Research on the Combustion, Energy and Emission Parameters of Various Concentration Blends of Hydrotreated Vegetable Oil Biofuel and Diesel Fuel in a Compression-Ignition Engine
<p>The scheme of engine testing equipment: 1—1.9 TDI engine; 2—high pressure fuel pump; 3—turbocharger; 4—EGR (Exhaust Gas Recirculation) valve; 5—air cooler; 6—connecting shaft; 7—engine load plate; 8—engine torque and rotational speed recording equipment; 9—fuel injection timing sensor; 10—cylinder pressure sensor; 11—exhaust gas temperature meter; 12—intake gas temperature meter; 13—air pressure meter; 14—air mass meter; 15—exhaust gas analyzer; 16—opacity analyzer; 17—cylinder pressure recording equipment; 18—fuel injection timing control equipment; 19—fuel injection timing recording equipment; 20—crankshaft position sensor; 21—fuel tank; 22—fuel consumption measure equipment.</p> "> Figure 2
<p>Dependence of the dynamic and kinematic viscosities (40 °C) on percentage of NexBTL in fuel blends.</p> "> Figure 3
<p>Dependence of the density (40 °C) and water content on the percentage of NexBTL in fuel blends.</p> "> Figure 4
<p>Dependence of the pour point, cold filter plugging point and cetane number on the percentage of NexBTL in fuel blends.</p> "> Figure 5
<p>Dependence of the heating value (gross and lower) and improved oxidative stability on the percentage of NexBTL in fuel blends.</p> "> Figure 6
<p>In-cylinder pressure characteristics: (<b>a</b>) <span class="html-italic">n</span> = 2000 rpm, <span class="html-italic">M<sub>B</sub> </span>= 120 Nm; (<b>b</b>) <span class="html-italic">n</span> = 2500 rpm, <span class="html-italic">M<sub>B</sub> </span>= 120 Nm.</p> "> Figure 7
<p>Rate of heat release characteristics: (<b>a</b>) <span class="html-italic">n</span> = 2000 rpm, <span class="html-italic">M<sub>B</sub> </span>= 120 Nm; (<b>b</b>) <span class="html-italic">n</span> =2500 rpm, <span class="html-italic">M<sub>B</sub> </span>= 120 Nm.</p> "> Figure 8
<p>Relative deviation of <span class="html-italic">BSFC</span> according to mass fuel consumption [g/kWh]: (<b>a</b>) <span class="html-italic">n</span> = 2000 rpm; (<b>b</b>) <span class="html-italic">n</span> = 2500 rpm.</p> "> Figure 9
<p>Relative deviation of <span class="html-italic">BSFC</span> according to volumetric fuel consumption [ml/kWh]: (<b>a</b>) <span class="html-italic">n</span> = 2000 rpm; (<b>b</b>) <span class="html-italic">n</span> = 2500 rpm.</p> "> Figure 10
<p>Difference in <span class="html-italic">BTE</span>: (<b>a</b>) <span class="html-italic">n</span> = 2000 rpm; (<b>b</b>) <span class="html-italic">n</span> = 2500 rpm.</p> "> Figure 11
<p>Relative deviation of NO<sub>x</sub>: (<b>a</b>) <span class="html-italic">n</span> = 2000 rpm; (<b>b</b>) <span class="html-italic">n</span> = 2500 rpm.</p> "> Figure 12
<p>Relative deviation of HC: (<b>a</b>) <span class="html-italic">n</span> = 2000 rpm; (<b>b</b>) <span class="html-italic">n</span> = 2500 rpm.</p> "> Figure 13
<p>Relative deviation of the smokiness (SM): (<b>a</b>) <span class="html-italic">n</span> = 2000 rpm; (<b>b</b>) <span class="html-italic">n</span> = 2500 rpm.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fuel Testing Equipment
2.2. Engine Testing Equipment
2.3. Fuels and Test Conditions
2.4. Simulation Tools
3. Results
3.1. Fuel properties
3.2. Results of Combustion Process Rates
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Properties | Fuel | ||||||||
---|---|---|---|---|---|---|---|---|---|
Nex BTL0 | Nex BTL10 | Nex BTL20 | Nex ** BTL30 | Nex *** BTL40 | Nex **** BTL50 | Nex BTL70 | Nex BTL85 | Nex BTL100 | |
Dynamic viscosity, mPa × s | 3.271 | 3.125 | 2.993 | 2.550 | 2.451 | 2.365 | 2.478 | 2.360 | 2.262 |
Kinematic viscosity, mm2/s | 3.947 | 3.802 | 3.672 | 3.149 | 3.034 | 3.000 | 3.163 | 3.0498 | 2.959 |
Density at 40 °C, g/ml | 0.8469 * | 0.822 | 0.815 | 0.810 | 0.808 | 0.793 | 0.783 | 0.774 | 0.7798 * |
Water content acc. CF, % | 0.0033 | 0.0031 | 0.0027 | 0.0025 | 0.0023 | 0.0021 | 0.002 | 0.002 | 0.002 |
Oxidative stability, min | 70.31 | 83.11 | 84.6 | 75.21 | 72.11 | 73.78 | 105 | 116 | 126.43 |
CFPP, °C | −10 | −12 | −16 | −27 | −28 | −33 | −34 | −34 | −40 |
Cetane number | 50.9 | 54.5 | 56.4 | 58.1 | 59.6 | 59.9 | 68.5 | 71.7 | 74.5 |
Pour point, °C | −39 | −39 | −40 | −40 | −42 | −45 | −40 | −46 | −58 |
Gross heating value, MJ/kg | 45.876 | 46.025 | 46.155 | 46.272 | 46.289 | 46.411 | 46.761 | 46.923 | 47.218 |
Lower heating value LHV, MJ/kg | 42.570 | 42.672 | 42.757 | 42.827 | 42.916 | 42.873 | 43.131 | 43.223 | 43.449 |
References
- Benito, A.; Alonso, G. Energy Efficiency and the Environment. In Energy Efficiency in Air Transportation; Elsevier: Amsterdam, The Netherlands, 2018; pp. 153–199. ISBN 9780128125816. [Google Scholar]
- Dimitriou, I.; Goldingay, H.; Bridgwater, A.V. Techno-Economic and Uncertainty Analysis of Biomass to Liquid (BTL) Systems for Transport Fuel Production. Renew. Sustain. Energy Rev. 2018, 88, 160–175. [Google Scholar] [CrossRef]
- Goldemberg, J.; Souza, G.M.; Maciel-Filho, R.; Cantarella, H. Scaling up Biofuels? A Critical Look at Expectations Performance and Governance. Energy Policy 2018, 118, 655–657. [Google Scholar] [CrossRef]
- Haasz, T.; Gómez Vilchez, J.J.; Kunze, R.; Deane, P.; Fraboulet, D.; Fahl, U.; Mulholland, E. Perspectives on Decarbonizing the Transport Sector in the EU-28. Energy Strategy Rev. 2018, 20, 124–132. [Google Scholar] [CrossRef]
- Arthanarisamy, M.; Alagumalai, A.; Natarajan, N. Biodiesel as an Alternative Transportation Fuel in Diesel Engines an In-Depth Study on Biodiesel Performance; LAMBERT Academic Publishing: Riga, Latvia, 2016. [Google Scholar]
- Brynolf, S.; Taljegard, M.; Grahn, M.; Hansson, J. Electrofuels for the Transport Sector: A Review of Production Costs. Renew. Sustain. Energy Rev. 2018, 81, 1887–1905. [Google Scholar] [CrossRef]
- No, S.-Y. Application of Hydrotreated Vegetable Oil from Triglyceride Based Biomass to CI Engines—A Review. Fuel 2014, 115, 88–96. [Google Scholar] [CrossRef]
- Zöldy, M. Automotive Industry Solutions in Response to European Legislative Emission Regulation Challenge. Moksl.-Liet. Ateitis 2009, 1, 33–40. [Google Scholar] [CrossRef]
- Zöldy, M.; Török, Á. Road Transport Liquid Fuel Today and Tomorrow: Literature Overview. Period. Polytech. Transp. Eng. 2015, 43, 172–176. [Google Scholar] [CrossRef]
- Çelebi, Y.; Aydın, H. An Overview on the Light Alcohol Fuels in Diesel Engines. Fuel 2019, 236, 890–911. [Google Scholar] [CrossRef]
- Lorenzi, G.; Baptista, P. Promotion of Renewable Energy Sources in the Portuguese Transport Sector: A Scenario Analysis. J. Clean. Prod. 2018, 186, 918–932. [Google Scholar] [CrossRef]
- Knothe, G.; Razon, L.F. Biodiesel Fuels. Prog. Energy Combust. Sci. 2017, 58, 36–59. [Google Scholar] [CrossRef]
- Singh, D.; Subramanian, K.A.; Garg, M. Comprehensive Review of Combustion, Performance and Emissions Characteristics of a Compression Ignition Engine Fueled with Hydroprocessed Renewable Diesel. Renew. Sustain. Energy Rev. 2018, 81, 2947–2954. [Google Scholar] [CrossRef]
- AOCS Press. The Biodiesel Handbook, 2nd ed.; Knothe, G., Ed.; AOCS Press: Urbana, IL, USA, 2010. [Google Scholar]
- Urzędowska, W.; Stępień, Z. Prediction of Threats Caused by High FAME Diesel Fuel Blend Stability for Engine Injector Operation. Fuel Process. Technol. 2016, 142, 403–410. [Google Scholar] [CrossRef]
- Zhong, W.; Tamilselvan, P.; Wang, Q.; He, Z.; Feng, H.; Yu, X. Experimental Study of Spray Characteristics of Diesel/Hydrogenated Catalytic Biodiesel Blended Fuels under Inert and Reacting Conditions. Energy 2018, 153, 349–358. [Google Scholar] [CrossRef]
- Hossain, F.M.; Rainey, T.J.; Ristovski, Z.; Brown, R.J. Performance and Exhaust Emissions of Diesel Engines Using Microalgae FAME and the Prospects for Microalgae HTL Biocrude. Renew. Sustain. Energy Rev. 2018, 82, 4269–4278. [Google Scholar] [CrossRef]
- Mulholland, E.; Teter, J.; Cazzola, P.; McDonald, Z.; Gallachóir, B.P.Ó. The Long Haul towards Decarbonising Road Freight—A Global Assessment to 2050. Appl. Energy 2018, 216, 678–693. [Google Scholar] [CrossRef]
- Palanisamy, S.; Gevert, B.S. Hydroprocessing of Fatty Acid Methyl Ester Containing Resin Acids Blended with Gas Oil. Fuel Process. Technol. 2014, 126, 435–440. [Google Scholar] [CrossRef]
- Suarez-Bertoa, R.; Kousoulidou, M.; Clairotte, M.; Giechaskiel, B.; Nuottimäki, J.; Sarjovaara, T.; Lonza, L. Impact of HVO Blends on Modern Diesel Passenger Cars Emissions during Real World Operation. Fuel 2019, 235, 1427–1435. [Google Scholar] [CrossRef]
- Wang, W.-C. Techno-Economic Analysis of a Bio-Refinery Process for Producing Hydro-Processed Renewable Jet Fuel from Jatropha. Renew. Energy 2016, 95, 63–73. [Google Scholar] [CrossRef]
- Aatola, H.; Larmi, M.; Sarjovaara, T.; Mikkonen, S. Hydrotreated Vegetable Oil (HVO) as a Renewable Diesel Fuel: Trade-off between NOx, Particulate Emission, and Fuel Consumption of a Heavy Duty Engine. SAE Int. J. Engines 2008, 1, 1251–1262. [Google Scholar] [CrossRef]
- Ashok, B.; Nanthagopal, K.; Anand, V.; Aravind, K.M.; Jeevanantham, A.K.; Balusamy, S. Effects of N-Octanol as a Fuel Blend with Biodiesel on Diesel Engine Characteristics. Fuel 2019, 235, 363–373. [Google Scholar] [CrossRef]
- Mancaruso, E.; Sequino, L.; Vaglieco, B.M. First and Second Generation Biodiesels Spray Characterization in a Diesel Engine. Fuel 2011, 90, 2870–2883. [Google Scholar] [CrossRef]
- Rimkus, A.; Žaglinskis, J.; Rapalis, P.; Skačkauskas, P. Research on the Combustion, Energy and Emission Parameters of Diesel Fuel and a Biomass-to-Liquid (BTL) Fuel Blend in a Compression-Ignition Engine. Energy Convers. Manag. 2015, 106, 1109–1117. [Google Scholar] [CrossRef]
- Žaglinskis, J.; Lukács, K.; Bereczky, Á. Comparison of Properties of a Compression Ignition Engine Operating on Diesel–Biodiesel Blend with Methanol Additive. Fuel 2016, 170, 245–253. [Google Scholar] [CrossRef]
- Choi, Y.H.; Jang, Y.J.; Park, H.; Kim, W.Y.; Lee, Y.H.; Choi, S.H.; Lee, J.S. Carbon Dioxide Fischer-Tropsch Synthesis: A New Path to Carbon-Neutral Fuels. Appl. Catal. B Environ. 2017, 202, 605–610. [Google Scholar] [CrossRef]
- VCH. Handbook of Heterogeneous Catalysis; Ertl, G., Ed.; VCH: Weinheim, Germany, 1997. [Google Scholar]
- Napolitano, P.; Guido, C.; Beatrice, C.; Pellegrini, L. Impact of Hydrocracked Diesel Fuel and Hydrotreated Vegetable Oil Blends on the Fuel Consumption of Automotive Diesel Engines. Fuel 2018, 222, 718–732. [Google Scholar] [CrossRef]
- Ibarra-Gonzalez, P.; Rong, B.-G. A Review of the Current State of Biofuels Production from Lignocellulosic Biomass Using Thermochemical Conversion Routes. Chin. J. Chem. Eng. 2018. [Google Scholar] [CrossRef]
- Naylor, R.L.; Higgins, M.M. The Rise in Global Biodiesel Production: Implications for Food Security. Glob. Food Secur. 2018, 16, 75–84. [Google Scholar] [CrossRef]
- Demirbaş, A. Biodiesel: A Realistic Fuel Alternative for Diesel Engines; Springer: London, UK, 2008. [Google Scholar]
- Zöldy, M. Ethanol–Biodiesel–Diesel Blends as A Diesel Extender Option On Compression Ignition Engines. Transport 2011, 26, 303–309. [Google Scholar] [CrossRef]
- Neste Renewable Diesel Handbook—Reports. Available online: https://docgo.net/viewdoc.html?utm_source=neste-renewable-diesel-handbook (accessed on 20 February 2019).
- Li, Y.; Xu, H.; Cracknell, R.; Head, R.; Shuai, S. An experimental investigation into combustion characteristics of HVO compared with TME and ULSD at varied blend ratios. Fuely 2019, 255, 115757. [Google Scholar] [CrossRef]
- Lin, K.-W.; Wu, H.-W. Thermodynamic Analysis and Experimental Study of Partial Oxidation Reforming of Biodiesel and Hydrotreated Vegetable Oil for Hydrogen-Rich Syngas Production. Fuel 2019, 236, 1146–1155. [Google Scholar] [CrossRef]
- Kumar, A.N.; Brahma Raju, K.; Srinivas Kishore, P.; Narayana, K. Some Experimental Studies on Effect of Exhaust-Gas Recirculation on Performance and Emission Characteristics of a Compression-Ignition Engine Fuelled with Diesel and Lemon-Peel Oil Blends. Mater. Today Proc. 2018, 5, 6138–6148. [Google Scholar] [CrossRef]
- Preuß, J.; Munch, K.; Denbratt, I. Performance and Emissions of Long-Chain Alcohols as Drop-in Fuels for Heavy Duty Compression Ignition Engines. Fuel 2018, 216, 890–897. [Google Scholar] [CrossRef]
- Singh, D.; Subramanian, K.A.; Bal, R.; Singh, S.P.; Badola, R. Combustion and Emission Characteristics of a Light Duty Diesel Engine Fueled with Hydro-Processed Renewable Diesel. Energy 2018, 154, 498–507. [Google Scholar] [CrossRef]
- Han, M. The Effects of Synthetically Designed Diesel Fuel Properties—Cetane Number, Aromatic Content, Distillation Temperature, on Low-Temperature Diesel Combustion. Fuel 2013, 109, 512–519. [Google Scholar] [CrossRef]
- Millo, F.; Debnath, B.K.; Vlachos, T.; Ciaravino, C.; Postrioti, L.; Buitoni, G. Effects of Different Biofuels Blends on Performance and Emissions of an Automotive Diesel Engine. Fuel 2015, 159, 614–627. [Google Scholar] [CrossRef]
- Niemi, S.; Vauhkonen, V.; Mannonen, S.; Ovaska, T.; Nilsson, O.; Sirviö, K.; Heikkilä, S.; Kiijärvi, J. Effects of Wood-Based Renewable Diesel Fuel Blends on the Performance and Emissions of a Non-Road Diesel Engine. Fuel 2016, 186, 1–10. [Google Scholar] [CrossRef]
- Masera, K.; Hossain, A.K. Biofuels and Thermal Barrier: A Review on Compression Ignition Engine Performance, Combustion and Exhaust Gas Emission. J. Energy Inst. 2018. [Google Scholar] [CrossRef]
- Gill, S.S.; Tsolakis, A.; Dearn, K.D.; Rodríguez-Fernández, J. Combustion Characteristics and Emissions of Fischer–Tropsch Diesel Fuels in IC Engines. Prog. Energy Combust. Sci. 2011, 37, 503–523. [Google Scholar] [CrossRef]
- Abián, M.; Martín, C.; Nogueras, P.; Sánchez-Valdepeñas, J.; Rodríguez-Fernández, J.; Lapuerta, M.; Alzueta, M.U. Interaction of Diesel Engine Soot with NO2 and O2 at Diesel Exhaust Conditions. Effect of Fuel and Engine Operation Mode. Fuel 2018, 212, 455–461. [Google Scholar] [CrossRef]
- Bohl, T.; Smallbone, A.; Tian, G.; Roskilly, A.P. Particulate Number and NO x Trade-off Comparisons between HVO and Mineral Diesel in HD Applications. Fuel 2018, 215, 90–101. [Google Scholar] [CrossRef]
- Yamada, H.; Misawa, K.; Suzuki, D.; Tanaka, K.; Matsumoto, J.; Fujii, M.; Tanaka, K. Detailed Analysis of Diesel Vehicle Exhaust Emissions: Nitrogen Oxides, Hydrocarbons and Particulate Size Distributions. Proc. Combust. Inst. 2011, 33, 2895–2902. [Google Scholar] [CrossRef]
- D’Alessandro, B.; Bidini, G.; Zampilli, M.; Laranci, P.; Bartocci, P.; Fantozzi, F. Straight and Waste Vegetable Oil in Engines: Review and Experimental Measurement of Emissions, Fuel Consumption and Injector Fouling on a Turbocharged Commercial Engine. Fuel 2016, 182, 198–209. [Google Scholar] [CrossRef]
- Wakode, V.R.; Kanase-Patil, A.B. Regression Analysis and Optimization of Diesel Engine Performance for Change in Fuel Injection Pressure and Compression Ratio. Appl. Therm. Eng. 2017, 113, 322–333. [Google Scholar] [CrossRef]
- Zoldy, M.; Hollo, A.; Thernesz, A. Butanol as a Diesel Extender Option for Internal Combustion Engines; SAE International: Warrendale, PA, USA, 2010. [Google Scholar]
- Kim, D.; Kim, S.; Oh, S.; No, S.-Y. Engine Performance and Emission Characteristics of Hydrotreated Vegetable Oil in Light Duty Diesel Engines. Fuel 2014, 125, 36–43. [Google Scholar] [CrossRef]
- Singer, A.; Schröder, O.; Pabst, C.; Munack, A.; Bünger, J.; Ruck, W.; Krahl, J. Aging Studies of Biodiesel and HVO and Their Testing as Neat Fuel and Blends for Exhaust Emissions in Heavy-Duty Engines and Passenger Cars. Fuel 2015, 153, 595–603. [Google Scholar] [CrossRef]
- Yilmaz, N.; Atmanli, A. Experimental Assessment of a Diesel Engine Fueled with Diesel-Biodiesel-1-Pentanol Blends. Fuel 2017, 191, 190–197. [Google Scholar] [CrossRef]
- Yilmaz, N.; Atmanli, A.; Vigil, F.M. Quaternary Blends of Diesel, Biodiesel, Higher Alcohols and Vegetable Oil in a Compression Ignition Engine. Fuel 2018, 212, 462–469. [Google Scholar] [CrossRef]
- Zaharin, M.S.M.; Abdullah, N.R.; Najafi, G.; Sharudin, H.; Yusaf, T. Effects of Physicochemical Properties of Biodiesel Fuel Blends with Alcohol on Diesel Engine Performance and Exhaust Emissions: A Review. Renew. Sustain. Energy Rev. 2017, 79, 475–493. [Google Scholar] [CrossRef]
- Fangsuwannarak, K.; Wanriko, P.; Fangsuwannarak, T. Effect of Bio-Polymer Additive on the Fuel Properties of Palm Biodiesel and on Engine Performance Analysis and Exhaust Emission. Energy Procedia 2016, 100, 227–236. [Google Scholar] [CrossRef]
- Kuo, K.K. Principles of Combustion, 2nd ed.; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Vrtiška, D.; Šimáček, P. Prediction of HVO Content in HVO/Diesel Blends Using FTIR and Chemometric Methods. Fuel 2016, 174, 225–234. [Google Scholar] [CrossRef]
- Hoekman, S.K.; Robbins, C. Review of the Effects of Biodiesel on NOx Emissions. Fuel Process. Technol. 2012, 96, 237–249. [Google Scholar] [CrossRef]
Properties | Fuel | |
---|---|---|
HVO (NexBTL100) | EN 590 Standard Requirements | |
Kinematic viscosity, mm2/s | 2.9–3.5 | 2.0–4.5 |
Density at 40 °C, kg/m3 | 775–785 | 820–845 |
Water content acc. CF, % | 0.0020 | Max. 0.02 |
Cetane number | 84–99 | Min. 51 |
Lower heating value, MJ/kg | ~44 | ~43 |
Parameter | Device | Method | Accuracy |
---|---|---|---|
Gross heating value, J/g | IKA C 5000 calorimeter | DIN 51900-2 | 130 J/g |
Lower heating value LHV, J/g | |||
Flash point, °C | FP93 5G2 Pensky-Martens analyzer | ISO 2719 | 0.03 °C |
Dynamic viscosity, mPa∙s | Anton Paar SVM 3000/G2 Stabinger Viscometer | ASTM D7042 | 0.1% |
Kinematic viscosity, mm2/s | 0.1% | ||
Density, g/cm3 | 0.0002 g/cm3 | ||
Oxidative stability, min. | PetroOXY analyzer | EN 16091 | 0.1% |
CFPP, °C | FPP 5Gs analyzer | EN 116 | 1 °C |
Pour point, °C | CPP 5Gs analyzer | ISO 3016 | 3 °C |
Water content, % mass | Aquamax KF Coulometric analyzer | ISO 12937 | 0.0003% |
Cetane number | PetroSpec analyzer | ASTM D613 | 0.05% |
Cetane index | ASTM D4737 | 0.05% | |
Sulfur, % mass | IKA C 5000 calorimeter, muffle furnace, scales | GOST 3877 | 0.04% |
Parameter | Value |
---|---|
Displacement (cm3) | 1896 |
Number of cylinders | 4/OHC |
Compression ratio | 19.5 |
Power (kW) | 66 (4000 rpm) |
Torque (Nm) | 180 (2000–2500 rpm) |
Bore (mm) | 79.5 |
Stroke (mm) | 95.5 |
Fuel injection | Direct injection (single) |
Fuel injection-pump design | Axial-piston distributor injection pump |
Nozzle type | Hole-type |
Nozzle and holder assembly | Two-spring |
Nozzle opening pressure (bar) | 190–200 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rimkus, A.; Žaglinskis, J.; Stravinskas, S.; Rapalis, P.; Matijošius, J.; Bereczky, Á. Research on the Combustion, Energy and Emission Parameters of Various Concentration Blends of Hydrotreated Vegetable Oil Biofuel and Diesel Fuel in a Compression-Ignition Engine. Energies 2019, 12, 2978. https://doi.org/10.3390/en12152978
Rimkus A, Žaglinskis J, Stravinskas S, Rapalis P, Matijošius J, Bereczky Á. Research on the Combustion, Energy and Emission Parameters of Various Concentration Blends of Hydrotreated Vegetable Oil Biofuel and Diesel Fuel in a Compression-Ignition Engine. Energies. 2019; 12(15):2978. https://doi.org/10.3390/en12152978
Chicago/Turabian StyleRimkus, Alfredas, Justas Žaglinskis, Saulius Stravinskas, Paulius Rapalis, Jonas Matijošius, and Ákos Bereczky. 2019. "Research on the Combustion, Energy and Emission Parameters of Various Concentration Blends of Hydrotreated Vegetable Oil Biofuel and Diesel Fuel in a Compression-Ignition Engine" Energies 12, no. 15: 2978. https://doi.org/10.3390/en12152978
APA StyleRimkus, A., Žaglinskis, J., Stravinskas, S., Rapalis, P., Matijošius, J., & Bereczky, Á. (2019). Research on the Combustion, Energy and Emission Parameters of Various Concentration Blends of Hydrotreated Vegetable Oil Biofuel and Diesel Fuel in a Compression-Ignition Engine. Energies, 12(15), 2978. https://doi.org/10.3390/en12152978