85–94. [Google Scholar] [CrossRef]
- Mottaghizadeh, M.; Aminifar, F.; Amraee, T.; Sanaye-Pasand, M. Distributed robust secondary control of islanded microgrids: Voltage, frequency, and power sharing. IEEE Trans. Power Deliv. 2021, 36, 2501–2509. [Google Scholar] [CrossRef]
- Liu, K.; He, J.; Luo, Z.; Shen, X.; Liu, X.; Lu, T. Secondary frequency control of isolated microgrid based on LADRC. IEEE Access 2019, 7, 53454–53462. [Google Scholar] [CrossRef]
- Zhou, J.; Sun, H.; Xu, Y.; Han, R.; Yi, Z.; Wang, L.; Guerrero, J.M. Distributed power sharing control for islanded single-/three-phase microgrids with admissible voltage and energy storage constraints. IEEE Trans. Smart Grid 2021, 12, 2760–2775. [Google Scholar] [CrossRef]
- Roncero-Clemente, C.; Gonzalez-Romera, E.; Barrero-González, F.; Milanés-Montero, M.I.; Romero-Cadaval, E. Power-flow-based secondary control for autonomous droop-controlled AC nanogrids with peer-to-peer energy trading. IEEE Access 2021, 9, 22339–22350. [Google Scholar] [CrossRef]
- Guan, Y.; Vasquez, J.C.; Guerrero, J.M. Coordinated secondary control for balanced discharge rate of energy storage system in islanded AC microgrids. IEEE Trans. Ind. Appl. 2016, 52, 5019–5028. [Google Scholar] [CrossRef] [Green Version]
- Lou, G.; Gu, W.; Xu, Y.; Cheng, M.; Liu, W. Distributed MPC-based secondary voltage control scheme for autonomous droop-controlled microgrids. IEEE Trans. Sustain. Energy 2016, 8, 792–804. [Google Scholar] [CrossRef]
- Lou, G.; Gu, W.; Sheng, W.; Song, X.; Gao, F. Distributed model predictive secondary voltage control of islanded microgrids with feedback linearization. IEEE Access 2018, 6, 50169–50178. [Google Scholar] [CrossRef]
- Zuo, S.; Davoudi, A.; Song, Y.; Lewis, F.L. Distributed finite-time voltage and frequency restoration in islanded AC microgrids. IEEE Trans. Ind. Electron. 2016, 63, 5988–5997. [Google Scholar] [CrossRef]
- Shrivastava, S.; Subudhi, B. Distributed, fixed-time, and bounded control for secondary voltage and frequency restoration in islanded microgrids. IET Smart Grid 2019, 2, 260–268. [Google Scholar] [CrossRef]
- Xu, Y.; Sun, H. Distributed finite-time convergence control of an islanded low-voltage AC microgrid. IEEE Trans. Power Syst. 2017, 33, 2339–2348. [Google Scholar] [CrossRef]
- Han, R.; Meng, L.; Ferrari-Trecate, G.; Coelho, E.A.A.; Vasquez, J.C.; Guerrero, J.M. Containment and consensus-based distributed coordination control to achieve bounded voltage and precise reactive power sharing in islanded AC microgrids. IEEE Trans. Ind. Appl. 2017, 53, 5187–5199. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Q.C. Virtual Synchronous Machines: A unified interface for grid integration. IEEE Power Electron. Mag. 2016, 3, 18–27. [Google Scholar] [CrossRef]
- Liu, J.; Miura, Y.; Bevrani, H.; Ise, T. Enhanced virtual synchronous generator control for parallel inverters in microgrids. IEEE Trans. Smart Grid 2016, 8, 2268–2277. [Google Scholar] [CrossRef]
- Visscher, K.; De Haan, S.W.H. Virtual synchronous machines (VSG’s) for frequency stabilisation in future grids with a significant share of decentralized generation. In Proceedings of the CIRED Seminar 2008: SmartGrids for Distribution, Frankfurt, Germany, 23–24 June 2008; pp. 1–4. [Google Scholar]
- Marinescu, B.; Bourles, H. Robust predictive control for the flexible coordinated secondary voltage control of large-scale power systems. IEEE Trans. Power Syst. 1999, 14, 1262–1268. [Google Scholar] [CrossRef]
- Guo, Z.; Li, S.; Zheng, Y. Feedback linearization based distributed model predictive control for secondary control of islanded microgrid. Asian J. Control 2020, 22, 460–473. [Google Scholar] [CrossRef]
- Ge, P.; Chen, B.; Teng, F. Event-triggered distributed MPC for voltage control of an islanded microgrid. arXiv 2020, arXiv:2004.00394. [Google Scholar]
- Heyderi, R.; Alhasheem, M.; Dragicevic, T.; Blaabjerg, F. Model predictive control approach for distributed hierarchical control of vsc-based microgrids. In Proceedings of the 2018 20th European Conference on Power Electronics and Applications (EPE’18 ECCE Europe), Riga, Latvia, 17–21 September 2018. [Google Scholar]
- Bidram, A.; Davoudi, A.; Lewis, F.L.; Guerrero, J.M. Distributed cooperative secondary control of microgrids using feedback linearization. IEEE Trans. Power Syst. 2013, 28, 3462–3470. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, A.K.; Mahmud, K.; Crittenden, M.; Ravishankar, J.; Padmanaban, S.; Blaabjerg, F. Communication-less primary and secondary control in inverter-interfaced ac microgrid: An overview. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 9, 5164–5182. [Google Scholar] [CrossRef]
- Ullah, S.; Khan, L.; Sami, I.; Ullah, N. Consensus-based delay-tolerant distributed secondary control strategy for droop controlled AC microgrids. IEEE Access 2021, 9, 6033–6049. [Google Scholar] [CrossRef]
- Lu, X.; Lai, J.; Yu, X.; Wang, Y.; Guerrero, J.M. Distributed coordination of islanded microgrid clusters using a two-layer intermittent communication network. IEEE Trans. Ind. Inform. 2017, 14, 3956–3969. [Google Scholar] [CrossRef] [Green Version]
- Rey, J.M.; Martí, P.; Velasco, M.; Miret, J.; Castilla, M. Secondary switched control with no communications for islanded microgrids. IEEE Trans. Ind. Electron. 2017, 64, 8534–8545. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Xiao, X.; Guerrero, J.M. Secondary restoration control of islanded microgrids with a decentralized event-triggered strategy. IEEE Trans. Ind. Inform. 2017, 14, 3870–3880. [Google Scholar] [CrossRef] [Green Version]
- Lou, G.; Gu, W.; Wang, L.; Xu, B.; Wu, M.; Sheng, W. Decentralised secondary voltage and frequency control scheme for islanded microgrid based on adaptive state estimator. IET Gener. Transm. Distrib. 2017, 11, 3683–3693. [Google Scholar] [CrossRef]
- Cai, H.; Hu, G. Distributed nonlinear hierarchical control of AC microgrid via unreliable communication. IEEE Trans. Smart Grid 2016, 9, 2429–2441. [Google Scholar] [CrossRef]
- Chen, G.; Guo, Z. Distributed secondary and optimal active power sharing control for islanded microgrids with communication delays. IEEE Trans. Smart Grid 2017, 10, 2002–2014. [Google Scholar] [CrossRef]
- Li, Q.; Peng, C.; Wang, M.; Chen, M.; Guerrero, J.M.; Abbott, D. Distributed secondary control and management of islanded microgrids via dynamic weights. IEEE Trans. Smart Grid 2018, 10, 2196–2207. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Lai, J.; Yu, X. A novel secondary power management strategy for multiple AC microgrids with cluster-oriented two-layer cooperative framework. IEEE Trans. Ind. Inform. 2020, 17, 1483–1495. [Google Scholar] [CrossRef]
- Lai, J.; Lu, X.; Yu, X.; Monti, A. Cluster-oriented distributed cooperative control for multiple AC microgrids. IEEE Trans. Ind. Inform. 2019, 15, 5906–5918. [Google Scholar] [CrossRef]
- Lu, X.; Lai, J. Two-layer cooperative control for multiple converter-network clusters. IEEE Trans. Circuits Syst. II Express Briefs 2020, 68, 682–686. [Google Scholar] [CrossRef]
- Weng, S.; Yue, D.; Dou, C.; Shi, J.; Huang, C. Distributed event-triggered cooperative control for frequency and voltage stability and power sharing in isolated inverter-based microgrid. IEEE Trans. Cybern. 2018, 49, 1427–1439. [Google Scholar] [CrossRef]
- Yue, D.; Zhang, H.; Dou, C. Distributed Event-Triggered Cooperative Control for Frequency and Voltage Stability and Power Sharing in Isolated Inverter-Based Microgrid. In Cooperative Optimal Control of Hybrid Energy Systems; Springer: Berlin/Heidelberg, Germany, 2021; pp. 299–324. [Google Scholar]
- Wan, X.; Tian, Y.; Wu, J.; Ding, X.; Tu, H. Distributed event-triggered secondary recovery control for islanded microgrids. Electronics 2021, 10, 1749. [Google Scholar] [CrossRef]
- Ding, L.; Han, Q.L.; Zhang, X.M. Distributed secondary control for active power sharing and frequency regulation in islanded microgrids using an event-triggered communication mechanism. IEEE Trans. Ind. Inform. 2018, 15, 3910–3922. [Google Scholar] [CrossRef]
- Weng, S. Distributed cooperative control for frequency and voltage stability in isolated microgrid under event-triggered mechanism. In Proceedings of the 2018 Australian & New Zealand Control Conference (ANZCC), Melbourne, VIC, Australia, 7–8 December 2018; pp. 366–370. [Google Scholar]
Concept | Power Quality Articles | |||||||
---|---|---|---|---|---|---|---|---|
[34] | [39] | [40] | [41] | [42] | [43] | [44] | [45] | |
A | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
B | ✓ | ✓ | ✗ | ✓ | ✓ | ✓ | ✓ | ✓ |
C | ✓ | ✓ | ✗ | ✓ | ✓ | ✓ | ✓ | ✓ |
D | ✓ | ✗ | ✗ | ✓ | ✓ | ✗ | ✗ | ✗ |
E | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ |
F | ✓ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ |
G | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✓ | ✓ |
H | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ |
I | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ |
J | ✓ | ✓ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ |
K | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✓ |
L | ✗ | ✗ | ✓ | ✗ | ✓ | ✓ | ✗ | ✗ |
M | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ |
N | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ |
O | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ |
P | ✓ | ✓ | ✓ | ✓ | ✗ | ✗ | ✓ | ✓ |
Q | ✗ | ✗ | ✗ | ✗ | ✓ | ✓ | ✗ | ✗ |
Concept | Power Quality Articles | ||||||||
---|---|---|---|---|---|---|---|---|---|
[59] | [60] | [61] | [62] | [63] | [64] | [29] | [65] | [66] | |
A | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✗ |
B | ✗ | ✓ | ✗ | ✓ | ✓ | ✓ | ✓ | ✓ | ✗ |
C | ✓ | ✓ | ✓ | ✓ | ✓ | ✗ | ✓ | ✓ | ✓ |
D | ✗ | ✓ | ✗ | ✓ | ✓ | ✗ | ✗ | ✓ | ✓ |
E | ✓ | ✓ | ✗ | ✓ | ✗ | ✓ | ✗ | ✓ | ✓ |
F | ✓ | ✓ | ✗ | ✗ | ✗ | ✓ | ✗ | ✓ | ✗ |
G | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
H | ✗ | ✗ | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ |
I | ✗ | ✗ | ✗ | ✓ | ✓ | ✓ | ✗ | ✗ | ✗ |
J | ✗ | ✓ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ |
K | ✗ | ✗ | ✓ | ✗ | ✓ | ✗ | ✓ | ✗ | ✗ |
L | ✗ | ✓ | ✓ | ✓ | ✓ | ✗ | ✗ | ✓ | ✗ |
M | ✓ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✓ |
N | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodriguez-Martinez, O.F.; Andrade, F.; Vega-Penagos, C.A.; Luna, A.C. A Review of Distributed Secondary Control Architectures in Islanded-Inverter-Based Microgrids. Energies 2023, 16, 878. https://doi.org/10.3390/en16020878
Rodriguez-Martinez OF, Andrade F, Vega-Penagos CA, Luna AC. A Review of Distributed Secondary Control Architectures in Islanded-Inverter-Based Microgrids. Energies. 2023; 16(2):878. https://doi.org/10.3390/en16020878
Chicago/Turabian StyleRodriguez-Martinez, Omar F., Fabio Andrade, Cesar A. Vega-Penagos, and Adriana C. Luna. 2023. "A Review of Distributed Secondary Control Architectures in Islanded-Inverter-Based Microgrids" Energies 16, no. 2: 878. https://doi.org/10.3390/en16020878
APA StyleRodriguez-Martinez, O. F., Andrade, F., Vega-Penagos, C. A., & Luna, A. C. (2023). A Review of Distributed Secondary Control Architectures in Islanded-Inverter-Based Microgrids. Energies, 16(2), 878. https://doi.org/10.3390/en16020878