Inference with the Median of a Prior
<p>Top: pdf of random variable <span class="html-italic">T</span> = <span class="html-italic">T</span> (<math display="inline"><mi>????</mi></math>; <span class="html-italic">x</span>) = <span class="html-italic">F<sub>X|<math display="inline"><mi>????</mi></math></sub></span>(<span class="html-italic">x</span>|<math display="inline"><mi>????</mi></math>) = 1 − <span class="html-italic">e</span><sup>−<span class="html-italic"><math display="inline"><mi>????</mi></math>x</span></sup>, Middle: cdf of random variable <span class="html-italic">T</span>, and Bottom: mean and median of random variable <span class="html-italic">T</span> in Example A.</p> "> Figure 2
<p>Left: cdf of random variable <math display="inline"><mi>????</mi></math> in Example B and its corresponding pdf. Right: cdf of random variable <span class="html-italic">T</span> = <span class="html-italic">T</span> (<math display="inline"><mi>????</mi></math>; <span class="html-italic">x</span>) = <span class="html-italic">F<sub>X|<math display="inline"><mi>????</mi></math></sub></span>(<span class="html-italic">x</span>|<math display="inline"><mi>????</mi></math>) = 1 − <span class="html-italic">e</span><sup>−<span class="html-italic"><math display="inline"><mi>????</mi></math>x</span></sup> in Example B.</p> "> Figure 3
<p>Left: the graphs of <span class="html-italic">L</span>(<span class="html-italic">ν</span>) = <span class="html-italic">F<sub>X|<math display="inline"><mi>????</mi></math></sub></span>(<span class="html-italic">x</span>|<math display="inline"><mi>????</mi></math>) for different <span class="html-italic">x</span> in Example C. Right: the mean and median of random variable <span class="html-italic">T</span> in Example C.</p> "> Figure 4
<p>The empirical MSEs of <math display="inline"> <semantics> <mrow> <mover> <mi>θ</mi> <mo>˜</mo> </mover> </mrow> </semantics> </math>, <span class="html-italic">T<sub>MaxEnt</sub></span>, <math display="inline"> <semantics> <mrow> <mover> <mi>θ</mi> <mo>^</mo> </mover> </mrow> </semantics> </math>, and <span class="html-italic">T</span> wrt <span class="html-italic">θ</span> (left) and <span class="html-italic">ν</span><sub>0</sub> (right, for <span class="html-italic">θ</span> = 2) for different sample sizes <span class="html-italic">n</span>.</p> "> Figure 5
<p>Mean, median and mode of random variable <span class="html-italic">T</span> = <span class="html-italic">T</span> (<math display="inline"><mi>????</mi></math>; <span class="html-italic">x</span>) = <span class="html-italic">F<sub>X|<math display="inline"><mi>????</mi></math></sub></span>(<span class="html-italic">x</span>|<math display="inline"><mi>????</mi></math>) = 1 − <span class="html-italic">e</span><sup>−<span class="html-italic"><math display="inline"><mi>????</mi></math>x</span></sup> wrt <span class="html-italic">x</span>.</p> "> Figure 6
<p>Mean and mode of random variable <span class="html-italic">T</span> = <span class="html-italic">T</span> (<math display="inline"><mi>????</mi></math>; <span class="html-italic">x</span>) = <span class="html-italic">F<sub>X|<math display="inline"><mi>????</mi></math></sub></span>(<span class="html-italic">x</span>|<math display="inline"><mi>????</mi></math>) = 1 − <span class="html-italic">e</span><sup>−<span class="html-italic"><math display="inline"><mi>????</mi></math>x</span></sup> wrt <span class="html-italic">x</span>.</p> "> Figure 7
<p><span class="html-italic">Q</span><sub>1</sub>, median and <span class="html-italic">Q</span><sub>3</sub> of random variable <span class="html-italic">T</span> = <span class="html-italic">T</span> (<math display="inline"><mi>????</mi></math>; <span class="html-italic">x</span>) = <span class="html-italic">F<sub>X|<math display="inline"><mi>????</mi></math></sub></span>(<span class="html-italic">x</span>|<math display="inline"><mi>????</mi></math>) = 1 − <span class="html-italic">e</span><sup>−<span class="html-italic"><math display="inline"><mi>????</mi></math>x</span></sup> wrt <span class="html-italic">x</span>.</p> ">
Abstract
:1 Introduction
2 A New Inference Tool
- 1.
- (x) is an increasing function in each of its arguments.
- 2.
- If FX|ν(x|ν) and F(ν) are continuous cdfs then (x) is a continuous function in each of its arguments.
- 3.
- 0 ≤ (x) ≤ 1.
- 1.
- Let y = (y1, … , yn)′, z = (z1, … , zn)′, yj < zj for fixed j and yi = zi for i ≠ j, 1 ≤ i, j ≤ n and take
- 2.
- Let x. = (x1, … , xj − 1, x., xj + 1, … ,xn)′ and t = (x1, … , xj − 1, t, xj + 1, … ,xn)′. By part 1, (x) is an increasing function in each of its arguments. Therefore,Further, FX|(x|) is continuous wrt xj, and so
- 3.
- (x) is the median of random variable T, where T = FX|(x|) and 0 ≤ T ≤ 1, and so 0 ≤ (x) ≤ 1. ☐
- 1.
- limxj↓−∞ (x) = 0 for any particular j,
- 2.
- limx1↑+∞,… ,xn↑+∞ (x) = 1,
- 3.
- ∆b1a1 …∆bnan (x) ≥ 0, where ai ≤ bi, i = 1, … , n, and ∆bjaj (x) = ((x1, … , xj − 1, bj, xj + 1, … ,xn)′)−((x1, … , xj − 1, aj, xj + 1, … ,xn)′) ≥ 0.
3 Examples
3.1 Example 1
- Prior pdf case f(ν) = (ν; ν0, θ0):Then we have
- Unique median knowledge case Median {} = ν0:Then, as we could see, by using Lemma 1 and Theorem 2, we have
- Moments knowledge case E(||) = ν0:Then the ME pdf is given by (ν; ν0). In this case we cannot obtain an analytical expression for
We recall that, if we know that E() = ν0 or Median {} = ν0 and the support of is R the ME pdf does not exist.
3.2 Example 2
- Prior pdf case f(ν) = (ν; α, β):Then, it is easy to show that,
- Unique median knowledge case Median {} = ν0:Then, as we could see, by using Lemma 2 and Theorem 2, we have
- Moments knowledge case E(1/) = 1/ν0:Then, knowing that the variance is a positive quantity, the ME pdf f(ν) is an (ν; 1, ν0). In this case we have
3.3 Example 3
3.4 Comparison of Estimators in Example 1
4 Extensions
5 Conclusion
Acknowledgments
References
- Berger, J. O. Statistical Decision Theory: Foundations, Concepts, and Methods; Springer: New York, 1980. [Google Scholar]
- Bernardo, J. M.; Smith, A. F. M. Bayesian Theory; Wiley: Chichester, UK, 1994. [Google Scholar]
- Hernández Bastida, A.; Martel Escobar, M. C.; Vázquez Polo, F. J. On maximum entropy priors and a most likely likelihood in auditing. Qüestiió 1998, 22(2), 231–242. [Google Scholar]
- Jaynes, E. T. Information theory and statistical mechanics I,II. Physical review 1957, 106, 620–630. [Google Scholar] and 108, 171–190.
- Jaynes, E. T. Prior probabilities. IEEE Transactions on Systems Science and Cybernetics SSC-4 1968, (3), 227–241. [Google Scholar]
- Lehmann, E. L.; Casella, G. Theory of point estimation, 2nd ed.; Springer: New York, 1998. [Google Scholar]
- Mohammad-Djafari, A.; Mohammadpour, A. On the estimation of a parameter with incomplete knowledge on a nuisance parameter. 2004; Vol. 735, AIP; pp. 533–540. [Google Scholar]
- Mohammadpour, A.; Mohammad-Djafari, A. An alternative criterion to likelihood for parameter estimation accounting for prior information on nuisance parameter. In Soft methodology and Random Information Systems; Springer: Berlin, 2004; pp. 575–580. [Google Scholar]
- Mohammadpour, A.; Mohammad-Djafari, A. An alternative inference tool to total probability formula and its applications. 2004; Vol. 735, AIP; pp. 227–236. [Google Scholar]
- Robert, C. P.; Casella, G. Monte Carlo statistical methods, 2nd ed.; Springer: New York, 2004. [Google Scholar]
- Rohatgi, V. K. An Introduction to Probability Theory and Mathematical Statistics; Wiley: New York, 1976. [Google Scholar]
- Zacks, S. Parametric statistical inference; Pergamon, Oxford, 1981. [Google Scholar]
Assumptions | pdf of X|θ based on prior information MLE of θ | Simulated data pdf MSE(θ) = E(MLE − θ)2 |
Known parameter ν = ν0 | (x; ν0, θ) T = (X − ν0)2 | (x; 0, θ) 2θ2 |
Known prior f(ν) = (ν; ν0, θ0) | (x; ν0, θ + θ0) = max{(X − ν0)2 − θ0, 0} | (x; 0, θ + 1) E( − θ)2 |
Known moments E() = ν0, V () = | (x; ν0, θ + ) TMaxEnt = max{(X − ν0)2 − , 0} | (x; 0, θ + 1) E(TMaxEnt − θ)2 |
Known unique median Median() = ν0 | (x; ν0, θ) = (X − ν0)2 | (x; 0, θ + 1) 2(θ + 1)2 + 1 |
© 2006 by MDPI (http://www.mdpi.org). Reproduction for noncommercial purposes permitted.
Share and Cite
Mohammadpour, A.; Mohammad-Djafari, A. Inference with the Median of a Prior. Entropy 2006, 8, 67-87. https://doi.org/10.3390/e8020067
Mohammadpour A, Mohammad-Djafari A. Inference with the Median of a Prior. Entropy. 2006; 8(2):67-87. https://doi.org/10.3390/e8020067
Chicago/Turabian StyleMohammadpour, Adel, and Ali Mohammad-Djafari. 2006. "Inference with the Median of a Prior" Entropy 8, no. 2: 67-87. https://doi.org/10.3390/e8020067
APA StyleMohammadpour, A., & Mohammad-Djafari, A. (2006). Inference with the Median of a Prior. Entropy, 8(2), 67-87. https://doi.org/10.3390/e8020067