Combustion and Heat Release Characteristics of Biogas under Hydrogen- and Oxygen-Enriched Condition
<p>Geometry of the combustion chamber (not to scale).</p> "> Figure 2
<p>Comparison of predication temperature (line) and measurement temperature (plot) at the outlet of BG-2/air flames with various H<sub>2</sub> addition ratios (<b>black line</b>) and O<sub>2</sub> enrichment levels (<b>red line</b>).</p> "> Figure 3
<p>Effect of CH<sub>4</sub> content in biogas fuel on combustion temperature distribution.</p> "> Figure 4
<p>Effect of CH<sub>4</sub> content in biogas fuel on net heat release rate distribution.</p> "> Figure 5
<p>Effects of H<sub>2</sub> addition ratio (<b>a</b>) and O<sub>2</sub> enrichment levels (<b>b</b>) in BG-2/air flame on the distribution of combustion temperature.</p> "> Figure 6
<p>Effects of H<sub>2</sub> addition ratio (<b>a</b>) and O<sub>2</sub> enrichment levels (<b>b</b>) in BG-2/air flame on the distribution of the heat release rate.</p> "> Figure 7
<p>Heat release rate of biogas flames under H<sub>2</sub>-enriched (<b>a</b>) and O<sub>2</sub>-enriched (<b>b</b>) conditions along the centerline.</p> "> Figure 8
<p>Effects of H<sub>2</sub> addition ratio (<b>a</b>) and O<sub>2</sub> enrichment levels (<b>b</b>) in BG-2/air flame on the peak heat release height and average temperature <span class="html-italic">T<sub>a</sub></span>.</p> "> Figure 9
<p>Net reaction rate of biogas flame along centerline at various H<sub>2</sub> addition ratios (<b>a</b>) and O<sub>2</sub> enrichment levels (<b>b</b>).</p> "> Figure 10
<p>Comparison of typical elementary reaction exothermic reaction rates of biogas flame along the centerline at H<sub>2</sub> addition ratio of 0% (<b>a</b>) and 50% (<b>b</b>).</p> "> Figure 11
<p>Flame thickness along the centerline at various H<sub>2</sub> addition ratios (<b>black line</b>) and O<sub>2</sub> enrichment levels (<b>red line</b>).</p> ">
Abstract
:1. Introduction
2. Numerical Simulations
3. Discussion
4. Conclusions
- (1)
- The net reaction rate of biogas increases with increasing hydrogen addition ratio and oxygen levels, leading to a higher net heat release rate of biogas flame;
- (2)
- The formation of free radicals, such as H, O, and particularly OH, are enhanced with the increase in hydrogen addition ratio and oxygen levels;
- (3)
- Flames with enhanced heat release rates are formed under H2-enriched and O2-enriched conditions. Therefore, H2-enriched and O2-enriched combustion is beneficial to the improvement of combustion and heat release characteristics of biogas in practical application.
Acknowledgments
Author Contributions
Conflicts of Interest
Nomenclature
H2 addition ratio to fuel (based on low heat value) | |
Flow rate of H2 (m·s−1) | |
Flow rate of CH4 (m·s−1) | |
Low heat value of H2 (kJ·mol−1) | |
Low heat value of CH4 (kJ·mol−1) | |
O2-enriched level (-) | |
Flow rate of O2 (m·s−1) | |
Flow rate of N2 (m·s−1) | |
Density (kg·m−3) | |
General dependent variable (-) | |
Velocity vector (m·s−1) | |
associated transport coefficient of Y (-) | |
The source term (-) | |
Mean absorption coefficient of species i (-) | |
Formation enthalpy of specie j (J·mol−1) | |
Enthalpy change of reaction i (J·mol−1) | |
The reaction rate of reaction i (mol·cm−3·s−1) | |
Heat release rate of reaction i (J·cm−3·s−1) | |
Total heat release rate of all reaction (J·cm−3·s−1) | |
Flame thickness (cm) | |
The maximum temperature (K) | |
The unburned temperature (K) | |
The peak gradient in temperature (K·cm−1) |
References
- Divya, D.; Gopinath, L.R.; Christy, P.M. A review on current aspects and diverse prospects for enhancing biogas production in sustainable means. Renew. Sustain. Energy Rev. 2015, 42, 690–699. [Google Scholar] [CrossRef]
- Pazera, A.; Slezak, R.; Krzystek, L.; Ledakowicz, S.; Bochmann, G.; Gabauer, W.; Helm, S.; Reitmeier, S.; Marley, L.; Gorga, F.; et al. Biogas in Europe: Food and Beverage (FAB) Waste Potential for Biogas Production. Energy Fuels 2015, 29, 4011–4021. [Google Scholar] [CrossRef]
- Papurello, D.; Soukoulis, C.; Schuhfried, E.; Cappellin, L.; Gasperi, F.; Silvestri, S.; Santarelli, M.; Biasioli, F. Monitoring of volatile compound emissions during dry anaerobic digestion of the organic fraction of municipal solid waste by proton transfer reaction time-of-flight mass spectrometry. Bioresour. Technol. 2012, 126, 245–265. [Google Scholar] [CrossRef] [PubMed]
- Papurello, D.; Lanzini, A.; Tognana, L.; Silvestri, S.; Santarelli, M. Waste to energy: Exploitation of biogas from organic waste in a 500 Wel solid oxide fuel cell (SOFC) stack. Energy 2015, 85, 145–158. [Google Scholar] [CrossRef]
- Papurello, D.; Silvestri, S.; Tomasi, L.; Belcari, I.; Biasioli, F.; Santarelli, M. Biowaste for SOFCs. Energy Procedia 2016, 101, 424–431. [Google Scholar] [CrossRef]
- Bensaid, S.; Russo, N.; Fino, D. Power and hydrogen co-generation from biogas. Energy Fuels 2010, 24, 4743–4747. [Google Scholar] [CrossRef]
- Wang, R.; Zhao, Z.; Liu, J.; Lv, Y.; Ye, X. Enhancing the storage stability of petroleum coke slurry by producing biogas from sludge fermentation. Energy 2016, 113, 319–327. [Google Scholar] [CrossRef]
- Wang, J.; Xie, Y.; Cai, X.; Nie, Y.; Peng, C.; Huang, Z. Effect of H2O addition on the flame front evolution of syngas spherical propagation flames. Combust. Sci. Technol. 2016, 188, 1054–1072. [Google Scholar] [CrossRef]
- Park, C.; Park, S.; Lee, Y.; Kim, C.; Lee, S.; Moriyoshi, Y. Performance and emission characteristics of a SI engine fueled by low calorific biogas blended with hydrogen. Int. J. Hydrogen Energy 2011, 36, 10080–10088. [Google Scholar] [CrossRef]
- Fagbenle, R.; Oguaka, A.; Olakoyejo, O. A thermodynamic analysis of a biogas-fired integrated gasification steam injected gas turbine (BIG/STIG) plant. Appl. Therm. Eng. 2007, 27, 2220–2225. [Google Scholar] [CrossRef]
- Galvagno, A.; Chiodo, V.; Urbani, F.; Freni, F. Biogas as hydrogen source for fuel cell applications. Int. J. Hydrogen Energy 2013, 38, 3913–3920. [Google Scholar] [CrossRef]
- Shan, X.; Qian, Y.; Zhu, L.; Lu, X. Effects of EGR rate and hydrogen/carbon monoxide ratio on combustion and emission characteristics of biogas/diesel dual fuel combustion engine. Fuel 2016, 181, 1050–1057. [Google Scholar] [CrossRef]
- Cacua, K.; Amell, A.; Cadavid, F. Effects of oxygen enriched air on the operation and performance of a diesel-biogas dual fuel engine. Biomass Bioenergy 2012, 45, 159–167. [Google Scholar] [CrossRef]
- Baratieri, M.; Baggio, P.; Bosio, B.; Grigiante, M.; Longo, G. The use of biomass syngas in IC engines and CCGT plants: A comparative analysis. Appl. Therm. Eng. 2009, 29, 3309–3318. [Google Scholar] [CrossRef]
- Fischer, M.; Jiang, X. An investigation of the chemical kinetics of biogas combustion. Fuel 2015, 150, 711–720. [Google Scholar] [CrossRef]
- Somehsaraei, H.; Majoumerd, M.; Breuhaus, P.; Assadi, M. Performance analysis of a biogas-fueled micro gas turbine using a validated thermodynamic model. Appl. Therm. Eng. 2014, 66, 181–190. [Google Scholar] [CrossRef]
- Hosseini, S.; Bagheri, G.; Wahid, M. Numerical investigation of biogas flameless combustion. Energy Convers. Manag. 2014, 81, 41–50. [Google Scholar] [CrossRef]
- Zhen, H.; Leung, C.; Cheung, C. Effects of hydrogen addition on the characteristics of a biogas diffusion flame. Int. J. Hydrogen Energy 2013, 38, 6874–6881. [Google Scholar] [CrossRef]
- Wei, Z.; Leung, C.; Cheung, C.; Huang, Z. Effects of equivalence ratio, H2, and CO2 addition on the heat release characteristics of premixed laminar biogas-hydrogen flame. Int. J. Hydrogen Energy 2016, 41, 6567–6580. [Google Scholar] [CrossRef]
- Mameri, A.; Tabet, F. Numerical investigation of counter-flow diffusion flame of biogas-hydrogen blends: Effects of biogas composition, hydrogen enrichment and scalar dissipation rate on flame structure and emissions. Int. J. Hydrogen Energy 2016, 41, 2011–2022. [Google Scholar] [CrossRef]
- Zhen, H.; Leung, C.; Cheung, C.; Huang, Z. Combustion characteristic and heating performance of stoichiometric biogas-hydrogen-air flame. Int. J. Heat Mass Transf. 2016, 92, 807–814. [Google Scholar] [CrossRef]
- Zhen, H.; Leung, C.; Cheung, C.; Huang, Z. Characterization of biogas-hydrogen premixed flames using Bunsen burner. Int. J. Hydrogen Energy 2014, 39, 13292–13299. [Google Scholar] [CrossRef]
- Barlow, R. Radiation Models, Radiation, 2003. Available online: http://www.ca.sandia.gov/TNF/radiation.html (accessed on 10 February 2016).
- Spalding, D. New Developments and Computed Results, Imperial College CFDU Report HTS/81/1; Imperial College: London, UK, 1980. [Google Scholar]
- Patankar, S. Numerical Heat Transfer and Fluid Flow; Hemisphere, CRC press: New York, NY, USA, 1980. [Google Scholar]
- Smith, G. GRI-Mech. 1999. Available online: http://combustion.berkeley.edu/gri-mech/ (accessed on 23 November 2015).
- Wu, L.; Kobayashi, N.; Li, Z.; Huang, H.; Li, J. Emission and heat transfer characteristics of methane-hydrogen hybrid fuel laminar diffusion flame. Int. J. Hydrogen Energy 2015, 40, 9579–9589. [Google Scholar] [CrossRef]
- Tang, C.; Huang, Z.; Law, C. Determination, correlation, and mechanistic interpretation of effects of hydrogen addition on laminar flame speeds of hydrocarbon-air mixtures. Proc. Combust. Inst. 2011, 33, 921–928. [Google Scholar] [CrossRef]
- Li, J.; Huang, H.; Kobayashi, N.; Wang, C.; Yuan, H. Numerical study on laminar burning velocity and ignition delay time of ammonia flame with hydrogen addition. Energy 2017, 126, 769–809. [Google Scholar] [CrossRef]
- Li, Z.; Han, W.; Liu, D.; Chen, Z. Laminar flame propagation and ignition properties of premixed iso-octane/air with hydrogen. Fuel 2015, 158, 443–450. [Google Scholar] [CrossRef]
- Hu, G.; Zhang, S.; Li, Q.; Pan, X.; Liao, S.; Wang, H.; Yang, C.; Wei, S. Experimental investigation on the effects of hydrogen addition on thermal characteristics of methane/air premixed flame. Fuel 2014, 115, 232–240. [Google Scholar] [CrossRef]
Items | CH4/L·min−1 | CO2/L·min−1 | H2/L·min−1 | O2/L·min−1 | Air/L·min−1 | Power/kW |
---|---|---|---|---|---|---|
BG-1 | 1.829 | 1.220 | - | - | 18.340 | 1 |
BG-2 | 1.829 | 0.784 | - | - | 18.340 | 1 |
BG-3 | 1.829 | 0.457 | - | - | 18.340 | 1 |
H2 10% | 1.647 | 1.098 | 0.602 | - | 18.014 | 1 |
H2 30% | 1.281 | 0.854 | 1.805 | - | 17.361 | 1 |
H2 50% | 0.915 | 0.610 | 3.008 | - | 16.709 | 1 |
O2 25% | 1.829 | 1.220 | - | 0.780 | 14.626 | 1 |
O2 30% | 1.829 | 1.220 | - | 1.463 | 11.376 | 1 |
O2 35% | 1.829 | 1.220 | - | 1.950 | 9.054 | 1 |
Coefficient | CO2 | H2O | CH4 | CO (T < 750 K) | CO (T > 750 K) |
---|---|---|---|---|---|
a0 | 18.741 | −0.23093 | 6.6334 | 4.7869 | 10.09 |
a1 | −121.31 | −1.1239 | −3.5686 × 10−3 | −0.06953 | −0.01183 |
a2 | 273.5 | 9.4153 | 1.6682 × 10−8 | 2.95775 × 10−4 | 4.7753 × 10−6 |
a3 | −194.05 | −2.9988 | 2.5611 × 10−10 | −4.25732 × 10−7 | −5.87209 × 10−10 |
a4 | 56.31 | 0.51382 | −2.6558 × 10−14 | 2.02894× 10−10 | −2.5334 × 10−14 |
a5 | −5.8169 | −1.884 × 10−5 | 0 | - | - |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Huang, H.; Huhetaoli; Osaka, Y.; Bai, Y.; Kobayashi, N.; Chen, Y. Combustion and Heat Release Characteristics of Biogas under Hydrogen- and Oxygen-Enriched Condition. Energies 2017, 10, 1200. https://doi.org/10.3390/en10081200
Li J, Huang H, Huhetaoli, Osaka Y, Bai Y, Kobayashi N, Chen Y. Combustion and Heat Release Characteristics of Biogas under Hydrogen- and Oxygen-Enriched Condition. Energies. 2017; 10(8):1200. https://doi.org/10.3390/en10081200
Chicago/Turabian StyleLi, Jun, Hongyu Huang, Huhetaoli, Yugo Osaka, Yu Bai, Noriyuki Kobayashi, and Yong Chen. 2017. "Combustion and Heat Release Characteristics of Biogas under Hydrogen- and Oxygen-Enriched Condition" Energies 10, no. 8: 1200. https://doi.org/10.3390/en10081200
APA StyleLi, J., Huang, H., Huhetaoli, Osaka, Y., Bai, Y., Kobayashi, N., & Chen, Y. (2017). Combustion and Heat Release Characteristics of Biogas under Hydrogen- and Oxygen-Enriched Condition. Energies, 10(8), 1200. https://doi.org/10.3390/en10081200