Hardware Implementation of a Home Energy Management System Using Remodeled Sperm Swarm Optimization (RMSSO) Algorithm
<p>Symmetric side strokes of sperm swarm and the egg.</p> "> Figure 2
<p>The sperm swarm helical spin in the fallopian tubes.</p> "> Figure 3
<p>Illustration of the RMSSO algorithm’s sperm swarm and the winner process.</p> "> Figure 4
<p>Flowchart of the proposed RMSSO algorithm.</p> "> Figure 5
<p>Demand comparison of SSA, SSO, and RMSSO techniques.</p> "> Figure 5 Cont.
<p>Demand comparison of SSA, SSO, and RMSSO techniques.</p> "> Figure 6
<p>Comparison of total scheduled loads.</p> "> Figure 7
<p>Individual time slot cost comparison of SSA, SSO, and RMSSO techniques.</p> "> Figure 8
<p>Total cost comparison.</p> "> Figure 9
<p>Convergence characteristics’ comparison of RMSSO, SSO, and SSA techniques.</p> "> Figure 9 Cont.
<p>Convergence characteristics’ comparison of RMSSO, SSO, and SSA techniques.</p> "> Figure 10
<p>Hardware setup: (<b>a</b>) complete experimental setup, (<b>b</b>) power circuit of HEMs.</p> "> Figure 11
<p>Comparison of peak-average ratio.</p> ">
Abstract
:1. Introduction
Highlights and Organization of the Paper
- (i).
- A remodeled sperm swarm optimization (RMSSO) algorithm was proposed for the HEM system.
- (ii).
- The optimization process was carried out with varied computational parameters to demonstrate that the optimization algorithms could handle five distinct Indian climatic conditions.
- (iii).
- A day-ahead pricing (DAP-(₹//kWh)) scheme was used as a part of the DR program.
- (iv).
- This paper provides a unique comparison of SSO, modified SSO (MSSO), and the proposed RMSSO algorithms.
- (v).
- Reduction in energy consumption costs, peak-average ratio (PAR), and increase in the level of user comfort were the objectives of this paper.
2. System Architecture
3. Mathematical Formulation
3.1. Problem Formulation
3.2. Binary Decision Variable
3.3. Constraints
3.3.1. Timing Constraints
- 1.
- Non-schedulable appliance: As specified in Equation (10), non-schedulable appliances must remain ON throughout the day (24 h), regardless of whether it is a peak time or not.
- 2.
- User satisfaction level: The significant constraint is that all appliances must be run for a specified number of times , as defined in Equation (11).
- 3.
- Time constraint: The appliance operating time constraint specifies the scheduled time interval of the jth set of appliances as given in Equation (14).
3.3.2. Energy Constraints
- 1.
- Energy consumption threshold limit (Emax): For any time interval of the day, the total power consumed by both schedulable and non-schedulable appliances () must be less than or equal to the threshold limit, Emax = 1.2 kW, as stated in Equation (15).
- 2.
- Total energy consumption: This constraint (Equation (18)) is imposed to guarantee that, through scheduling, the required overall energy demand (= 10 kW) of the day has been met.
- 3.
- Peak-average ratio (PAR): The peak-average ratio is an important factor to consider while scheduling and must be mitigated. It is computed using Equation (20).
3.3.3. Objective Function
4. Optimization Techniques
4.1. Salp Swarm Optimization Algorithm (SSA)
4.2. Sperm Swarm Optimization Algorithm
4.3. Remodeled Sperm Swarm Optimization Algorithm (RMSSO)
Constriction Coefficient of the Sperm Swarm Optimization Algorithm
4.4. Comparison Optimization Algorithms Inspired by the Sperm Swarm
5. Results and Discussion
5.1. Simulation Results
5.1.1. Demand Comparison
5.1.2. Total Load Comparison
5.1.3. Cost Comparison
5.1.4. Total Cost Comparison
5.1.5. Task Completion Analysis
5.1.6. Robustness
5.1.7. Computational Complexity Analysis
5.2. Hardware Implementation
Comparison of Peak-Average Ratio (PAR)
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Derick, M.; Rani, C.; Rajesh, M.; Busawon, K.; Binns, R. Estimation of solar photovoltaic parameters using pattern search algorithm. In International Conference on Emerging Trends in Electrical, Electronic and Communications Engineering; Springer: Cham, Switzerland, 2016; pp. 184–191. [Google Scholar]
- Paul, S.; Padhy, N.P. Real Time Energy Management for Smart Homes. IEEE Syst. J. 2020, 15, 4177–4188. [Google Scholar] [CrossRef]
- Melhem, F.Y.; Grunder, O.; Hammoudan, Z.; Moubayed, N. Energy management in electrical smart grid environment using robust optimization algorithm. IEEE Trans. Ind. Appl. 2018, 54, 2714–2726. [Google Scholar] [CrossRef]
- Yan, Y.; Qian, Y.; Sharif, H.; Tipper, D. A survey on smart grid communication infrastructures: Motivations, requirements and challenges. IEEE Commun. Surv. Tutor. 2012, 15, 5–20. [Google Scholar] [CrossRef] [Green Version]
- Amer, M.; Naaman, A.; M’Sirdi, N.K.; El-Zonkoly, A.M. A hardware algorithm for PAR reduction in smart home. In Proceedings of the 2014 International Conference on Applied and Theoretical Electricity (ICATE), Craiova, Romania, 23–25 October 2014; pp. 1–6. [Google Scholar]
- Klaimi, J.; Rahim-Amoud, R.; Merghem-Boulahia, L.; Jrad, A. Energy management algorithms in smart grids: State of the art and emerging trends. Int. J. Artif. Intell. Appl. (IJAIA) 2016, 7, 25–45. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, L.; Guo, W.; Kang, Q.; Wu, Q. Chance Constrained Optimization in a Home Energy Management System. IEEE Trans. Smart Grid 2018, 9, 252–260. [Google Scholar] [CrossRef]
- Molderink, A.; Bakker, V.; Bosman, M.G.; Hurink, J.L.; Smit, G.J. Domestic energy management methodology for optimizing efficiency in smart grids. In Proceedings of the 2009 IEEE Bucharest Power Tech, Bucharest, Romania, 28 June–2 July 2009; pp. 1–7. [Google Scholar]
- Behrangrad, M.; Sugihara, H.; Funaki, T. Analyzing the system effects of optimal demand response utilization for reserve procurement and peak clipping. In Proceedings of the IEEE PES General Meeting, Minneapolis, MN, USA, 25–29 July 2010; pp. 1–7. [Google Scholar]
- Zhong, W.; Xie, K.; Liu, Y.; Yang, C.; Xie, S.; Zhang, Y. Online Control and Near-Optimal Algorithm for Distributed Energy Storage Sharing in Smart Grid. IEEE Trans. Smart Grid 2019, 11, 2552–2562. [Google Scholar] [CrossRef]
- Pipattanasomporn, M.; Kuzlu, M.; Rahman, S. An Algorithm for Intelligent Home Energy Management and Demand Response Analysis. IEEE Trans. Smart Grid 2012, 3, 2166–2173. [Google Scholar] [CrossRef]
- Kuzlu, M.; Pipattanasomporn, M.; Rahman, S. Hardware Demonstration of a Home Energy Management System for Demand Response Applications. IEEE Trans. Smart Grid 2012, 3, 1704–1711. [Google Scholar] [CrossRef]
- Kazmi, S.; Javaid, N.; Mughal, M.J.; Akbar, M.; Ahmed, S.H.; Alrajeh, N. Towards Optimization of Metaheuristic Algorithms for IoT Enabled Smart Homes Targeting Balanced Demand and Supply of Energy. IEEE Access 2017, 7, 24267–24281. [Google Scholar] [CrossRef]
- Anvari-Moghaddam, A.; Monsef, H.; Rahimi-Kian, A. Cost-effective and comfort-aware residential energy management under different pricing schemes and weather conditions. Energy Build. 2015, 86, 782–793. [Google Scholar]
- Jiang, X.; Wu, L. A residential load scheduling based on cost efficiency and consumer’s preference for demand response in smart grid. Electr. Power Syst. Res. 2020, 186, 106410. [Google Scholar] [CrossRef]
- Wu, T.-Y.; Jiang, Y.-Z.; Su, Y.-Z.; Yeh, W.-C. Using Simplified Swarm Optimization on Multiloop Fuzzy PID Controller Tuning Design for Flow and Temperature Control System. Appl. Sci. 2020, 10, 8472. [Google Scholar] [CrossRef]
- Pedrasa MA, A.; Spooner, T.D.; MacGill, I.F. Coordinated scheduling of residential distributed energy resources to optimize smart home energy services. IEEE Trans. Smart Grid 2010, 1, 134–143. [Google Scholar] [CrossRef]
- Mohsenian-Rad, A.-H.; Leon-Garcia, A. Optimal Residential Load Control with Price Prediction in Real-Time Electricity Pricing Environments. IEEE Trans. Smart Grid 2010, 1, 120–133. [Google Scholar] [CrossRef]
- Mohsenian-Rad, A.H.; Wong, V.W.; Jatskevich, J.; Schober, R. Optimal and autonomous incentive-based energy consumption scheduling algorithm for smart grid. In Proceedings of the 2010 Innovative Smart Grid Technologies (ISGT), Gaithersburg, MD, USA, 19–21 January 2010; pp. 1–6. [Google Scholar]
- Paterakis, N.G.; Erdinç, O.; Pappi, I.N.; Bakirtzis, A.G.; Catalão, J.P. Coordinated operation of a neighborhood of smart households comprising electric vehicles, energy storage and distributed generation. IEEE Trans. Smart Grid 2016, 7, 2736–2747. [Google Scholar] [CrossRef]
- Li, W.; Logenthiran, T.; Phan, V.T.; Woo, W.L. Implemented IoT-based self-learning home management system (SHMS) for Singapore. IEEE Internet Things J. 2018, 5, 2212–2219. [Google Scholar] [CrossRef]
- Naz, M.; Iqbal, Z.; Javaid, N.; Khan, Z.A.; Abdul, W.; Almogren, A.; Alamri, A. Efficient Power Scheduling in Smart Homes Using Hybrid Grey Wolf Differential Evolution Optimization Technique with Real Time and Critical Peak Pricing Schemes. Energies 2018, 11, 384. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, Z.; Javaid, N.; Iqbal, S.; Aslam, S.; Khan, Z.A.; Abdul, W.; Almogren, A.; Alamri, A. A Domestic Microgrid with Optimized Home Energy Management System. Energies 2018, 11, 1002. [Google Scholar] [CrossRef] [Green Version]
- Carli, R.; Cavone, G.; Pippia, T.; De Schutter, B.; Dotoli, M. Robust Optimal Control for Demand Side Management of Multi-Carrier Microgrids. IEEE Trans. Autom. Sci. Eng. 2022, 1–14. [Google Scholar] [CrossRef]
- Barbato, A.; Capone, A. Optimization Models and Methods for Demand-Side Management of Residential Users: A Survey. Energies 2014, 7, 5787–5824. [Google Scholar] [CrossRef]
- Lashkari, B.; Chen, Y.; Musilek, P. Energy Management for Smart Homes—State of the Art. Appl. Sci. 2019, 9, 3459. [Google Scholar] [CrossRef] [Green Version]
- Helmi, A.M.; Carli, R.; Dotoli, M.; Ramadan, H.S. Efficient and Sustainable Reconfiguration of Distribution Networks via Metaheuristic Optimization. IEEE Trans. Autom. Sci. Eng. 2022, 19, 82–98. [Google Scholar] [CrossRef]
- Muhammad, M.A.; Mokhlis, H.; Naidu, K.; Amin, A.; Franco, J.F.; Othman, M. Distribution Network Planning Enhancement via Network Reconfiguration and DG Integration Using Dataset Approach and Water Cycle Algorithm. J. Mod. Power Syst. Clean Energy 2020, 8, 86–93. [Google Scholar] [CrossRef]
- Aprillia, H.; Yang, H.-T.; Huang, C.-M. Short-Term Photovoltaic Power Forecasting Using a Convolutional Neural Network–Salp Swarm Algorithm. Energies 2020, 13, 1879. [Google Scholar] [CrossRef]
- Duan, Q.; Wang, L.; Kang, H.; Shen, Y.; Sun, X.; Chen, Q. Improved Salp Swarm Algorithm with Simulated Annealing for Solving Engineering Optimization Problems. Symmetry 2021, 13, 1092. [Google Scholar] [CrossRef]
- Alhasnawi, B.; Jasim, B.; Siano, P.; Guerrero, J. A Novel Real-Time Electricity Scheduling for Home Energy Management System Using the Internet of Energy. Energies 2021, 14, 3191. [Google Scholar] [CrossRef]
- Mohammad, A.; Zuhaib, M.; Ashraf, I.; Alsultan, M.; Ahmad, S.; Sarwar, A.; Abdollahian, M. Integration of Electric Vehicles and Energy Storage System in Home Energy Management System with Home to Grid Capability. Energies 2021, 14, 8557. [Google Scholar] [CrossRef]
- Zhao, P.; Gu, C.; Huo, D.; Shen, Y.; Hernando-Gil, I. Two-Stage Distributionally Robust Optimization for Energy Hub Systems. IEEE Trans. Ind. Inform. 2019, 16, 3460–3469. [Google Scholar] [CrossRef]
- Xiao, D.; Chen, H.; Wei, C.; Bai, X. Statistical Measure for Risk-Seeking Stochastic Wind Power Offering Strategies in Electricity Markets. J. Mod. Power Syst. Clean Energy 2021, 1–6. [Google Scholar] [CrossRef]
- Sirohi, S.; Rishiraj Adhikary, N.B. Getting Data from Multiple em6400ng Smart Electric Meters 2013. Available online: https://sustainability-lab.github.io/2019/05/24/getting-data-from-multiple-smart-meters.html (accessed on 18 February 2022).
- Quintal, F.; Garigalli, D.; Vasconcelos, D.; Cavaleiro, J.; Santos, W.; Pereira, L. Energy Monitoring in the Wild: Platform Development and Lessons Learned from a Real-World Demonstrator. Energies 2021, 14, 5786. [Google Scholar] [CrossRef]
- Indian-Energy-Exchange. Iex, Indian Energy Exchange. 2021. Available online: https://www.iexindia.com/MarketData/AreaPrice.aspx?Area=S2 (accessed on 18 February 2022).
- Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [Google Scholar] [CrossRef]
- Shehadeh, H.A.; Ahmedy, I.; Idris MY, I. Empirical study of sperm swarm optimization algorithm. In Proceedings of the SAI Intelligent Systems Conference, London, UK, 6–7 September 2018; Springer: Cham, Switzerland, 2018; pp. 1082–1104. [Google Scholar]
- Pranava, G.; Prasad, P. Constriction coefficient particle swarm optimization for economic load dispatch with valve point loading effects. In Proceedings of the 2013 International Conference on Power, Energy and Control (ICPEC), Dindigul, India, 6–8 February 2013; pp. 350–354. [Google Scholar]
- Eslami, M.; Babaei, B.; Shareef, H.; Khajehzadeh, M.; Arandian, B. Optimum Design of Damping Controllers using modified Sperm Swarm Optimization. IEEE Access 2021, 9, 145592–145604. [Google Scholar] [CrossRef]
- Gadêlha, H.; Hernández-Herrera, P.; Montoya, F.; Darszon, A.; Corkidi, G. Human sperm uses asymmetric and anisotropic flagellar controls to regulate swimming symmetry and cell steering. Sci. Adv. 2020, 6, eaba5168. Available online: https://spectrum.ieee.org/spermatowhoaa-human-sperm-dont-swim-like-we-thought (accessed on 18 February 2022). [CrossRef] [PubMed]
- Cao, Y.; Rad, H.N.; Jamali, D.H.; Hashemian, N.; Ghasemi, A. A novel multi-objective spiral optimization algorithm for an innovative solar/biomass-based multi-generation energy system: 3E analyses, and optimization algorithms comparison. Energy Convers. Manag. 2020, 219, 112961. [Google Scholar] [CrossRef]
- Omar, M.B.; Bingi, K.; Prusty, B.R.; Ibrahim, R. Recent, Advances and Applications of Spiral Dynamics Optimization Algorithm: A Review. Fractal Fract. 2022, 6, 27. [Google Scholar] [CrossRef]
- Limlawan, V.; Pongchairerks, P. A PSO with ability to avoid being trapped in a local optimum A PSO with ability to avoid being trapped in a local optimum. In Proceedings of the 7th International Joint Conference on Computer Science and Software, Bangkok, Thailand, 12–14 May 2010. [Google Scholar]
- Tamura, K.; Yasuda, K. The spiral optimization algorithm: Convergence conditions and settings. IEEE Trans. Syst. Man Cybern. Syst. 2017, 50, 360–375. [Google Scholar] [CrossRef]
- Yüzgeç, U.; Tufan, I. Adaptive spiral optimization algorithm for benchmark problems. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Derg. 2016, 3, 8–15. [Google Scholar]
- Zahariadis, T.; Kalivas, D. A spiral search algorithm for fast estimation of block motion vectors. In Proceedings of the 1996 8th European Signal Processing Conference (EUSIPCO 1996), Trieste, Italy, 10–13 September 1996; pp. 1–4. [Google Scholar]
- Yang, B.; Zhong, L.; Zhang, X.; Shu, H.; Yu, T.; Li, H.; Jiang, L.; Sun, L. Novel bio-inspired memetic salp swarm algorithm and application to MPPT for PV systems considering partial shading condition. J. Clean. Prod. 2019, 215, 1203–1222. [Google Scholar] [CrossRef]
- Prabu, R.S.; Karthikeyan, S.P. Scheduling and energy management of smart homes using customer choice based algorithm. In Proceedings of the 2018 International Conference and Utility Exhibition on Green Energy for Sustainable Development (ICUE), Phuket, Thailand, 24–26 October 2018; pp. 1–6. [Google Scholar]
- Ramalingam, S.P.; Shanmugam, P.K. Scheduling Smart Home Appliances using ACO Algorithm with Different Electricity Tariff Schemes. In Proceedings of the 2021 Innovations in Power and Advanced Computing Technologies (i-PACT), Kuala Lumpur, Malaysia, 27–29 November 2021; pp. 1–7. [Google Scholar] [CrossRef]
- Ramalingam, S.P.; Shanmugam, P.K. A Home Energy Management System with Peak Demand Reduction Using Ant Colony Optimization and Time of Use Pricing Scheme. In Soft Computing for Problem Solving. Advances in Intelligent Systems and Computing; Tiwari, A., Ahuja, K., Yadav, A., Bansal, J.C., Deep, K., Nagar, A.K., Eds.; Springer: Singapore, 2021; Volume 1393. [Google Scholar] [CrossRef]
- Ramalingam, S.P.; Shanmugam, P.K. A Comprehensive Review on Wired and Wireless Communication Technologies and Challenges in Smart Residential Buildings. Recent Adv. Comput. Sci. Commun. 2021, 14, e040921190451. [Google Scholar] [CrossRef]
- Singh, J.; Poddar, S.; Ramalingam, S.P.; Shanmugam, P.K.; Kalam, A. Investigation on Dynamic Economic Dispatch Problem of Micro Grid Using Cuckoo Search Algorithm- Grid Connected and Islanded Mode. In Proceedings of the TENCON 2019–2019 IEEE Region 10 Conference (TENCON), Kochi, India, 17–20 October 2019; pp. 1886–1891. [Google Scholar] [CrossRef]
Phase | Load Type | Wattage | Total Number |
---|---|---|---|
R | Incandescent | 200 W & 100 W | 2 each (total 4 nos) |
Y | Incandescent | 60 W & 40 W | 5 nos and 4 nos, respectively |
B | CFL | 9 W | 3 nos |
Comparison Standards | Algorithms | ||
---|---|---|---|
Sperm Swarm Optimization (SSO) | Modified Sperm Swarm Optimization (MSSO) | Remodeled Sperm Swarm Optimization (RMSSO) | |
[39], 2018 | [41], 2021 | Proposed | |
Metaphor type | Nature-inspired approach, mimics the motility of sperm swarms during the fertilization process. | ||
Flow of sperm and control parameter | Swim stroke and velocity damping coefficient function. | Swim stroke and chaotic velocity damping coefficient function. | Helical stroke and the inertia weight decreased exponentially. |
Type of approach | It continuously updates the swarm’s position and velocity. | ||
Fitness value | Use the optimal value of the winner sperm as a reference value to adjust the velocities of the remaining sperms in the swarm. | ||
Impact of sperm swarms on the solution | Linear | Nonlinear | Nonlinear |
Results | Local Optimum | Global Optimum | Global Optimum |
Parameters | Values |
---|---|
pH1, pH2, pH3 | 7 to 14 |
Temp1, Temp2 | 35.1 to 38.5 °C |
Iterations | 50 |
Emax | 1.2 kW |
10 kW | |
DMax | 0.9 |
DMin | 0.2 |
dim | 24 |
0 to 1 |
Hours | DAP Tariff in ₹ (INR) | ||||
---|---|---|---|---|---|
Monsoon | Autumn | Spring | Summer | Winter | |
27 August 2020 | 25 September 2020 | 11 March 2021 | 1 May 2021 | 25 December 2021 | |
0–1 | 2.51985 | 2.18985 | 3.71946 | 4.90168 | 2.02185 |
1–2 | 2.25144 | 2.42961 | 3.36554 | 4.00521 | 1.92394 |
2–3 | 2.13724 | 2.32931 | 3.28878 | 3.44357 | 1.80898 |
3–4 | 2.01204 | 2.32506 | 3.23159 | 3.16281 | 1.78339 |
4–5 | 2.0372 | 2.38732 | 3.29752 | 3.40298 | 1.9668 |
5–6 | 2.1493 | 2.43325 | 3.91974 | 3.44873 | 2.15122 |
6–7 | 2.55065 | 2.50596 | 4.87516 | 3.24231 | 2.81923 |
7–8 | 2.52455 | 2.43629 | 5.30393 | 2.78748 | 4.27534 |
8–9 | 2.42361 | 2.42647 | 5.22559 | 2.7634 | 5.42572 |
9–10 | 2.5095 | 2.54149 | 6.2124 | 3.00443 | 5.70012 |
10–11 | 2.49729 | 2.42869 | 4.74233 | 2.74779 | 5.19892 |
11–12 | 2.32273 | 2.47529 | 3.91527 | 2.74951 | 4.2254 |
12–13 | 2.30237 | 2.45759 | 3.55424 | 2.7469 | 3.53248 |
13–14 | 2.31985 | 2.40138 | 3.16004 | 2.79346 | 3.01789 |
14–15 | 2.43494 | 2.44749 | 3.33993 | 2.89731 | 2.8544 |
15–16 | 2.46284 | 2.54099 | 3.80886 | 3.03256 | 3.04502 |
16–17 | 2.48485 | 2.73988 | 5.26423 | 2.99972 | 3.93748 |
17–18 | 2.19728 | 2.77925 | 4.68741 | 2.86562 | 4.05037 |
18–19 | 2.54438 | 3.52344 | 5.2987 | 2.9462 | 4.80026 |
19–20 | 3.6701 | 4.30019 | 5.28742 | 3.52369 | 3.64377 |
20–21 | 3.80249 | 3.79221 | 4.69549 | 3.37001 | 2.9043 |
21–22 | 3.79318 | 3.46787 | 4.11488 | 3.6675 | 2.62675 |
22–23 | 2.81023 | 3.14441 | 3.8067 | 3.7993 | 2.10085 |
23–24 | 2.34433 | 2.87783 | 3.60389 | 3.84698 | 2.16325 |
Appliances | Number of Times That an Appliance Is to Be Operated | ||||
---|---|---|---|---|---|
Monsoon | Autumn | Spring | Summer | Winter | |
A01 | 21 | 3 | 5 | 24 | 12 |
A02 | 5 | 6 | 5 | 23 | 20 |
A03 | 5 | 3 | 5 | 20 | 24 |
A04 | 5 | 3 | 5 | 5 | 24 |
A05 | 5 | 3 | 5 | 7 | 20 |
A06 | 5 | 7 | 5 | 21 | 7 |
A07 | 24 | 21 | 19 | 5 | 7 |
A08 | 23 | 6 | 23 | 5 | 3 |
A09 | 5 | 4 | 21 | 5 | 3 |
A10 | 18 | 24 | 24 | 5 | 3 |
A11 | 9 | 5 | 8 | 5 | 3 |
A12 | 5 | 19 | 5 | 5 | 3 |
A13 | 5 | 9 | 5 | 5 | 3 |
A14 | 5 | 3 | 5 | 5 | 7 |
A15 | 5 | 10 | 5 | 5 | 7 |
A16 | 5 | 24 | 5 | 5 | 4 |
Seasons | Techniques | |||
---|---|---|---|---|
RMSSO | SSO | SSA | ||
Total Cost (₹) | Monsoon | 24.11 | 31.91 | 30.88 |
Autumn | 24.15 | 24.3 | 38.52 | |
Spring | 38.11 | 39.66 | 42.43 | |
Summer | 31.01 | 52.34 | 52.33 | |
Winter | 29.87 | 47.03 | 44.94 | |
Load Scheduled (kW) | Monsoon | 10 | 12.95 | 12.65 |
Autumn | 10 | 9.43 | 14.52 | |
Spring | 10 | 10.29 | 10.89 | |
Summer | 10 | 16.43 | 16.43 | |
Winter | 10 | 15.08 | 14.49 |
Seasons | Techniques | |||
---|---|---|---|---|
RMSSO | SSO | SSA | ||
Percentage of cost difference from RMSSO (%) | Monsoon | - | 24.44 | 21.92 |
Autumn | - | 0.617 | 37.30 | |
Spring | - | 3.908 | 10.18 | |
Summer | - | 40.75 | 40.74 | |
Winter | - | 36.48 | 33.53 | |
Percentage of Task Completion (%) | Monsoon | 100 | 129.5 | 126.5 |
Autumn | 100 | 94.3 | 145.2 | |
Spring | 100 | 102.9 | 108.9 | |
Summer | 100 | 164.4 | 164.3 | |
Winter | 100 | 150.8 | 144.9 | |
Program Run Time (seconds) | 0.42 | 0.57 | 0.59 |
Algorithm | Climates | Best (INR) | Average (INR) | Worst (INR) |
---|---|---|---|---|
RMSSO | Monsoon | 24.1101 | 24.1120 | 24.2144 |
Autumn | 24.1516 | 24.1631 | 24.3376 | |
Spring | 38.1102 | 38.1127 | 38.2670 | |
Summer | 31.0100 | 31.0126 | 31.1692 | |
Winter | 29.8708 | 29.8847 | 29.8894 | |
SSA | Monsoon | 30.8829 | 30.8926 | 30.9196 |
Autumn | 38.5231 | 38.5291 | 38.5329 | |
Spring | 42.4306 | 42.4660 | 42.5368 | |
Summer | 52.3312 | 52.3333 | 52.4259 | |
Winter | 44.9415 | 44.9422 | 44.9514 | |
SSO | Monsoon | 31.9102 | 31.9124 | 31.9262 |
Autumn | 24.3009 | 24.3119 | 24.3991 | |
Spring | 39.6604 | 39.6761 | 39.6776 | |
Summer | 52.3410 | 52.3540 | 52.3544 | |
Winter | 47.0321 | 47.1512 | 47.2178 |
Dimension (D) | Population Size (N) | Computational Time (Seconds) | ||
---|---|---|---|---|
RMSSO | SSO | SSA | ||
24 | 10 | 0.19 | 0.28 | 0.32 |
50 | 0.42 | 0.57 | 0.59 | |
100 | 0.58 | 0.63 | 0.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramalingam, S.P.; Shanmugam, P.K. Hardware Implementation of a Home Energy Management System Using Remodeled Sperm Swarm Optimization (RMSSO) Algorithm. Energies 2022, 15, 5008. https://doi.org/10.3390/en15145008
Ramalingam SP, Shanmugam PK. Hardware Implementation of a Home Energy Management System Using Remodeled Sperm Swarm Optimization (RMSSO) Algorithm. Energies. 2022; 15(14):5008. https://doi.org/10.3390/en15145008
Chicago/Turabian StyleRamalingam, Senthil Prabu, and Prabhakar Karthikeyan Shanmugam. 2022. "Hardware Implementation of a Home Energy Management System Using Remodeled Sperm Swarm Optimization (RMSSO) Algorithm" Energies 15, no. 14: 5008. https://doi.org/10.3390/en15145008
APA StyleRamalingam, S. P., & Shanmugam, P. K. (2022). Hardware Implementation of a Home Energy Management System Using Remodeled Sperm Swarm Optimization (RMSSO) Algorithm. Energies, 15(14), 5008. https://doi.org/10.3390/en15145008