Sustainable Wind Power Plant Modernization
<p>Spaces in sustainable lifecycle management, WT—wind turbine.</p> "> Figure 2
<p>A graphical interpretation of the integrated efficiency indicator in the lifecycle (dependency (7)), including the sustainable modernization indicator (dependence (20)) and the time of the return on costs for modernization (dependence (18)).</p> "> Figure 3
<p>Scope of the LCA analysis of the turbine in a 25-year lifecycle and the same turbine after modernization.</p> "> Figure 4
<p>A graphical interpretation of the integrated efficiency indicator from ecological costs for a wind power plant undergoing modernization during a 50-year period of use.</p> "> Figure 5
<p>A graphical interpretation of the integrated ecological efficiency indicator from CO<sub>2</sub> emissions for a wind power plant undergoing modernization during a 50-year period of use.</p> "> Figure 6
<p>A graphical interpretation of the integrated ecological efficiency indicator from SO<sub>2</sub> emissions for a wind power plant undergoing modernization during a 50-year period of use.</p> "> Figure 7
<p>A graphical interpretation of the integrated ecological efficiency indicator from PO<sub>4</sub> emissions for a wind power plant undergoing modernization during a 50-year period of use.</p> "> Figure 8
<p>A graphical interpretation of the integrated efficiency indicator from energy costs for a wind power plant undergoing modernization during a 50-year period of use.</p> ">
Abstract
:1. Introduction
- Reduce both emissions (e.g., carbon dioxide) and natural resource use and energy use per unit of electricity produced;
- Reduce the intensity of resource use when constructing wind power plants;
- Increase energy security by extending the lifecycle and availability of wind power plants.
2. Materials and Methods
2.1. The Integrated Efficiency of Sustainable Modernization
2.2. Payback Time for Moderinzation Costs
2.3. The Sustainable Modernization Indicator
2.4. Methodology for Determining the Benefits and Costs in a Wind Power Plant’s Lifecycle
2.4.1. Determining Costs with the Aid of the LCA Method
2.4.2. Determining the Efficiency Indicator from Environmental and Energy Costs
- From environmental costs, where the result of a wind power plant’s environmental impact (in environmental points) at certain stages of the lifecycle were assumed as costs;
- From greenhouse gas emissions, where quantitative emissions of CO2eq (in kg) at certain stages of the wind power plant’s lifecycle are assumed as costs, this being obtained as the result of completing LCA analysis;
- From the emissions of substances causing acidification, where quantitative emissions of SO2eq (in kg) at certain stages of the wind power plant’s lifecycle are assumed as costs, this being obtained as the result of completing LCA analysis;
- From the emissions of substances causing eutrophication, where quantitative emissions of PO4eq (in kg) at certain stages of the wind power plant’s lifecycle are assumed as costs, this being obtained as the result of completing LCA analysis;
- From energy costs, where potential energy demands (in MJ) at certain stages of the wind power plant’s lifecycle are assumed as costs.
2.4.3. Determining the Payback Time for Modernization
2.4.4. Determining the Sustainable Modernization Indicator
3. Results and Discussion
3.1. Costs in the Lifecycle of a Wind Power Plant in a 25-year Lifecycle and in One Subjected to Modernization
3.2. Efficieny Indicators from Ecological Costs and Energy Costs and Payback Time for Modernization
3.3. Sustainable Modernization Indicators
4. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Haapala, K.R.; Prempreeda, P. Comparative life cycle assessment of 2.0 MW wind turbines. Int. J. Sustain. Manuf. 2014, 3, 170. [Google Scholar] [CrossRef]
- Martínez, E.; Sanz, F.; Pellegrini, S.; Jiménez, E.; Blanco, J. Life cycle assessment of a multi-megawatt wind turbine. Renew. Energy 2009, 34, 667–673. [Google Scholar] [CrossRef]
- Wang, S.; Wang, S. Impacts of wind energy on environment: A review. Renew. Sustain. Energy Rev. 2015, 49, 437–443. [Google Scholar] [CrossRef]
- Saidur, R.; Rahim, N.A.; Islam, M.R.; Solangi, K.H. Environmental impact of wind energy. Renew. Sustain. Energy Rev. 2011, 15, 2423–2430. [Google Scholar] [CrossRef]
- Jeffery, R.D.; Krogh, C.; Horner, B. Adverse health effects of industrial wind turbines. Can. Fam. Physician 2013, 59, 473–475. [Google Scholar]
- Piasecka, I.; Tomporowski, A. Analysis of Environmental and Energetical Possibilitiesof Sustainable Development of Wind and Photovoltaic Power Plants. Probl. Ekorozw. Probl. Sustain. Dev. 2018, 13, 125–130. [Google Scholar]
- Gibon, T.; Hertwich, E.G.; Arvesen, A.; Singh, B.; Verones, F. Health benefits, ecological threats of low-carbon electricity. Environ. Res. Lett. 2017, 12, 034023. [Google Scholar] [CrossRef]
- Basosi, R.; Cellura, M.; Longo, S.; Parisi, M.L. Life Cycle Assessment of Energy Systems and Sustainable Energy Technologies: The Italian Experience; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Luderer, G.; Pehl, M.; Arvesen, A.; Gibon, T.; Bodirsky, B.L.; de Boer, H.S.; Fricko, O.; Hejazi, M.; Humpenöder, F.; Iyer, G.; et al. Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies. Nat. Commun. 2019, 10, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Ozoemena, M.; Cheung, W.M.; Hasan, R. Comparative LCA of technology improvement opportunities for a 1.5-MW wind turbine in the context of an onshore wind farm. Clean Technol. Environ. Policy 2018, 20, 173–190. [Google Scholar] [CrossRef] [Green Version]
- Bonou, A.; Laurent, A.; Olsen, S.I. Life cycle assessment of onshore and offshore wind energy-from theory to application. Appl. Energy 2016, 180, 327–337. [Google Scholar] [CrossRef] [Green Version]
- Mroziński, A.; Piasecka, I. Selected aspects of building, operation and environmental impact of offshore wind power electric plants. Pol. Marit. Res. 2015, 22, 86–92. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Barlow, C.Y. The environmental impact of wind turbine blades. IOP Conf. Ser. Mater. Sci. Eng. 2016, 139, 012032. [Google Scholar] [CrossRef] [Green Version]
- Flizikowski, J.; Piasecka, I.; Kruszelnicka, W.; Tomporowski, A.; Mroziński, A. Destruction assessment of wind power plastics blade. Polimery 2018, 63, 5. [Google Scholar] [CrossRef]
- Tomporowski, A.; Piasecka, I.; Flizikowski, J.; Kasner, R.; Kruszelnicka, W.; Mroziński, A.; Bieliński, K. Comparison Analysis of Blade Life Cycles of Land-Based and Offshore Wind Power Plants. Pol. Marit. Res. 2018, 25, 225–233. [Google Scholar] [CrossRef] [Green Version]
- Tsai, L.; Kelly, J.C.; Simon, B.S.; Chalat, R.M.; Keoleian, G.A. Life Cycle Assessment of Offshore Wind Farm Siting: Effects of Locational Factors, Lake Depth, and Distance from Shore. J. Ind. Ecol. 2016, 20, 1370–1383. [Google Scholar] [CrossRef]
- Stavridou, N.; Koltsakis, E.; Baniotopoulos, C.C. A comparative life-cycle analysis of tall onshore steel wind-turbine towers. Clean Energy 2019, zkz028, 1–10. [Google Scholar] [CrossRef]
- Tomporowski, A.; Flizikowski, J.; Kruszelnicka, W.; Piasecka, I.; Kasner, R.; Mroziński, A.; Kovalyshyn, S. Destructiveness of Profits and Outlays Associated with Operation of Offshore Wind Electric Power Plant. Part 1: Identification of a Model and its Components. Pol. Marit. Res. 2018, 25, 132–139. [Google Scholar] [CrossRef] [Green Version]
- Kasner, R. Ocena Korzyści i Nakładów Cyklu Życia Elektrowni Wiatrowej; Rozprawa doktorska, Poznań University of Technology: Poznań, Poland, 2016. [Google Scholar]
- Piasecka, I.; Tomporowski, A.; Flizikowski, J.; Kruszelnicka, W.; Kasner, R.; Mroziński, A. Life Cycle Analysis of Ecological Impacts of an Offshore and a Land-Based Wind Power Plant. Appl. Sci. 2019, 9, 231. [Google Scholar] [CrossRef] [Green Version]
- Tomporowski, A.; Flizikowski, J.; Kasner, R.; Kruszelnicka, W. Environmental Control of Wind Power Technology. Rocz. Ochr. Środowiska 2017, 19, 694–714. [Google Scholar]
- Arabian-Hoseynabadi, H.; Oraee, H.; Tavner, P.J. Wind turbine productivity considering electrical subassembly reliability. Renew. Energy 2010, 35, 190–197. [Google Scholar] [CrossRef]
- Mostafaeipour, A. Productivity and development issues of global wind turbine industry. Renew. Sustain. Energy Rev. 2010, 14, 1048–1058. [Google Scholar] [CrossRef] [Green Version]
- Olatayo, K.I.; Wichers, J.H.; Stoker, P.W. Energy and economic performance of small wind energy systems under different climatic conditions of South Africa. Renew. Sustain. Energy Rev. 2018, 98, 376–392. [Google Scholar] [CrossRef]
- Aghbashlo, M.; Tabatabaei, M.; Hosseini, S.S.B.; Dashti, B.; Mojarab Soufiyan, M. Performance assessment of a wind power plant using standard exergy and extended exergy accounting (EEA) approaches. J. Clean. Prod. 2018, 171, 127–136. [Google Scholar] [CrossRef]
- Sağlam, Ü. Assessment of the productive efficiency of large wind farms in the United States: An application of two-stage data envelopment analysis. Energy Convers. Manag. 2017, 153, 188–214. [Google Scholar] [CrossRef]
- Dicorato, M.; Forte, G.; Pisani, M.; Trovato, M. Guidelines for assessment of investment cost for offshore wind generation. Renew. Energy 2011, 36, 2043–2051. [Google Scholar] [CrossRef]
- Laura, C.-S.; Vicente, D.-C. Life-cycle cost analysis of floating offshore wind farms. Renew. Energy 2014, 66, 41–48. [Google Scholar] [CrossRef]
- Myhr, A.; Bjerkseter, C.; Ågotnes, A.; Nygaard, T.A. Levelised cost of energy for offshore floating wind turbines in a life cycle perspective. Renew. Energy 2014, 66, 714–728. [Google Scholar] [CrossRef] [Green Version]
- Snyder, B.; Kaiser, M.J. Ecological and economic cost-benefit analysis of offshore wind energy. Renew. Energy 2009, 34, 1567–1578. [Google Scholar] [CrossRef]
- Alsaleh, A.; Sattler, M. Comprehensive life cycle assessment of large wind turbines in the US. Clean Technol. Environ. Policy 2019, 21, 887–903. [Google Scholar] [CrossRef]
- Garrett, P.; Rønde, K. Life cycle assessment of wind power: Comprehensive results from a state-of-the-art approach. Int. J. Life Cycle Assess. 2013, 18, 37–48. [Google Scholar] [CrossRef]
- Abeliotis, K.; Pactiti, D. Assessment of the environmental impacts of a wind farm in central Greece during its life cycle. Int. J. Renew. Energy Res. 2014, 4, 580–585. [Google Scholar]
- Kruszelnicka, W.; Bałdowska-Witos, P.; Kasner, R.; Flizikowski, J.; Tomporowski, A.; Rudnicki, J. Evaluation of emissivity and environmental safety of biomass grinders drive. Przemysł Chem. 2019, 98, 1494–1498. [Google Scholar]
- Jachimowski, R.; Szczepanski, E.; Klodawski, M.; Markowska, K.; Dabrowski, J. Selection of a Container Storage Strategy at the Rail-road Intermodal Terminal as a Function of Minimization of the Energy Expenditure of Transshipment Devices and CO2 Emissions. Rocz. Ochr. Sr. 2018, 20, 965–988. [Google Scholar]
- Zając, G.; Węgrzyn, A. Analysis of work parameters changes of diesel engine powered with diesel fuel and faee blends. Eksploat. I Niezawodn. Maint. Reliab. 2008, 17–24. [Google Scholar]
- Caban, J.; Drozdziel, P.; Vrabel, J.; Sarkan, B.; Marczuk, A.; Krzywonos, L.; Rybicka, I. The Research on Ageing of Glycol-Based Brake Fluids of Vehicles in Operation. Adv. Sci. Technol. Res. J. 2016, 10, 9–16. [Google Scholar] [CrossRef]
- Winiarski, G.; Gontarz, A.; Pater, Z. A new process for the forming of a triangular flange in hollow shafts from Ti6Al4V alloy. Arch. Civ. Mech. Eng. 2015, 15, 911–916. [Google Scholar] [CrossRef]
- Wasiak, A.L. Effect of Biofuel Production on Sustainability of Agriculture. Procedia Eng. 2017, 182, 739–746. [Google Scholar] [CrossRef]
- Flatland, K.; Hove, M.T.; Lavrutich, M.; Nagy, R.L.G. Irreversible Investment in Wind Turbines: Life-Extension Versus Repowering. Available online: http://realoptions.org/openconf2019/data/papers/394.pdf (accessed on 17 January 2020).
- Ziegler, L.; Gonzalez, E.; Rubert, T.; Smolka, U.; Melero, J.J. Lifetime extension of onshore wind turbines: A review covering Germany, Spain, Denmark, and the UK. Renew. Sustain. Energy Rev. 2018, 82, 1261–1271. [Google Scholar] [CrossRef] [Green Version]
- Piel, J.H.; Stetter, C.; Heumann, M.; Westbomke, M.; Breitner, M.H. Lifetime Extension, Repowering or Decommissioning? Decision Support for Operators of Ageing Wind Turbines. J. Phys. Conf. Ser. 2019, 1222, 012033. [Google Scholar] [CrossRef]
- Siemens, A.G. (Ed.) Environmental Product Declaration. A Clean Energy Solution-from Cradle to Grave. Offshore Wind Power Plant Employing SWT-6.0-154; Siemens A.G. Wind Power: Hamburg, Germany, 2015. [Google Scholar]
- Shafiee, M.; Brennan, F.; Espinosa, I.A. A parametric whole life cost model for offshore wind farms. Int. J. Life Cycle Assess. 2016, 21, 961–975. [Google Scholar] [CrossRef] [Green Version]
- McCulloch, M.; Raynolds, M.; Laurie, M. Life-Cycle Value Assessment of a Wind Turbine; The Pembina Institute: Calgary, AB, Canada, 2000. [Google Scholar]
- Jensen, J.P. Routes for Extending the Lifetime of Wind Turbines. Available online: https://www.plateconference.org/routes-extending-lifetime-wind-turbines/ (accessed on 19 December 2018).
- Sun, H.; Gao, X.; Yang, H. Investigation into offshore wind farm repowering optimization in Hong Kong. Int. J. Low Carbon Technol. 2019, 14, 302–311. [Google Scholar] [CrossRef] [Green Version]
- Lacal-Arántegui, R.; Uihlein, A.; Yusta, J.M. Technology effects in repowering wind turbines. Wind Energy 2020, 23, 660–675. [Google Scholar] [CrossRef]
- Amiri, A.K.; Kazacoks, R.; McMillan, D.; Feuchtwang, J.; Leithead, W. Farm-wide assessment of wind turbine lifetime extension using detailed tower model and actual operational history. J. Phys. Conf. Ser. 2019, 1222, 012034. [Google Scholar] [CrossRef]
- Martínez, E.; Latorre-Biel, J.I.; Jiménez, E.; Sanz, F.; Blanco, J. Life cycle assessment of a wind farm repowering process. Renew. Sustain. Energy Rev. 2018, 93, 260–271. [Google Scholar] [CrossRef]
- Flizikowski, J.; Tomporowski, A.; Kasner, R.; Mroziński, A.; Kruszelnicka, W. Machinery Life Cycle Efficiency Models for their Sustainable Development. Syst. Saf. Hum. Technol. Facil. Environ. 2019, 1, 363–370. [Google Scholar] [CrossRef] [Green Version]
- Wasiak, A. Technologies of Biofuel Production. In Modeling Energetic Efficiency of Biofuels Production; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Wasiak, A.; Orynycz, O. The Effects of Energy Contributions into Subsidiary Processes on Energetic Efficiency of Biomass Plantation Supplying Biofuel Production System. Agric. Agric. Sci. Procedia 2015, 7, 292–300. [Google Scholar] [CrossRef]
- Garrett, P.; Rønde, K. Life Cycle Assessment of Elektricity Production from V90-2.0MW Gridstreamer Wind Plant; Vestas Wind Systems A/S: Randers, Danmark, 2011. [Google Scholar]
- Ding, Y. Data Science for Wind Energy; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Byon, E.; Ntaimo, L.; Singh, C.; Ding, Y. Wind energy facility reliability and maintenance. In Handbook of Wind Power Systems; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Guezuraga, B.; Zauner, R.; Pölz, W. Life cycle assessment of two different 2 MW class wind turbines. Renew. Energy 2012, 37, 37–44. [Google Scholar] [CrossRef]
- Razdan, P.; Garrett, P. Life Cycle Assessment of Electricity Production from an Onshore V136-4.2 MW Wind Plant. Available online: http://communityrenewables.org.au/wp-content/uploads/2013/02/Vestas-Lifecycle-Analysis_2006.pdf (accessed on 4 March 2020).
- Vestas Wind Systems A/S. Life Cycle Assessment of Offshore and Onshore Sited Wind Power Plants Based on Vestas V90–3.0 MW Turbines; Vestas Wind Systems A/S: Randers, Denmark, 2006. [Google Scholar]
- Fox, T.R. Recycling Wind Turbine Blade Composite Material as Aggregate in Concrete. Available online: https://www.semanticscholar.org/paper/Recycling-wind-turbine-blade-composite-material-as-Fox/75a4ed7264c6680b3c0cf80201019d3b0e202c82 (accessed on 10 March 2020).
- Karavida, S.; Nõmmik, R. Waste Management of End-of-Service Wind Turbines; Aalborg University: Aalborg, Denmark, 2015. [Google Scholar]
- Goodship, V. Management, Recycling and Reuse of Waste Composites; Woodhead Publishing Limited: Cambridge, UK, 2010. [Google Scholar]
- Rasul, M.G.; Azad, A.K.; Sharma, S.C. Clean Energy for Sustainable Development. Comparisons and Contrasts of New Approaches; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- International Organization for Standardization ISO. ISO 14044:2006—Environmental Management—Life Cycle Assessment—Requirements and Guidelines 2006. Available online: https://www.iso.org/obp/ui/#iso:std:iso:14044:en (accessed on 12 December 2019).
- Dreyer, L.C.; Niemann, A.L.; Hauschild, M.Z. Comparison of Three Different LCIA Methods: EDIP97, CML2001 and Eco-indicator 99. Int. J. Life Cycle Assess. 2003, 8, 191–200. [Google Scholar] [CrossRef]
- Alemam, A.; Cheng, X.; Li, S. Treating design uncertainty in the application of Eco-indicator 99 with Monte Carlo simulation and fuzzy intervals. Int. J. Sustain. Eng. 2018, 11, 110–121. [Google Scholar] [CrossRef]
- Piasecka, I.; Tomporowski, A.; Piotrowska, K. Environmental analysis of post-use management of car tires. Przem. Chem. 2018, 97, 1649–1653. [Google Scholar]
- Mannheim, V.; Fehér, Z.S.; Siménfalvi, Z. Innovative solutions for the building industry to improve sustainability performance with Life Cycle Assessment modelling. In Solutions for Sustainable Development; Taylor & Francis Group: Milton Park, UK, 2019. [Google Scholar]
- Mannheim, V.; Siménfalvi, Z. Determining a Priority Order between Thermic Utilization Processes for Organic Industrial Waste with LCA. Waste Manag. Environ. VI 2012, 163, 153–166. [Google Scholar]
- Klos, Z. Ecobalancial assessment of chosen packaging processes in food industry. Int. J. Life Cycle Assess. 2002, 7, 309. [Google Scholar] [CrossRef]
- Piotrowska, K.; Kruszelnicka, W.; Baldowska-Witos, P.; Kasner, R.; Rudnicki, J.; Tomporowski, A.; Flizikowski, J.; Opielak, M. Assessment of the Environmental Impact of a Car Tire throughout Its Lifecycle Using the LCA Method. Materials 2019, 12, 4177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finnveden, G.; Hauschild, M.Z.; Ekvall, T.; Guinée, J.; Heijungs, R.; Hellweg, S.; Koehler, A.; Pennington, D.; Suh, S. Recent developments in Life Cycle Assessment. J. Environ. Manag. 2009, 91, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Kirchain Jr, R.E.; Gregory, J.R.; Olivetti, E.A. Environmental life-cycle assessment. Nat. Mater. 2017, 16, 693–697. [Google Scholar] [CrossRef]
- Puig, R.; Fullana-I-Palmer, P.; Baquero, G.; Riba, J.-R.; Bala, A. A cumulative energy demand indicator (CED), life cycle based, for industrial waste management decision making. Waste Manag. 2013, 33, 2789–2797. [Google Scholar] [CrossRef]
- Röhrlich, M.; Mistry, M.; Martens, P.N.; Buntenbach, S.; Ruhrberg, M.; Dienhart, M.; Briem, S.; Quinkertz, R.; Alkan, Z.; Kugeler, K. A method to calculate the cumulative energy demand (CED) of lignite extraction. Int. J. Life Cycle Assess. 2000, 5, 369–373. [Google Scholar]
- O’Brien, D.; Shalloo, L.; Patton, J.; Buckley, F.; Grainger, C.; Wallace, M. Evaluation of the effect of accounting method, IPCC v. LCA, on grass-based and confinement dairy systems’ greenhouse gas emissions. Animal 2012, 6, 1512–1527. [Google Scholar] [CrossRef]
- Roscoe, P. Method, Measurement, and Management in IPCC Climate Modeling. Hum. Ecol. 2016, 44, 655–664. [Google Scholar] [CrossRef]
- Andersen, N.; Eriksson, O.; Hillman, K.; Wallhagen, M. Wind Turbines’ End-of-Life: Quantification and Characterisation of Future Waste Materials on a National Level. Energies 2016, 9, 999. [Google Scholar] [CrossRef] [Green Version]
Description | Unit | Quantity |
---|---|---|
Lifetime | years | 25 |
Rating per turbine | MW | 2 |
Generator type | - | Three-phase asynchronous generator |
Hub height | m | 105 |
Rotor diameter | m | 90 |
Tower type | - | Standard steel |
Production | MWh per year | 5325 |
Plan location | - | Poland |
Lp. | Element | Material | Mass [kg] | Share in component, % | Share in unit, % | Share in WPP, % |
---|---|---|---|---|---|---|
1 | Nacelle | |||||
1.1 | Generator with the radiator | Copper | 1430 | 19.07 | 2.10 | 0.08 |
Cast iron | 3920 | 52.27 | 5.76 | 0.22 | ||
Steel | 2090 | 27.87 | 3.07 | 0.12 | ||
Replacement | 7440 | 99.20 | 10.94 | 0.42 | ||
1.2 | Gearbox | Upgraded steel | 2620 | 15.41 | 3.85 | 0.15 |
Cast iron | 14,060 | 82.71 | 20.68 | 0.80 | ||
Oil | 280 | 1.65 | 0.41 | 0.02 | ||
Replacement | 16,960 | 99.76 | 24.94 | 0.97 | ||
1.3 | Radiators | Aluminum | 960 | 100.00 | 1.41 | 0.05 |
1.4 | Hydraulic system | Oil | 360 | 9.89 | 0.53 | 0.02 |
Steel | 2660 | 73.08 | 3.91 | 0.15 | ||
Aluminum | 420 | 11.54 | 0.62 | 0.02 | ||
Other | 200 | 5.49 | 0.29 | 0.01 | ||
Replacement | 3640 | 100.00 | 5.35 | 0.21 | ||
1.5 | Switchgears, inverters, connections | Steel | 340 | 38.64 | 0.50 | 0.02 |
Copper | 240 | 27.27 | 0.35 | 0.01 | ||
Aluminum | 180 | 20.45 | 0.26 | 0.01 | ||
Replacement | 760 | 86.36 | 1.12 | 0.04 | ||
1.6 | Nacelle housing | Steel | 1100 | 6.00 | 1.62 | 0.06 |
Polymer materials | 1815 | 9.90 | 2.67 | 0.10 | ||
Replacement | 2915 | 15.89 | 4.29 | 0.17 | ||
Nacelle total | 68,000 | 100.00 | 3.87 | |||
Replacement | 32,675 | 48.05 | 1.86 | |||
2 | ROTOR | |||||
2.1 | Blades | Steel | 1750 | 8.75 | 4.61 | 0.10 |
Polymer materials reinforced with carbon fiber and glass fiber | 18,250 | 91.25 | 48.03 | 1.04 | ||
Replacement | 20,000 | 100.00 | 52.63 | 1.14 | ||
2.2 | Hub | Polymer materials | 200 | 1.11 | 0.53 | 0.01 |
Replacement | 200 | 1.11 | 0.53 | 0.01 | ||
Rotor total | 38,000 | 100.00 | 2.16 | |||
Replacement | 20,200 | 53.16 | 1.15 |
Mass [kg] | Share in WPP [%] | Aluminum [kg] | Copper [kg] | Steel [kg] | c. Iron [kg] | Polymer Materials [kg] | Concrete [kg] | Oil [kg] | Other [kg] | |
---|---|---|---|---|---|---|---|---|---|---|
WPP Total | 1,756,810 | 100 | 3715 | 2050 | 336,300 | 52,015 | 20,265 | 1,339,615 | 640 | 2210 |
Replacement | 52,875 | 3.01 | 1560 | 1670 | 10,560 | 17,980 | 20,265 | 0 | 640 | 200 |
% share of total materials in WPP | 0.21 | 0.12 | 19.14 | 2.96 | 1.15 | 76.25 | 0.04 | 0.13 | ||
% share of replacement materials in WPP | 0.09 | 0.10 | 0.60 | 1.02 | 1.15 | 0 | 0.04 | 0.01 |
Lifecycle Stage | Total Eco-Indicator Value [Pt] | Emissions of CO2eq [kg] | Acidification [kg SO2eq] | Eutrophication [kg PO4eq] | |
---|---|---|---|---|---|
Production | NW25 | 322,460 | 2,700,559 | 141,842 | 728 |
NW50 | 401,663 | 3,381,947 | 176,735 | 907 | |
Use | N(t=25) | 20,955 | 589,300 | 3712 | 149 |
N(t=50) | 41,910 | 1,178,600 | 7424 | 298 | |
Post-use management | NZ25 | −13,423 | −528,712 | −1203 | −67 |
NZ50 | −30,271 | −657,873 | −1499 | −84 |
Lifecycle Stage | Energy Consumption [MJ] | |
---|---|---|
Production | NW25 | 41,559,527 |
NW50 | 52,740,112 | |
Use | N(t=25) | 7,661,400 |
N(t=50) | 15,322,800 | |
Post-use management | NZ25 | −5,779,943 |
NZ50 | −8,014,646 |
The Sustainable Modernization Indicator EM1 [-] | |
---|---|
from ecological costs | 1.596 |
from greenhouse gas emissions (CO2eq) | 1.415 |
from emissions of substances causing acidification (SO2eq) | 1.58 |
from emissions of substances causing eutrophication (PO4eq) | 1.444 |
from energy costs | 1.448 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasner, R.; Kruszelnicka, W.; Bałdowska-Witos, P.; Flizikowski, J.; Tomporowski, A. Sustainable Wind Power Plant Modernization. Energies 2020, 13, 1461. https://doi.org/10.3390/en13061461
Kasner R, Kruszelnicka W, Bałdowska-Witos P, Flizikowski J, Tomporowski A. Sustainable Wind Power Plant Modernization. Energies. 2020; 13(6):1461. https://doi.org/10.3390/en13061461
Chicago/Turabian StyleKasner, Robert, Weronika Kruszelnicka, Patrycja Bałdowska-Witos, Józef Flizikowski, and Andrzej Tomporowski. 2020. "Sustainable Wind Power Plant Modernization" Energies 13, no. 6: 1461. https://doi.org/10.3390/en13061461
APA StyleKasner, R., Kruszelnicka, W., Bałdowska-Witos, P., Flizikowski, J., & Tomporowski, A. (2020). Sustainable Wind Power Plant Modernization. Energies, 13(6), 1461. https://doi.org/10.3390/en13061461