Parallel Multi-Objective Genetic Algorithm for Short-Term Economic Environmental Hydrothermal Scheduling
<p>Map of the divide-and-conquer strategy.</p> "> Figure 2
<p>Map of the population decomposition in parallel multi-objective genetic algorithm (PMOGA).</p> "> Figure 3
<p>Map of the PMOGA algorithm.</p> "> Figure 4
<p>Maps of the evolution process of (<b>1</b>) MOGA and (<b>2</b>) PMOGA.</p> "> Figure 5
<p>Schematic map of the test hydrothermal system.</p> "> Figure 6
<p>Best compromise solutions obtained by PMOGA in 10 independent trials.</p> "> Figure 7
<p>The optimal Pareto front by different algorithms for Case 1.</p> "> Figure 8
<p>The water storage processes of Scheme 15 by PMOGA for Case 1.</p> "> Figure 9
<p>The optimal Pareto front by different algorithms for Case 2.</p> "> Figure 10
<p>The water storage processes of Scheme 15 by PMOGA for Case 2.</p> "> Figure 11
<p>The optimal Pareto front by different algorithms for Case 3.</p> "> Figure 12
<p>The water storage processes of Scheme 15 by PMOGA for Case 3.</p> ">
Abstract
:1. Introduction
2. Problem Formulation
2.1. Object Function
2.1.1. Economic Objective
2.1.2. Environmental Objective
2.2. Constraints
2.2.1. Power Balance Constraints
2.2.2. Thermal Plant Power Output Capacity Constraints
2.2.3. Hydro Plant Power Output Capacity Constraints
2.2.4. Reservoir Storage Volume Constraints
2.2.5. Water Discharge Constraints
2.2.6. Water Dynamic Balance Constraints
2.2.7. Initial and Terminal Storage Volume Constraints
3. Parallel Multi-Objective Genetic Algorithm
3.1. Overview of Multi-Objective Genetic Algorithm
- Step 1:
- Preparation and initialization. Determine the necessary computational parameters of the algorithm, and generate the parent population randomly in the feasible space.
- Step 2:
- Calculate the objective function values and constraint violation value of each solution in the parent population.
- Step 3:
- Fast non-dominated sorting the parent population. Each solution is assigned a front level equal to its own non-domination level. Then, calculate the crowding distance value of all the individuals at each non-domination level, which will be used to sort the parent population in a descending order.
- Step 4:
- Selection operation. Two individuals randomly chosen from the hybrid population are compared, and the one with better front level and crowding distance value will be selected as the candidate solution in the mating pool.
- Step 5:
- Crossover and mutation operation. To enhance the population diversity, the predefined crossover operator and mutation operator will be used to generate the offspring population.
- Step 6:
- The parent population and offspring population are combined and sorted based on the non-domination and crowding distance. Then, the better solutions will be chosen as the members in the new generation.
- Step 7:
- Repeat Steps 2 to 6 until the maximum iteration is reached, then export the Pareto optimal solutions.
3.2. Fork/Join Parallel Framework
3.3. Parallel Multi-Objective Genetic Algorithm
4. PMOGA for Short-Term Economic Environmental Hydrothermal Scheduling
4.1. Structure of Individuals
4.2. Initialization of Individuals
4.3. Constraint Handling Method
4.3.1. Inequality Constraints Handling Method
4.3.2. Water Balance Constraints Handling Method
- Step 1:
- Set the hydro plant index k = 1.
- Step 2:
- Calculate the total water discharge of the kth hydro plant. According to Equations (11) and (12), the terminal reservoir storage volume can be expressed as follows:
- Step 3:
- Use the following formula to adjust the water discharge rate to be feasible value at any periods, and then the modified water discharge sequence is used to calculate the corresponding storage volumes of the kth hydro plant in the scheduling periods.
- Step 4:
- Set , and if , go to Step 2; otherwise, the process to adjust water balance constraints is done.
4.3.3. Power Balance Constraints Handling Method
- Step 1:
- Set the period index j = 1.
- Step 2:
- Calculate the power transmission loss by Equation (5) and the total power output Dj left for thermal plants by Equation (21).
- Step 3:
- Use the following formula to adjust the power output of all thermal plants to be feasible value at the current period:
- Step 4:
- Set j = j + 1, and if j ≤ T, go back to Step 2; otherwise, the process for handling load balance constraints is done.
4.4. Selection Strategy Based on Constraint Violation
4.5. Outline of PMOGA for the SEEHTS Problem
- Step 1:
- Preparation. Set the computing parameters, such as the population size, the maximum iteration and the worker threads for parallelization.
- Step 2:
- Initialization. Use the method in Section 4.2 to initialize all the individuals randomly in the problem space. Then, the main thread creates a thread pool and divides the whole population into several subpopulations to be concurrently optimized.
- Step 3:
- Subpopulation evolution. For any one subpopulation, use the corresponding crossover, mutation and selection operators to generate the members for the next cycle, and the whole iterative process will not be stopped until the maximum iteration is reached. To be mentioned, for the target subpopulation, the constraint handling method in Section 4.3 is used to repair infeasible solutions, while the method in Section 4.4 is employed to verify the performance of solutions.
- Step 4:
- Stop the calculation. The main thread will shut down the thread pool when all the subpopulations finish the calculation. Meanwhile, the results of each subpopulation are collected to form up the optimal Pareto solution set that will be exported as the final solutions for the problem.
5. Case Study
5.1. Description of the Power System
5.2. Parameters Setting
5.3. Simulation Results
5.3.1. Case Study 1
5.3.2. Case Study 2
5.3.3. Case Study 3
5.4. Parallelization Performance
5.4.1. Metrics
5.4.2. Results Analysis and Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sun, C.; Lu, S. Short-term combined economic emission hydrothermal scheduling using improved quantum-behaved particle swarm optimization. Expert Syst. Appl. 2010, 37, 4232–4241. [Google Scholar] [CrossRef]
- Guo, S.; Chen, J.; Li, Y.; Liu, P.; Li, T. Joint operation of the Multi-Reservoir system of the three gorges and the qingjiang cascade reservoirs. Energies 2011, 4, 1036–1050. [Google Scholar] [CrossRef]
- Liu, P.; Nguyen, T.D.; Cai, X.; Jiang, X. Finding multiple optimal solutions to optimal load distribution problem in hydropower plant. Energies 2012, 5, 1413–1432. [Google Scholar] [CrossRef]
- Qin, H.; Zhou, J.; Lu, Y.; Wang, Y.; Zhang, Y. Multi-objective differential evolution with adaptive Cauchy mutation for short-term multi-objective optimal hydro-thermal scheduling. Energy Convers. Manag. 2010, 51, 788–794. [Google Scholar] [CrossRef]
- Lu, S.; Sun, C. Quadratic approximation based differential evolution with valuable trade off approach for bi-objective short-term hydrothermal scheduling. Expert Syst. Appl. 2011, 38, 13950–13960. [Google Scholar] [CrossRef]
- Pan, L.; Guo, Z.; Liu, P.; Ma, L.; Li, Z. Comparison and analysis of macro energy scenarios in china and a decomposition-based approach to quantifying the impacts of economic and social development. Energies 2013, 6, 3444–3465. [Google Scholar] [CrossRef]
- Ahmadi, A.; Sharafi Masouleh, M.; Janghorbani, M.; Yadollahi Ghasemi Manjili, N.; Sharaf, A.M.; Esmaeel Nezhad, A. Short term multi-objective hydrothermal scheduling. Electr. Power Syst. Res. 2015, 121, 357–367. [Google Scholar] [CrossRef]
- Norouzi, M.R.; Ahmadi, A.; Sharaf, A.M.; Esmaeel Nezhad, A. Short-term environmental/economic hydrothermal scheduling. Electr. Power Syst. Res. 2014, 116, 117–127. [Google Scholar] [CrossRef]
- Nezhad, A.E.; Javadi, M.S.; Rahimi, E. Applying augmented ɛ-constraint approach and lexicographic optimization to solve multi-objective hydrothermal generation scheduling considering the impacts of pumped-storage units. Int. J. Electr. Power Energy Syst. 2014, 55, 195–204. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, J.; Fang, N.; Zhang, R.; Zhang, Y. Daily hydrothermal scheduling with economic emission using simulated annealing technique based multi-objective cultural differential evolution approach. Energy 2013, 50, 24–37. [Google Scholar] [CrossRef]
- Immanuel Selvakumar, A. Civilized swarm optimization for multiobjective short-term hydrothermal scheduling. Int. J. Electr. Power Energy Syst. 2013, 51, 178–189. [Google Scholar] [CrossRef]
- Zhang, R.; Zhou, J.; Wang, Y. Multi-objective optimization of hydrothermal energy system considering economic and environmental aspects. Int. J. Electr. Power Energy Syst. 2012, 42, 384–395. [Google Scholar] [CrossRef]
- Li, C.; Zhou, J.; Lu, P.; Wang, C. Short-term economic environmental hydrothermal scheduling using improved multi-objective gravitational search algorithm. Energy Convers. Manag. 2015, 89, 127–136. [Google Scholar] [CrossRef]
- Li, Y.; He, H.; Wang, Y.; Xu, X.; Jiao, L. An improved multiobjective estimation of distribution algorithm for environmental economic dispatch of hydrothermal power systems. Appl. Soft Comput. 2015, 28, 559–568. [Google Scholar] [CrossRef]
- Pandit, M.; Srivastava, L.; Sharma, M. Environmental economic dispatch in multi-area power system employing improved differential evolution with fuzzy selection. Appl. Soft Comput. 2015, 28, 498–510. [Google Scholar] [CrossRef]
- Xu, B.; Zhong, P.A.; Wan, X.; Zhang, W.; Chen, X. Dynamic feasible region genetic algorithm for optimal operation of a multi-reservoir system. Energies 2012, 5, 2894–2910. [Google Scholar] [CrossRef]
- Basu, M. Economic environmental dispatch of fixed head hydrothermal power systems using nondominated sorting genetic algorithm-II. Appl. Soft Comput. 2011, 11, 3046–3055. [Google Scholar] [CrossRef]
- Zhang, J.; Tang, Q.; Chen, Y.; Lin, S. A hybrid particle swarm optimization with small population size to solve the optimal short-term hydro-thermal unit commitment problem. Energy 2016, 109, 765–780. [Google Scholar] [CrossRef]
- Shen, J.; Cheng, C.; Zhang, J.; Lu, J. Peak operation of cascaded hydropower plants serving multiple provinces. Energies 2015, 8, 11295–11314. [Google Scholar] [CrossRef]
- Cheng, C.; Wang, S.; Chau, K.; Wu, X. Parallel discrete differential dynamic programming for multireservoir operation. Environ. Model. Softw. 2014, 57, 152–164. [Google Scholar] [CrossRef]
- Li, X.; Wei, J.; Li, T.; Wang, G.; Yeh, W.W.G. A parallel dynamic programming algorithm for multi-reservoir system optimization. Adv. Water Resour. 2014, 67, 1–15. [Google Scholar] [CrossRef]
- Li, M.; Xia, T.; Zhu, C.; Xi, B.; Jia, X.; Wei, Z.; Zhu, J. Effect of short-time hydrothermal pretreatment of kitchen waste on biohydrogen production: Fluorescence spectroscopy coupled with parallel factor analysis. Bioresour. Technol. 2014, 172, 382–390. [Google Scholar] [CrossRef] [PubMed]
- Dias, B.H.; Tomim, M.A.; Marcato, A.L.M.; Ramos, T.P.; Brandi, R.B.S.; Junior, I.C.D.S.; João, A.P.S. Parallel computing applied to the stochastic dynamic programming for long term operation planning of hydrothermal power systems. Eur. J. Oper. Res. 2013, 229, 212–222. [Google Scholar] [CrossRef]
- Aldinucci, M.; Danelutto, M.; Teti, P. An advanced environment supporting structured parallel programming in Java. Future Gener. Comput. Syst. 2003, 19, 611–626. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, Z.; Ji, C.; Sun, P. Contrastive analysis of three parallel modes in multi-dimensional dynamic programming and its application in cascade reservoirs operation. J. Hydrol. 2015, 529, 22–34. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, S.; Wang, Y.; Jiang, Y.; Wang, H. Use of parallel deterministic dynamic programming and hierarchical adaptive genetic algorithm for reservoir operation optimization. Comput. Ind. Eng. 2013, 65, 310–321. [Google Scholar] [CrossRef]
- Tosun, U. On the performance of parallel hybrid algorithms for the solution of the quadratic assignment problem. Eng. Appl. Artif. Intel. 2015, 39, 267–278. [Google Scholar] [CrossRef]
- Qiu, D.; Li, B.; Leung, H. Understanding the API usage in Java. Inf. Softw. Technol. 2016, 73, 81–100. [Google Scholar] [CrossRef]
- Yuan, X.; Tian, H.; Yuan, Y.; Huang, Y.; Ikram, R.M. An extended NSGA-III for solution multi-objective hydro-thermal-wind scheduling considering wind power cost. Energy Convers. Manag. 2015, 96, 568–578. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Wong, J.Y.Q.; Sharma, S.; Rangaiah, G.P. Design of shell-and-tube heat exchangers for multiple objectives using elitist non-dominated sorting genetic algorithm with termination criteria. Appl. Therm. Eng. 2016, 93, 888–899. [Google Scholar] [CrossRef]
- Basu, M. An interactive fuzzy satisfying method based on evolutionary programming technique for multiobjective short-term hydrothermal scheduling. Electr. Power Syst. Res. 2004, 69, 277–285. [Google Scholar] [CrossRef]
- Zhou, J.; Liao, X.; Ouyang, S.; Zhang, R.; Zhang, Y. Multi-objective artificial bee colony algorithm for short-term scheduling of hydrothermal system. Int. J. Electr. Power Energy Syst. 2014, 55, 542–553. [Google Scholar] [CrossRef]
- Mandal, K.K.; Basu, M.; Chakraborty, N. Particle swarm optimization technique based short-term hydrothermal scheduling. Appl. Soft Comput. 2008, 8, 1392–1399. [Google Scholar] [CrossRef]
- Rangaiah, G.; Sharma, S.; Sreepathi, B.K. Multi-objective optimization for the design and operation of energy efficient chemical processes and power generation. Curr. Opin. Chem. Eng. 2015, 10, 49–62. [Google Scholar] [CrossRef]
- Pinto, F.S.; Figueira, J.R.; Marques, R.C. A multi-objective approach with soft constraints for water supply and wastewater coverage improvements. Eur. J. Oper. Res. 2015, 246, 609–618. [Google Scholar] [CrossRef]
- Pinto, F.S.; Marques, R.C. Tariff suitability framework for water supply services: Establishing a regulatory tool linking multiple stakeholders’ objectives. Water Resour. Manag. 2016, 30, 2037–2053. [Google Scholar] [CrossRef]
- Fang, L.; Qin, S.; Xu, G.; Li, T.; Zhu, K. Simultaneous optimization for hybrid electric vehicle parameters based on Multi-Objective genetic algorithms. Energies 2011, 4, 532–544. [Google Scholar] [CrossRef]
- Li, F.F.; Qiu, J. Multi-Objective reservoir optimization balancing energy generation and firm power. Energies 2015, 8, 6962–6976. [Google Scholar] [CrossRef]
- Qiu, W.; Zhang, J.; Yu, X.; Tang, Q. A small-population based binary PSO approach for unit commitment problem. J. Inf. Comput. Sci. 2015, 12, 3599–3610. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.; Yue, C. Small population-based particle swarm optimization for short-term hydrothermal scheduling. IEEE Trans. Power Syst. 2012, 27, 142–152. [Google Scholar] [CrossRef]
- Tian, H.; Yuan, X.; Ji, B.; Chen, Z. Multi-objective optimization of short-term hydrothermal scheduling using non-dominated sorting gravitational search algorithm with chaotic mutation. Energy Convers. Manag. 2014, 81, 504–519. [Google Scholar] [CrossRef]
- Mandal, K.K.; Chakraborty, N. Short-term combined economic emission scheduling of hydrothermal power systems with cascaded reservoirs using differential evolution. Energy Convers Manag. 2009, 50, 97–104. [Google Scholar] [CrossRef]
- Lu, S.; Sun, C.; Lu, Z. An improved quantum-behaved particle swarm optimization method for short-term combined economic emission hydrothermal scheduling. Energy Convers. Manag. 2010, 51, 561–571. [Google Scholar] [CrossRef]
- Lu, Y.; Zhou, J.; Qin, H.; Wang, Y.; Zhang, Y. A hybrid multi-objective cultural algorithm for short-term environmental/economic hydrothermal scheduling. Energy Convers. Manag. 2011, 52, 2121–2134. [Google Scholar] [CrossRef]
No. | MOGA | PMOGA | No. | MOGA | PMOGA | ||||
---|---|---|---|---|---|---|---|---|---|
fceo ($) | femi (lb) | fceo ($) | femi (lb) | fceo ($) | femi (lb) | fceo ($) | femi (lb) | ||
1 | 39,716 | 17,913 | 39,687 | 17,936 | 16 | 39,812 | 16,385 | 39,782 | 16,136 |
2 | 39,721 | 17,858 | 39,689 | 17,528 | 17 | 39,821 | 16,317 | 39,795 | 16,074 |
3 | 39,722 | 17,718 | 39,692 | 17,381 | 18 | 39,833 | 16,214 | 39,806 | 16,023 |
4 | 39,728 | 17,581 | 39,695 | 17,235 | 19 | 39,854 | 16,150 | 39,818 | 15,977 |
5 | 39,730 | 17,444 | 39,697 | 17,144 | 20 | 39,866 | 16,100 | 39,830 | 15,937 |
6 | 39,732 | 17,328 | 39,701 | 17,049 | 21 | 39,879 | 16,057 | 39,851 | 15,879 |
7 | 39,736 | 17,208 | 39,705 | 16,951 | 22 | 39,894 | 16,022 | 39,871 | 15,836 |
8 | 39,744 | 17,094 | 39,713 | 16,795 | 23 | 39,910 | 15,980 | 39,891 | 15,804 |
9 | 39,751 | 17,007 | 39,717 | 16,720 | 24 | 39,922 | 15,958 | 39,908 | 15,781 |
10 | 39,755 | 16,908 | 39,723 | 16,644 | 25 | 39,947 | 15,930 | 39,924 | 15,763 |
11 | 39,761 | 16,751 | 39,728 | 16,573 | 26 | 39,972 | 15,907 | 39,950 | 15,740 |
12 | 39,772 | 16,696 | 39,734 | 16,508 | 27 | 39,989 | 15,891 | 39,971 | 15,727 |
13 | 39,777 | 16,604 | 39,746 | 16,388 | 28 | 40,002 | 15,878 | 40,000 | 15,714 |
14 | 39,790 | 16,531 | 39,758 | 16,291 | 29 | 40,026 | 15,866 | 40,020 | 15,709 |
15 | 39,797 | 16,434 | 39,770 | 16,207 | 30 | 40,048 | 15,863 | 40,048 | 15,706 |
Period | Hydro Plant Output (MW) | Thermal Output (MW) | |||||
---|---|---|---|---|---|---|---|
Ph1 | Ph2 | Ph3 | Ph4 | Ps1 | Ps2 | Ps3 | |
1 | 79.74 | 49.00 | 28.22 | 132.08 | 137.57 | 174.74 | 148.65 |
2 | 80.67 | 50.16 | 32.44 | 129.25 | 145.79 | 185.32 | 156.36 |
3 | 77.94 | 51.30 | 30.59 | 125.93 | 120.42 | 155.98 | 137.84 |
4 | 75.29 | 52.93 | 31.10 | 121.83 | 107.25 | 137.79 | 123.81 |
5 | 74.89 | 54.50 | 36.56 | 115.97 | 114.75 | 144.26 | 129.08 |
6 | 76.26 | 55.50 | 41.19 | 139.45 | 143.29 | 185.80 | 158.51 |
7 | 77.79 | 59.85 | 43.49 | 190.84 | 175.00 | 220.65 | 182.38 |
8 | 77.32 | 62.78 | 42.39 | 227.43 | 175.00 | 233.97 | 191.12 |
9 | 79.84 | 66.47 | 41.32 | 261.25 | 175.00 | 253.94 | 212.18 |
10 | 78.46 | 66.80 | 41.15 | 273.48 | 175.00 | 242.62 | 202.49 |
11 | 79.52 | 69.59 | 41.07 | 281.05 | 175.00 | 247.46 | 206.32 |
12 | 82.19 | 74.65 | 39.47 | 284.88 | 175.00 | 270.30 | 223.50 |
13 | 81.58 | 73.37 | 37.34 | 287.07 | 175.00 | 249.64 | 205.99 |
14 | 79.10 | 70.85 | 36.55 | 285.96 | 168.91 | 212.20 | 176.43 |
15 | 78.31 | 72.09 | 37.22 | 285.22 | 161.63 | 202.26 | 173.27 |
16 | 80.36 | 75.54 | 39.13 | 289.24 | 175.00 | 218.23 | 182.50 |
17 | 79.18 | 75.99 | 44.43 | 294.38 | 167.18 | 211.43 | 177.41 |
18 | 81.11 | 80.40 | 46.95 | 297.40 | 175.00 | 240.75 | 198.38 |
19 | 78.32 | 78.78 | 48.70 | 299.58 | 171.02 | 214.82 | 178.79 |
20 | 76.26 | 78.72 | 51.52 | 304.24 | 161.85 | 206.06 | 171.34 |
21 | 70.15 | 76.77 | 53.06 | 303.97 | 120.55 | 152.14 | 133.36 |
22 | 65.88 | 79.19 | 55.35 | 300.67 | 104.03 | 133.69 | 121.19 |
23 | 68.23 | 81.78 | 57.14 | 296.21 | 97.42 | 129.31 | 119.91 |
24 | 67.68 | 80.86 | 58.30 | 291.23 | 88.22 | 108.93 | 104.77 |
No. | MOGA | PMOGA | No. | MOGA | PMOGA | ||||
---|---|---|---|---|---|---|---|---|---|
fceo ($) | femi (lb) | fceo ($) | femi (lb) | fceo ($) | femi (lb) | fceo ($) | femi (lb) | ||
1 | 43,497 | 16,864 | 41,630 | 17,338 | 16 | 45,162 | 16,195 | 44,282 | 16,133 |
2 | 43,509 | 16,805 | 41,634 | 17,331 | 17 | 45,330 | 16,152 | 44,440 | 16,111 |
3 | 43,608 | 16,743 | 41,770 | 17,222 | 18 | 45,555 | 16,112 | 44,745 | 16,071 |
4 | 43,710 | 16,697 | 41,771 | 16,854 | 19 | 45,777 | 16,073 | 45,018 | 16,038 |
5 | 43,726 | 16,648 | 41,954 | 16,759 | 20 | 46,023 | 16,043 | 45,257 | 16,010 |
6 | 43,853 | 16,597 | 42,140 | 16,686 | 21 | 46,160 | 16,007 | 45,647 | 15,965 |
7 | 43,923 | 16,552 | 42,330 | 16,617 | 22 | 46,374 | 15,990 | 45,940 | 15,932 |
8 | 44,018 | 16,488 | 42,506 | 16,556 | 23 | 46,510 | 15,978 | 46,197 | 15,906 |
9 | 44,140 | 16,429 | 42,690 | 16,501 | 24 | 46,747 | 15,958 | 46,592 | 15,867 |
10 | 44,263 | 16,366 | 42,821 | 16,448 | 25 | 46,983 | 15,906 | 46,848 | 15,845 |
11 | 44,379 | 16,324 | 43,035 | 16,366 | 26 | 47,269 | 15,901 | 47,088 | 15,830 |
12 | 44,469 | 16,287 | 43,168 | 16,327 | 27 | 47,631 | 15,879 | 47,382 | 15,806 |
13 | 44,649 | 16,269 | 43,321 | 16,291 | 28 | 47,883 | 15,860 | 47,682 | 15,787 |
14 | 44,777 | 16,245 | 43,665 | 16,230 | 29 | 48,216 | 15,855 | 47,978 | 15,777 |
15 | 44,929 | 16,223 | 44,000 | 16,180 | 30 | 48,418 | 15,844 | 48,318 | 15,771 |
Period | Hydro Plant Output (MW) | Thermal Output (MW) | |||||
---|---|---|---|---|---|---|---|
Ph1 | Ph2 | Ph3 | Ph4 | Ps1 | Ps2 | Ps3 | |
1 | 75.49 | 49.00 | 28.37 | 131.88 | 116.90 | 209.01 | 139.35 |
2 | 70.71 | 50.16 | 23.02 | 129.03 | 175.00 | 192.61 | 139.47 |
3 | 70.35 | 51.30 | 18.95 | 125.74 | 173.88 | 125.25 | 134.53 |
4 | 70.04 | 52.93 | 24.01 | 121.63 | 118.46 | 124.96 | 137.97 |
5 | 53.36 | 54.50 | 24.12 | 115.87 | 166.18 | 125.02 | 130.95 |
6 | 59.85 | 55.50 | 36.49 | 131.91 | 172.32 | 204.90 | 139.02 |
7 | 89.98 | 66.07 | 38.84 | 215.74 | 175.00 | 213.78 | 150.59 |
8 | 88.24 | 67.94 | 37.45 | 253.73 | 175.00 | 214.42 | 173.22 |
9 | 88.37 | 69.47 | 34.20 | 274.74 | 175.00 | 220.74 | 227.47 |
10 | 85.20 | 68.07 | 34.11 | 286.53 | 175.00 | 212.64 | 218.45 |
11 | 86.22 | 70.36 | 33.76 | 282.50 | 175.00 | 222.98 | 229.18 |
12 | 86.81 | 70.42 | 29.25 | 282.04 | 175.00 | 280.77 | 225.71 |
13 | 85.83 | 73.62 | 32.10 | 287.88 | 175.00 | 226.63 | 228.93 |
14 | 87.93 | 74.10 | 32.79 | 288.16 | 175.00 | 217.46 | 154.57 |
15 | 84.82 | 72.63 | 37.36 | 290.14 | 175.00 | 209.95 | 140.11 |
16 | 86.17 | 77.60 | 40.92 | 299.86 | 175.00 | 213.41 | 167.03 |
17 | 86.12 | 78.72 | 44.07 | 294.99 | 175.00 | 214.01 | 157.09 |
18 | 84.74 | 78.86 | 46.01 | 299.35 | 175.00 | 282.07 | 153.97 |
19 | 86.29 | 78.48 | 47.31 | 304.91 | 175.00 | 215.11 | 162.91 |
20 | 84.61 | 75.94 | 49.28 | 302.47 | 175.00 | 212.07 | 150.63 |
21 | 53.64 | 59.35 | 53.27 | 293.40 | 119.69 | 190.91 | 139.74 |
22 | 55.60 | 72.60 | 55.94 | 295.47 | 112.73 | 128.00 | 139.66 |
23 | 54.31 | 70.59 | 58.13 | 291.98 | 114.08 | 124.95 | 135.97 |
24 | 55.10 | 67.50 | 58.96 | 286.87 | 110.22 | 124.89 | 96.46 |
Case | Method | Fuel Cost ($) | Emission (lb) | ||
---|---|---|---|---|---|
Value | Improvement | Value | Improvement | ||
ELS | PMOGA | 41,630 | - | 17,338 | - |
DE | 43,500 | 1870 | 21,092 | No comparison required | |
QPSO-DM | 41,909 | 279 | 30,724 | No comparison required | |
IQPSO | 42,359 | 729 | 31,298 | No comparison required | |
EES | PMOGA | 48,318 | - | 15,771 | - |
DE | 51,449 | No comparison required | 18,257 | 2486 | |
QPSO-DM | 45,392 | No comparison required | 17,659 | 1888 | |
IQPSO | 45,271 | No comparison required | 17,767 | 1996 | |
CEES | PMOGA | 44,000 | - | 16,180 | - |
DE | 44,914 | 914 | 19,615 | 3435 | |
QPSO-DM | 43,507 | −493 | 18,183 | 2003 | |
IQPSO | 44,259 | 259 | 18,229 | 2049 |
No. | MOGA | PMOGA | No. | MOGA | PMOGA | ||||
---|---|---|---|---|---|---|---|---|---|
fceo ($) | femi (lb) | fceo ($) | femi (lb) | fceo ($) | femi (lb) | fceo ($) | femi (lb) | ||
1 | 43,891 | 17,984 | 42,687 | 18,471 | 16 | 45,567 | 17,250 | 44,624 | 17,292 |
2 | 43,898 | 17,920 | 42,713 | 18,440 | 17 | 45,733 | 17,216 | 44,914 | 17,223 |
3 | 43,948 | 17,858 | 42,895 | 18,339 | 18 | 45,940 | 17,181 | 45,190 | 17,173 |
4 | 44,046 | 17,808 | 42,897 | 18,099 | 19 | 46,188 | 17,148 | 45,470 | 17,134 |
5 | 44,151 | 17,748 | 43,018 | 18,002 | 20 | 46,381 | 17,094 | 45,737 | 17,094 |
6 | 44,276 | 17,715 | 43,166 | 17,907 | 21 | 46,599 | 17,069 | 45,949 | 17,062 |
7 | 44,377 | 17,666 | 43,323 | 17,830 | 22 | 46,778 | 17,038 | 46,159 | 17,032 |
8 | 44,449 | 17,609 | 43,485 | 17,760 | 23 | 47,054 | 16,986 | 46,520 | 16,980 |
9 | 44,546 | 17,560 | 43,665 | 17,693 | 24 | 47,355 | 16,953 | 46,799 | 16,944 |
10 | 44,635 | 17,511 | 43,794 | 17,627 | 25 | 47,589 | 16,924 | 47,193 | 16,898 |
11 | 44,790 | 17,487 | 43,909 | 17,563 | 26 | 47,868 | 16,883 | 47,470 | 16,869 |
12 | 44,925 | 17,443 | 43,976 | 17,495 | 27 | 48,149 | 16,868 | 47,840 | 16,834 |
13 | 45,040 | 17,403 | 44,169 | 17,403 | 28 | 48,445 | 16,832 | 48,146 | 16,814 |
14 | 45,266 | 17,357 | 44,299 | 17,364 | 29 | 48,770 | 16,828 | 48,502 | 16,798 |
15 | 45,470 | 17,304 | 44,452 | 17,326 | 30 | 49,047 | 16,804 | 48,969 | 16,783 |
Period | Hydro Plant Output (MW) | Thermal Output (MW) | Total (MW) | Loss PL (MW) | Load PD (MW) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Ph1 | Ph2 | Ph3 | Ph4 | Ps1 | Ps2 | Ps3 | ||||
1 | 74.00 | 49.00 | 25.90 | 132.38 | 127.53 | 210.05 | 139.80 | 758.66 | 8.66 | 750 |
2 | 66.21 | 50.16 | 21.49 | 129.41 | 175.00 | 209.78 | 139.67 | 791.72 | 11.72 | 780 |
3 | 74.18 | 51.73 | 23.78 | 126.15 | 169.25 | 126.76 | 137.90 | 709.75 | 9.75 | 700 |
4 | 71.95 | 52.90 | 34.20 | 123.33 | 108.56 | 126.02 | 139.44 | 656.40 | 6.40 | 650 |
5 | 53.37 | 54.47 | 23.28 | 116.27 | 102.52 | 189.88 | 137.11 | 676.90 | 6.90 | 670 |
6 | 61.81 | 55.47 | 37.93 | 132.47 | 175.00 | 209.94 | 139.04 | 811.66 | 11.66 | 800 |
7 | 92.14 | 67.06 | 41.85 | 228.93 | 175.00 | 210.76 | 146.52 | 962.26 | 12.26 | 950 |
8 | 83.06 | 64.83 | 38.43 | 229.43 | 175.00 | 210.63 | 224.37 | 1025.75 | 15.75 | 1010 |
9 | 86.24 | 62.39 | 35.80 | 259.95 | 175.00 | 275.29 | 211.98 | 1106.64 | 16.64 | 1090 |
10 | 87.15 | 72.84 | 34.17 | 286.49 | 175.00 | 292.70 | 146.06 | 1094.41 | 14.41 | 1080 |
11 | 88.90 | 73.67 | 34.76 | 276.11 | 175.00 | 294.93 | 172.02 | 1115.39 | 15.39 | 1100 |
12 | 83.42 | 70.04 | 35.67 | 282.33 | 175.00 | 294.31 | 227.28 | 1168.05 | 18.05 | 1150 |
13 | 86.24 | 67.30 | 32.08 | 287.40 | 175.00 | 250.75 | 228.35 | 1127.12 | 17.12 | 1110 |
14 | 88.40 | 73.81 | 36.53 | 291.57 | 175.00 | 234.43 | 143.28 | 1043.02 | 13.02 | 1030 |
15 | 87.67 | 74.79 | 38.86 | 290.33 | 175.00 | 214.74 | 141.13 | 1022.53 | 12.53 | 1010 |
16 | 82.46 | 75.17 | 41.48 | 288.84 | 175.00 | 269.66 | 141.07 | 1073.68 | 13.68 | 1060 |
17 | 90.76 | 79.65 | 44.94 | 297.15 | 175.00 | 231.20 | 144.34 | 1063.04 | 13.04 | 1050 |
18 | 83.99 | 80.42 | 47.46 | 301.07 | 175.00 | 292.90 | 153.94 | 1134.77 | 14.77 | 1120 |
19 | 85.04 | 81.06 | 48.67 | 303.87 | 175.00 | 247.51 | 142.20 | 1083.35 | 13.35 | 1070 |
20 | 80.56 | 78.56 | 49.66 | 301.51 | 175.00 | 212.09 | 166.04 | 1063.42 | 13.42 | 1050 |
21 | 53.76 | 67.10 | 54.18 | 288.62 | 104.96 | 209.72 | 139.85 | 918.20 | 8.20 | 910 |
22 | 54.05 | 61.35 | 56.38 | 293.95 | 104.08 | 160.19 | 137.43 | 867.42 | 7.42 | 860 |
23 | 61.03 | 75.11 | 57.88 | 292.64 | 105.76 | 125.29 | 139.51 | 857.22 | 7.22 | 850 |
24 | 56.77 | 74.17 | 58.71 | 286.47 | 103.00 | 125.21 | 101.68 | 806.01 | 6.01 | 800 |
Scenario | Popsize | MOGA Time | PMOGA Time | PMOGA Speedup | PMOGA Efficiency | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2 | 4 | 8 | 2 | 4 | 8 | 2 | 4 | 8 | |||
Case 1 | 600 | 155.3 | 62.9 | 37.8 | 59.2 | 2.47 | 4.11 | 2.62 | 1.24 | 1.03 | 0.33 |
800 | 244.7 | 94.8 | 53.7 | 78.5 | 2.58 | 4.56 | 3.12 | 1.29 | 1.14 | 0.39 | |
1000 | 346.7 | 127.0 | 68.9 | 95.8 | 2.73 | 5.03 | 3.62 | 1.36 | 1.26 | 0.45 | |
1200 | 455.5 | 163.6 | 80.9 | 120.0 | 2.78 | 5.63 | 3.79 | 1.39 | 1.41 | 0.47 | |
Case 2 | 600 | 170.2 | 69.8 | 39.5 | 56.1 | 2.44 | 4.31 | 3.04 | 1.22 | 1.08 | 0.38 |
800 | 258.0 | 97.5 | 54.4 | 79.0 | 2.65 | 4.74 | 3.27 | 1.32 | 1.18 | 0.41 | |
1000 | 349.1 | 131.5 | 66.0 | 102.9 | 2.65 | 5.29 | 3.39 | 1.33 | 1.32 | 0.42 | |
1200 | 461.6 | 167.2 | 82.3 | 121.1 | 2.76 | 5.61 | 3.81 | 1.38 | 1.40 | 0.48 | |
Case 3 | 600 | 201.2 | 83.9 | 46.2 | 55.0 | 2.40 | 4.36 | 3.66 | 1.20 | 1.09 | 0.46 |
800 | 288.1 | 116.3 | 63.0 | 75.2 | 2.48 | 4.57 | 3.83 | 1.24 | 1.14 | 0.48 | |
1000 | 393.7 | 151.9 | 80.4 | 88.1 | 2.59 | 4.90 | 4.47 | 1.30 | 1.22 | 0.56 | |
1200 | 508.0 | 192.2 | 95.5 | 106.6 | 2.64 | 5.32 | 4.77 | 1.32 | 1.33 | 0.60 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Z.-K.; Niu, W.-J.; Zhou, J.-Z.; Cheng, C.-T.; Qin, H.; Jiang, Z.-Q. Parallel Multi-Objective Genetic Algorithm for Short-Term Economic Environmental Hydrothermal Scheduling. Energies 2017, 10, 163. https://doi.org/10.3390/en10020163
Feng Z-K, Niu W-J, Zhou J-Z, Cheng C-T, Qin H, Jiang Z-Q. Parallel Multi-Objective Genetic Algorithm for Short-Term Economic Environmental Hydrothermal Scheduling. Energies. 2017; 10(2):163. https://doi.org/10.3390/en10020163
Chicago/Turabian StyleFeng, Zhong-Kai, Wen-Jing Niu, Jian-Zhong Zhou, Chun-Tian Cheng, Hui Qin, and Zhi-Qiang Jiang. 2017. "Parallel Multi-Objective Genetic Algorithm for Short-Term Economic Environmental Hydrothermal Scheduling" Energies 10, no. 2: 163. https://doi.org/10.3390/en10020163