Reliability Analysis of the New Exponential Inverted Topp–Leone Distribution with Applications
<p>PDFs plots of the NEITL distribution.</p> "> Figure 2
<p>Plots of the skewness and kurtosis of the NEITL distribution.</p> "> Figure 3
<p>SF plots of the NEITL distribution.</p> "> Figure 4
<p>HF plots of the NEITL distribution.</p> "> Figure 5
<p>Stress–strength plots of the NEITL distribution.</p> "> Figure 5 Cont.
<p>Stress–strength plots of the NEITL distribution.</p> "> Figure 6
<p>PDF, CDF, and PP plot of the NEITL distribution:Survival Times.</p> "> Figure 7
<p>PDF, CDF and PP plot of the NEITL distribution: Group 1.</p> "> Figure 8
<p>PDF, CDF, and PP plot of the NEITL distribution: Group 2.</p> "> Figure 9
<p>Trace, proposed distribution, and convergence of MCMC results for <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>δ</mi> <mn>1</mn> </msub> </mrow> </semantics></math>.</p> "> Figure 10
<p>Trace, proposed distribution, and convergence of MCMC results for <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>δ</mi> <mn>2</mn> </msub> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. NEITL Distribution
3. Mathematical Properties
3.1. Ordinal Moments
3.2. Incomplete Moments
3.3. Quantile Function
3.4. Rényi and Other Entropies
4. Reliability Analysis
4.1. Hazard and Survival Reliability
4.2. Stress–Strength Reliability
5. Parameter Estimation
5.1. Maximum Likelihood Method
5.2. Maximum Product Spacing
5.3. Bayesian Estimation
6. Simulation
7. Application of Real Data
7.1. Survival Times
7.2. Example of Reliability of the S–S Model
- Group 1: 0.31, 0.66, 1.54, 1.70, 1.82, 1.89, 2.17, 2.24, 4.03, and 9.99.
- Group 2: 0.49, 0.64, 0.82, 0.93, 1.08, 1.99, 2.06, 2.15, 2.57, and 4.75.
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huo, X.; Khosa, S.K.; Ahmad, Z.; Almaspoor, Z.; Ilyas, M.; Aamir, M. A new lifetime exponential-X family of distributions with applications to reliability data. Math. Probl. Eng. 2020, 2020, 1316345. [Google Scholar] [CrossRef]
- Barco, K.V.P.; Mazucheli, J.; Janeiro, V. The inverse power Lindley distribution. Commun. Stat.-Simul. Comput. 2017, 46, 6308–6323. [Google Scholar] [CrossRef]
- Abd AL-Fattah, A.M.; El-Helbawy, A.A.; Al-Dayian, G.R. Inverted Kumumaraswamy distribution: Properties and estimation. Pak. J. Stat. 2017, 33, 37–61. [Google Scholar]
- Hassan, A.S.; Abd-Allah, M. On the inverse power Lomax distribution. Ann. Data Sci. 2019, 6, 259–278. [Google Scholar] [CrossRef]
- Hassan, A.S.; Mohammed, R.E. Weibull inverse Lomax distribution. Pak. J. Stat. Oper. Res. 2019, 15, 587–603. [Google Scholar] [CrossRef] [Green Version]
- Muhammed, H.Z. On the inverted Topp Leone distribution. Int. J. Reliab. Appl. 2019, 20, 17–28. [Google Scholar]
- Hassan, A.S.; Mohammed, R.E. Parameter estimation of inverse exponentiated Lomax with right censored data. Gazi Univ. J. Sci. 2019, 32, 1370–1386. [Google Scholar]
- Almetwally, E.M. Extended odd Weibull inverse Rayleigh distribution with application on carbon fibres. Math. Sci. Lett. 2021, 10, 5–14. [Google Scholar]
- Hassan, A.S.; Nassr, S.G. Parameter estimation of an extended inverse power Lomax distribution with Type I right censored data. Commun. Stat. Appl. Methods 2021, 28, 99–118. [Google Scholar] [CrossRef]
- Hassan, A.S.; Elgarhy, M.; Ragab, R. Statistical properties and estimation of inverted Topp–Leone distribution. J. Stat. Appl. Probab. 2020, 9, 319–331. [Google Scholar]
- Abushal, T.A.; Hassan, A.S.; El-Saeed, A.R.; Nassr, S.G. Power inverted Topp–Leone distribution in acceptance sampling plans. Comput. Mater. Contin. 2021, 67, 991–1011. [Google Scholar] [CrossRef]
- Hassan, A.S.; Almetwally, E.M.; Ibrahim, G.M. Kumaraswamy inverted Topp–Leone distribution with applications to COVID-19 data. Comput. Mater. Contin. 2021, 68, 337–356. [Google Scholar] [CrossRef]
- Ibrahim, G.M.; Hassan AS Almetwally, E.M.; Almongy, H.M. Parameter estimation of alpha power inverted Topp–Leone distribution with applications. Intell. Autom. Soft Comput. 2021, 29, 353–371. [Google Scholar] [CrossRef]
- Almetwally, E.M.; Alharbi, R.; Alnagar, D.; Hafez, E.H. A new inverted Topp–Leone distribution: Applications to the COVID-19 mortality rate in two different countries. Axioms 2021, 10, 25. [Google Scholar] [CrossRef]
- Almetwally, E.M. The odd Weibull inverse Topp–Leone distribution with applications to COVID-19 data. Ann. Data Sci. 2021, 1–20. [Google Scholar] [CrossRef]
- Bantan, R.A.; Jamal, F.; Chesneau, C.; Elgarhy, M. Type II power Topp–Leone generated family of distributions with statistical inference and applications. Symmetry 2020, 12, 75. [Google Scholar] [CrossRef] [Green Version]
- Abu El Azm, W.S.; Almetwally, E.M.; Alghamdi, A.S.; Aljohani, H.M.; Muse, A.H.; Abo-Kasem, O.E. Stressstrength reliability for exponentiated invertedWeibull distribution with application on breaking of jute fiber and carbon fibers. Comput. Intell. Neurosci. 2021, 2021, 4227346. [Google Scholar] [CrossRef]
- Sabry, M.A.; Almetwally, E.M.; Alamri, O.A.; Yusuf, M.; Almongy, H.M.; Eldeeb, A.S. Inference of fuzzy reliability model for inverse Rayleigh distribution. AIMS Math. 2021, 6, 9770–9785. [Google Scholar] [CrossRef]
- Yousef, M.M.; Almetwally, E.M. Multi stress-strength reliability based on progressive first failure for Kumaraswamy model: Bayesian and non-Bayesian estimation. Symmetry 2021, 13, 2120. [Google Scholar] [CrossRef]
- Hassan, A.S.; Al-Omari, A.I.; Nagy, H.F. Stress–strength reliability for the generalized inverted exponential distribution using MRSS. Iran. J. Sci. Technol. Trans. A Sci. 2021, 45, 641–659. [Google Scholar] [CrossRef]
- Haj Ahmad, H.; Almetwally, E. Marshall-Olkin generalized Pareto distribution: Bayesian and non Bayesian estimation. Pak. J. Stat. Oper. Res. 2020, 16, 21–33. [Google Scholar] [CrossRef] [Green Version]
- Basheer, A.M.; Almetwally, E.M.; Okasha, H.M. Marshall-Olkin alpha power inverse Weibull distribution: Non Bayesian and Bayesian Estimations. J. Stat. Appl. Probab. 2020, 10, 327–345. [Google Scholar]
- Cheng, R.C.H.; Amin, N.A.K. Estimating parameters in continuous univariate distributions with a shifted origin. J. R. Stat. Soc. Ser. B 1983, 45, 394–403. [Google Scholar] [CrossRef]
- Almetwally, E.M.; Almongy, H.M.; Rastogi, M.K.; Ibrahim, M. Maximum product spacing estimation of Weibull distribution under adaptive type-II progressive censoring schemes. Ann. Data Sci. 2020, 7, 257–279. [Google Scholar] [CrossRef]
- El-Sherpieny, E.S.A.; Almetwally, E.M.; Muhammed, H.Z. Progressive type-II hybrid censored schemes based on maximum product spacing with application to Power Lomax distribution. Phys. A Stat. Mech. Appl. 2020, 553, 124251. [Google Scholar] [CrossRef]
- El-Sherpieny, E.S.A.; Almetwally, E.M.; Muhammed, H.Z. Bayesian and non-Bayesian estimation for the parameter of bivariate generalized Rayleigh distribution based on Clayton Copula under progressive type-II censoring with random removal. Sankhya A 2021, 1–38. [Google Scholar] [CrossRef]
- Almongy, H.M.; Alshenawy, F.Y.; Almetwally, E.M.; Abdo, D.A. Applying transformer insulation using Weibull extended distribution based on progressive censoring scheme. Axioms 2021, 10, 100. [Google Scholar] [CrossRef]
- Haj Ahmad, H.; Salah, M.M.; Eliwa, M.S.; Ali Alhussain, Z.; Almetwally, E.M.; Ahmed, E.A. Bayesian and non-Bayesian inference under adaptive type-II progressive censored sample with exponentiated power Lindley distribution. J. Appl. Stat. 2021, 1–21. [Google Scholar] [CrossRef]
- Bantan, R.; Hassan, A.S.; Almetwally, E.; Elgarhy, M.; Jamal, F.; Chesneau, C.; Elsehetry, M. Bayesian analysis in partially accelerated life tests for weighted Lomax distribution. Comput. Mater. Contin. 2021, 68, 2859–2875. [Google Scholar] [CrossRef]
- Al-Omari, A.I.; Hassan, A.S.; Nagy, H.F.; Al-Anzi, A.R.A.; Alzoubi, L. Entropy Bayesian analysis for the generalized inverse exponential distribution based on URRSS. Comput. Mater. Contin. 2021, 69, 3795–3811. [Google Scholar] [CrossRef]
- Al-Babtain, A.A.; Hassan, A.S.; Zaky, A.N.; Elbatal, I.; Elgarhy, M. Dynamic cumulative residual Rényi entropy for Lomax distribution: Bayesian and non-Bayesian methods. AIM Math. 2021, 6, 3889–3914. [Google Scholar] [CrossRef]
- Hassan, A.S.; Zaki, A.N. Entropy Bayesian estimation for Lomax distribution based on record. Thail. Stat. 2021, 19, 96–115. [Google Scholar]
- Bjerkedal, T. Acquisition of resistance in guinea pies infected with different doses of virulent tubercle bacilli. Am. J. Hyg. 1960, 72, 130–148. [Google Scholar] [PubMed]
- Nelson, W. Applied Life Data Analysis; John Wiley & Sons: New York, NY, USA, 1982. [Google Scholar]
SK | KU | |||
---|---|---|---|---|
(2,3) | 0.739 | 0.204 | 2.624 | 23.372 |
(3,3) | 0.534 | 0.083 | 1.871 | 11.412 |
(5,3) | 0.369 | 0.032 | 1.409 | 7.371 |
(5,4) | 0.293 | 0.016 | 1.07 | 5.572 |
(5,5) | 0.248 | 0.01 | 0.847 | 4.602 |
(1,5) | 0.787 | 0.192 | 2.089 | 17.382 |
(2,7) | 0.414 | 0.048 | 1.599 | 8.225 |
(3,7) | 0.295 | 0.018 | 1.222 | 6.201 |
MLE | MPS | Bayesian | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
n | AE | MSE | L.CI | AE | MSE | L.CI | AE | MSE | L.CI | |||
0.5 | 30 | 0.0875 | 0.2002 | 1.7121 | 0.0813 | 0.2001 | 1.7009 | 0.0419 | 0.0635 | 0.8738 | ||
0.1646 | 0.2306 | 1.7411 | 0.0731 | 0.1905 | 1.6706 | 0.0400 | 0.0429 | 0.7872 | ||||
Q = 0.25 | 0.7500 | 0.0035 | 0.2262 | 0.7498 | 0.0032 | 0.2173 | 0.7359 | 0.0053 | 0.2714 | |||
0.0043 | 1.29 × | 0.0039 | 0.0041 | 9.11 × | 0.0038 | 0.0042 | 1.49 × | 0.0048 | ||||
Q = 0.35 | 0.6369 | 0.0051 | 0.2735 | 0.6489 | 0.0047 | 0.2651 | 0.6336 | 0.0078 | 0.3286 | |||
0.0021 | 2.11 × | 0.0016 | 0.0018 | 1.75 × | 0.0017 | 0.0021 | 3.09 × | 0.0021 | ||||
80 | 0.1093 | 0.1784 | 1.6000 | 0.1621 | 0.1722 | 1.5607 | 0.0177 | 0.0215 | 0.5545 | |||
0.0822 | 0.1284 | 1.3681 | 0.0518 | 0.1230 | 1.2400 | 0.0243 | 0.0203 | 0.5598 | ||||
Q = 0.25 | 0.7458 | 0.0011 | 0.1265 | 0.7494 | 0.0010 | 0.1258 | 0.7415 | 0.0014 | 0.1317 | |||
0.0040 | 3.51 × | 0.0022 | 0.0039 | 3.13 × | 0.0021 | 0.0040 | 3.84 × | 0.0022 | ||||
Q = 0.35 | 0.6423 | 0.0016 | 0.1526 | 0.6472 | 0.0015 | 0.1516 | 0.6392 | 0.0021 | 0.1612 | |||
0.0020 | 7.01 × | 0.0010 | 0.0019 | 6.27 × | 0.0010 | 0.0020 | 8.26 × | 0.0010 | ||||
150 | 0.1014 | 0.1627 | 1.5310 | 0.1412 | 0.1521 | 1.4619 | 0.0038 | 0.0068 | 0.3083 | |||
0.0627 | 0.0951 | 1.1839 | 0.0498 | 0.0910 | 1.1253 | 0.0103 | 0.0062 | 0.3008 | ||||
Q = 0.25 | 0.7472 | 0.0006 | 0.0966 | 0.7494 | 0.0006 | 0.0967 | 0.7469 | 6.11 × | 0.0940 | |||
0.0040 | 2.06 × | 0.0016 | 0.0039 | 1.93 × | 0.0016 | 0.0039 | 1.61 × | 0.0016 | ||||
Q = 0.35 | 0.6440 | 0.0009 | 0.1147 | 0.6468 | 8.65 × | 0.1146 | 0.6461 | 9.27 × | 0.1181 | |||
0.0020 | 4.39 × | 0.0008 | 0.0019 | 4.07 × | 0.0008 | 0.0019 | 3.49 × | 0.0007 | ||||
3 | 25 | 0.0128 | 0.2007 | 1.7037 | 0.0140 | 0.0135 | 0.4524 | 0.0197 | 0.0086 | 0.3640 | ||
−0.0015 | 0.2298 | 1.7140 | −0.0693 | 0.1306 | 1.3911 | −0.0178 | 0.0681 | 1.0029 | ||||
Q = 0.25 | 0.7429 | 0.0032 | 0.2212 | 0.7535 | 0.0030 | 0.2148 | 0.7390 | 0.0037 | 0.2296 | |||
0.2805 | 0.0043 | 0.2533 | 0.2671 | 0.0038 | 0.2412 | 0.2841 | 0.0049 | 0.2588 | ||||
Q = 0.35 | 0.6427 | 0.0047 | 0.2688 | 0.6562 | 0.0045 | 0.2625 | 0.6384 | 0.0054 | 0.2772 | |||
0.2851 | 0.0036 | 0.2344 | 0.2722 | 0.0033 | 0.2234 | 0.2882 | 0.0042 | 0.2387 | ||||
80 | 0.0233 | 0.0136 | 0.4482 | 0.0007 | 0.0029 | 0.2101 | 0.0067 | 0.0028 | 0.2001 | |||
−0.0012 | 0.1313 | 1.2926 | −0.0189 | 0.0360 | 0.7405 | −0.0068 | 0.0308 | 0.6843 | ||||
Q = 0.25 | 0.7475 | 0.0009 | 0.1203 | 0.7529 | 0.0009 | 0.1185 | 0.7466 | 0.0011 | 0.1252 | |||
0.2740 | 0.0012 | 0.1339 | 0.2673 | 0.0011 | 0.1318 | 0.2745 | 0.0014 | 0.1406 | ||||
Q = 0.35 | 0.6473 | 0.0014 | 0.1464 | 0.6542 | 0.0014 | 0.1457 | 0.6464 | 0.0016 | 0.1538 | |||
0.2791 | 0.0010 | 0.1257 | 0.2732 | 0.0010 | 0.1228 | 0.2800 | 0.0012 | 0.1319 | ||||
150 | 0.0034 | 0.0035 | 0.2332 | −0.0017 | 0.0018 | 0.1679 | 0.0032 | 0.0016 | 0.1496 | |||
0.0063 | 0.0746 | 1.0707 | −0.0065 | 0.0224 | 0.5869 | −0.0042 | 0.0150 | 0.4773 | ||||
Q = 0.25 | 0.7494 | 0.0006 | 0.0971 | 0.7528 | 0.0006 | 0.0961 | 0.7484 | 0.0007 | 0.0962 | |||
0.2716 | 0.0008 | 0.1083 | 0.2675 | 0.0008 | 0.1069 | 0.2724 | 0.0009 | 0.1075 | ||||
Q = 0.35 | 0.6495 | 0.0009 | 0.1189 | 0.6538 | 0.0009 | 0.1182 | 0.6484 | 0.0010 | 0.1185 | |||
0.2774 | 0.0007 | 0.1012 | 0.2736 | 0.0007 | 0.0996 | 0.2782 | 0.0008 | 0.1013 |
MLE | MPS | Bayesian | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
n | AE | MSE | L.CI | AE | MSE | L.CI | AE | MSE | L.CI | |||
0.5 | 30 | 0.0044 | 0.4520 | 2.6372 | −0.3054 | 0.4210 | 2.2450 | −0.0197 | 0.0670 | 0.9916 | ||
0.0215 | 0.1230 | 1.3740 | 0.1181 | 0.0898 | 1.0801 | 0.0240 | 0.0115 | 0.3713 | ||||
Q = 0.25 | 0.7461 | 0.0038 | 0.2451 | 0.7479 | 0.0033 | 0.2276 | 0.7375 | 0.0046 | 0.2388 | |||
0.4116 | 0.0115 | 0.4159 | 0.4015 | 0.0097 | 0.3852 | 0.4261 | 0.0140 | 0.4222 | ||||
Q = 0.35 | 0.6466 | 0.0056 | 0.2970 | 0.6508 | 0.0051 | 0.2775 | 0.6367 | 0.0065 | 0.2943 | |||
0.4372 | 0.0112 | 0.4083 | 0.4220 | 0.0095 | 0.3776 | 0.4495 | 0.0138 | 0.4233 | ||||
80 | −0.0571 | 0.2683 | 2.0189 | −0.1001 | 0.0945 | 1.1397 | −0.0118 | 0.0279 | 0.6472 | |||
0.0404 | 0.0381 | 0.7487 | 0.0270 | 0.0103 | 0.3833 | 0.0098 | 0.0029 | 0.2039 | ||||
Q = 0.25 | 0.7470 | 0.0010 | 0.1241 | 0.7505 | 0.0009 | 0.1192 | 0.7455 | 0.0011 | 0.1232 | |||
0.4056 | 0.0028 | 0.2067 | 0.3995 | 0.0027 | 0.2031 | 0.4099 | 0.0033 | 0.2120 | ||||
Q = 0.35 | 0.6472 | 0.0015 | 0.1515 | 0.6517 | 0.0014 | 0.1477 | 0.6449 | 0.0017 | 0.1532 | |||
0.4296 | 0.0027 | 0.2046 | 0.4232 | 0.0027 | 0.2019 | 0.4345 | 0.0033 | 0.2125 | ||||
150 | 0.0134 | 0.0735 | 1.0617 | −0.0557 | 0.0382 | 0.7353 | −0.0086 | 0.0117 | 0.4165 | |||
0.0038 | 0.0044 | 0.2605 | 0.0118 | 0.0028 | 0.2036 | 0.0040 | 0.0014 | 0.1387 | ||||
Q = 0.25 | 0.7493 | 0.0005 | 0.0885 | 0.7510 | 0.0005 | 0.0877 | 0.7486 | 0.0006 | 0.0927 | |||
0.4029 | 0.0015 | 0.1520 | 0.3993 | 0.0015 | 0.1506 | 0.4042 | 0.0017 | 0.1597 | ||||
Q = 0.35 | 0.6494 | 0.0008 | 0.1103 | 0.6518 | 0.0008 | 0.1095 | 0.6486 | 0.0009 | 0.1161 | |||
0.4279 | 0.0015 | 0.1521 | 0.4237 | 0.0015 | 0.1506 | 0.4290 | 0.0017 | 0.1601 | ||||
3 | 25 | 0.7823 | 3.2109 | 6.3225 | −0.1464 | 0.3771 | 2.3388 | −0.0035 | 0.0587 | 0.9477 | ||
0.0619 | 3.2238 | 7.0377 | 0.2793 | 0.6266 | 2.9050 | −0.0072 | 0.0667 | 1.0296 | ||||
Q = 0.25 | 0.7490 | 0.0031 | 0.2172 | 0.7527 | 0.0026 | 0.1984 | 0.7515 | 0.0017 | 0.1578 | |||
2.3694 | 0.3144 | 2.1952 | 2.3050 | 0.2756 | 2.0555 | 2.3288 | 0.1847 | 1.6417 | ||||
Q = 0.35 | 0.6495 | 0.0046 | 0.2665 | 0.6554 | 0.0040 | 0.2485 | 0.6528 | 0.0027 | 0.2000 | |||
2.8692 | 0.4192 | 2.5313 | 2.7668 | 0.3667 | 2.3667 | 2.8072 | 0.2489 | 1.9051 | ||||
80 | 0.3595 | 1.3131 | 4.2674 | −0.0903 | 0.1382 | 1.4145 | −0.0080 | 0.0269 | 0.6306 | |||
0.0021 | 1.2808 | 4.4386 | 0.1369 | 0.2231 | 1.7731 | −0.0052 | 0.0276 | 0.6449 | ||||
Q = 0.25 | 0.7513 | 0.0010 | 0.1262 | 0.7519 | 0.0008 | 0.1126 | 0.7519 | 0.0007 | 0.0992 | |||
2.3306 | 0.0959 | 1.2146 | 2.3116 | 0.0863 | 1.1484 | 2.3194 | 0.0739 | 1.0318 | ||||
Q = 0.35 | 0.6518 | 0.0016 | 0.1545 | 0.6532 | 0.0013 | 0.1420 | 0.6528 | 0.0011 | 0.1260 | |||
2.8178 | 0.1231 | 1.3759 | 2.7823 | 0.1157 | 1.3265 | 2.7978 | 0.1002 | 1.2029 | ||||
150 | 0.2715 | 0.9255 | 3.6196 | −0.0411 | 0.0771 | 1.0772 | −0.0064 | 0.0098 | 0.3843 | |||
0.0304 | 1.1950 | 4.2856 | 0.0627 | 0.1185 | 1.3276 | −0.0006 | 0.0108 | 0.3920 | ||||
Q = 0.25 | 0.7514 | 0.0006 | 0.0982 | 0.7515 | 0.0004 | 0.0829 | 0.7510 | 0.0003 | 0.0653 | |||
2.3255 | 0.0533 | 0.9045 | 2.3185 | 0.0465 | 0.8429 | 2.3267 | 0.0303 | 0.6728 | ||||
Q = 0.35 | 0.6519 | 0.0009 | 0.1180 | 0.6523 | 0.0007 | 0.1044 | 0.6514 | 0.0005 | 0.0825 | |||
2.8103 | 0.0657 | 1.0047 | 2.7942 | 0.0620 | 0.9720 | 2.8067 | 0.0409 | 0.7801 |
Case | MLE | MPS | Bayesian | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
n, m | AE | MSE | L.CI | AE | MSE | L.CI | AE | MSE | L.CI | ||
1 | 25, 30 | 0.0616 | 0.1473 | 1.4864 | 0.1520 | 0.1840 | 1.5742 | 0.0335 | 0.0437 | 0.7637 | |
0.1833 | 0.3414 | 2.1768 | 0.0562 | 0.2808 | 2.0675 | 0.0211 | 0.0481 | 0.8245 | |||
0.0443 | 0.0724 | 1.0414 | 0.0726 | 0.0649 | 0.9579 | 0.0079 | 0.0134 | 0.4490 | |||
0.1103 | 0.7321 | 3.3293 | −0.1033 | 0.5550 | 2.8949 | −0.0034 | 0.0622 | 0.9261 | |||
R | 0.8257 | 0.0008 | 0.1057 | 0.8188 | 0.0009 | 0.1048 | 0.8198 | 0.0026 | 0.1168 | ||
80, 70 | 0.0510 | 0.1108 | 1.2910 | 0.0995 | 0.1361 | 1.3942 | 0.0248 | 0.0156 | 0.4902 | ||
0.1207 | 0.2031 | 1.7038 | 0.0646 | 0.1908 | 1.6953 | 0.0008 | 0.0223 | 0.5705 | |||
0.0097 | 0.0211 | 0.5689 | 0.0351 | 0.0307 | 0.6739 | 0.0091 | 0.0053 | 0.2729 | |||
0.0776 | 0.2878 | 2.0828 | −0.0305 | 0.3172 | 2.2068 | −0.0074 | 0.0334 | 0.7208 | |||
R | 0.8316 | 0.0003 | 0.0692 | 0.8281 | 0.0003 | 0.0697 | 0.8300 | 0.0003 | 0.0694 | ||
150, 120 | 0.0364 | 0.0790 | 1.0937 | 0.0613 | 0.0888 | 1.1441 | 0.0034 | 0.0051 | 0.2641 | ||
0.0905 | 0.1390 | 1.4189 | 0.0609 | 0.1388 | 1.4424 | 0.0072 | 0.0071 | 0.3124 | |||
0.0146 | 0.0185 | 0.5302 | 0.0266 | 0.0235 | 0.5929 | 0.0011 | 0.0024 | 0.1825 | |||
0.0424 | 0.2233 | 1.8467 | −0.0125 | 0.2486 | 1.9558 | 0.0088 | 0.0104 | 0.4007 | |||
R | 0.8333 | 0.0002 | 0.0528 | 0.8310 | 0.0002 | 0.0534 | 0.8319 | 0.0002 | 0.0459 | ||
2 | 25, 30 | 0.0439 | 0.1438 | 1.4778 | 0.1211 | 0.1711 | 1.5518 | 0.0366 | 0.0404 | 0.7013 | |
0.1944 | 0.3157 | 2.0686 | 0.0782 | 0.2577 | 1.9680 | 0.0241 | 0.0491 | 0.8161 | |||
0.2202 | 0.5042 | 2.6489 | −0.1283 | 0.2027 | 1.6934 | −0.0028 | 0.0540 | 0.8770 | |||
−0.0569 | 0.4444 | 2.6064 | 0.1952 | 0.3302 | 2.1209 | 0.0008 | 0.0512 | 0.8629 | |||
R | 0.9413 | 0.0006 | 0.0964 | 0.9350 | 0.0009 | 0.1055 | 0.9419 | 0.0014 | 0.0843 | ||
80, 70 | 0.0483 | 0.1344 | 1.4775 | 0.1200 | 0.1689 | 1.5422 | 0.0326 | 0.0373 | 0.6871 | ||
0.1839 | 0.3006 | 2.0270 | 0.0759 | 0.2500 | 1.9394 | 0.0248 | 0.0469 | 0.8096 | |||
0.2154 | 0.4842 | 2.5963 | −0.1161 | 0.1949 | 1.6714 | −0.0023 | 0.0509 | 0.8596 | |||
−0.0524 | 0.4238 | 2.5462 | 0.1866 | 0.3088 | 2.0538 | 0.0008 | 0.0469 | 0.8333 | |||
R | 0.9420 | 0.0006 | 0.0915 | 0.9362 | 0.0008 | 0.0996 | 0.9423 | 0.0013 | 0.0827 | ||
150, 120 | 0.0203 | 0.0837 | 1.1326 | 0.0384 | 0.0833 | 1.1222 | 0.0276 | 0.0364 | 0.6734 | ||
0.1220 | 0.1737 | 1.5636 | 0.0861 | 0.1475 | 1.4688 | 0.0382 | 0.0469 | 0.8254 | |||
0.0302 | 0.0668 | 1.0074 | −0.1569 | 0.2685 | 1.9378 | 0.0046 | 0.0487 | 0.8573 | |||
−0.0076 | 0.0753 | 1.0761 | 0.2513 | 0.4349 | 2.3923 | −0.0051 | 0.0533 | 0.8637 | |||
R | 0.9456 | 0.0001 | 0.0351 | 0.9436 | 0.0001 | 0.0364 | 0.9495 | 0.0001 | 0.0314 |
Case | MLE | MPS | Bayesian | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
n, m | AE | MSE | L.CI | AE | MSE | L.CI | AE | MSE | L.CI | ||
3 | 25, 30 | 0.7656 | 3.1827 | 6.3231 | 0.0110 | 0.7518 | 3.4021 | 0.0212 | 0.0454 | 0.8269 | |
0.1439 | 1.7960 | 5.2283 | 0.2880 | 0.7248 | 3.1438 | −0.0114 | 0.0521 | 0.8734 | |||
0.9499 | 4.4971 | 7.4397 | −0.0677 | 0.5883 | 2.9978 | 0.0097 | 0.0520 | 0.8664 | |||
0.1369 | 3.2851 | 7.0917 | 0.3426 | 1.0036 | 3.6939 | −0.0015 | 0.0648 | 0.9911 | |||
R | 0.7228 | 0.0037 | 0.2406 | 0.7202 | 0.0036 | 0.2337 | 0.7198 | 0.0034 | 0.2146 | ||
80, 70 | 0.3765 | 1.3337 | 4.2840 | 0.0197 | 0.3368 | 2.2759 | 0.0025 | 0.0171 | 0.4865 | ||
0.0930 | 0.9049 | 3.7147 | 0.1322 | 0.3505 | 2.2643 | 0.0035 | 0.0202 | 0.5197 | |||
0.3805 | 1.4584 | 4.4973 | −0.0547 | 0.3464 | 2.2996 | 0.0025 | 0.0249 | 0.6042 | |||
0.0725 | 1.2650 | 4.4042 | 0.2302 | 0.5551 | 2.7805 | −0.0022 | 0.0294 | 0.6962 | |||
R | 0.7256 | 0.0013 | 0.1402 | 0.7219 | 0.0012 | 0.1354 | 0.7202 | 0.0013 | 0.1402 | ||
150, 120 | 0.2757 | 0.9253 | 3.6162 | 0.0430 | 0.2072 | 1.7780 | 0.0036 | 0.0088 | 0.3603 | ||
0.0914 | 0.7308 | 3.3352 | 0.0487 | 0.1931 | 1.7136 | −0.0055 | 0.0083 | 0.3559 | |||
0.3190 | 1.1487 | 4.0149 | −0.0215 | 0.2164 | 1.8236 | 0.0057 | 0.0095 | 0.3781 | |||
0.0404 | 1.0387 | 3.9961 | 0.1224 | 0.3149 | 2.1490 | −0.0092 | 0.0106 | 0.4029 | |||
R | 0.7243 | 0.0008 | 0.1076 | 0.7217 | 0.0007 | 0.1031 | 0.7218 | 0.0006 | 0.0964 | ||
4 | 25, 30 | 0.0873 | 0.1165 | 1.2946 | 0.1136 | 0.1002 | 1.1594 | 0.0204 | 0.0163 | 0.4498 | |
0.0713 | 1.1009 | 4.1077 | −0.1877 | 0.8136 | 3.4619 | −0.0133 | 0.0745 | 0.9809 | |||
0.5909 | 2.0654 | 5.1406 | −0.0731 | 0.4676 | 2.6679 | −0.0043 | 0.0520 | 0.8618 | |||
−0.0785 | 1.3511 | 4.5506 | 0.2558 | 0.6836 | 3.0852 | 0.0041 | 0.0580 | 0.9599 | |||
R | 0.9248 | 0.0005 | 0.0878 | 0.9246 | 0.0005 | 0.0888 | 0.9207 | 0.0009 | 0.0962 | ||
80, 70 | 0.0788 | 0.0696 | 0.9878 | 0.0535 | 0.0363 | 0.7175 | 0.0081 | 0.0040 | 0.2443 | ||
−0.0753 | 0.6112 | 3.0534 | −0.1039 | 0.3955 | 2.4339 | −0.0091 | 0.0302 | 0.6873 | |||
0.2045 | 0.5337 | 2.7519 | −0.0618 | 0.2220 | 1.8330 | −0.0037 | 0.0227 | 0.5760 | |||
−0.0210 | 0.4744 | 2.7013 | 0.1593 | 0.3110 | 2.0972 | −0.0036 | 0.0235 | 0.5869 | |||
R | 0.9266 | 0.0002 | 0.0554 | 0.9259 | 0.0002 | 0.0557 | 0.9245 | 0.0002 | 0.0552 | ||
150, 120 | 0.0477 | 0.0317 | 0.6736 | 0.0271 | 0.0158 | 0.4820 | 0.0040 | 0.0020 | 0.1743 | ||
−0.0626 | 0.3421 | 2.2817 | −0.0505 | 0.2179 | 1.8211 | 0.0010 | 0.0113 | 0.4141 | |||
0.0683 | 0.2062 | 1.7614 | −0.0761 | 0.1350 | 1.4107 | 0.0043 | 0.0095 | 0.3757 | |||
0.0123 | 0.2282 | 1.8738 | 0.1348 | 0.1905 | 1.6290 | −0.0017 | 0.0111 | 0.4077 | |||
R | 0.9260 | 0.0001 | 0.0419 | 0.9257 | 0.0001 | 0.0421 | 0.9258 | 0.0001 | 0.0395 |
Estimation | SE | KS | CVM | AD | AIC | BIC | ||
---|---|---|---|---|---|---|---|---|
ITL | 2.0225 | 0.2384 | 0.2989 | 0.0942 | 0.6663 | 229.6917 | 231.9684 | |
NEITL | 60.9983 | 19.8002 | 0.0902 | 0.0776 | 0.4946 | 193.1635 | 197.7168 | |
0.0299 | 0.0549 | |||||||
EL | 3.7415 | 0.8152 | 0.0978 | 0.0766 | 0.4949 | 195.2402 | 202.0702 | |
37.0309 | 60.7818 | |||||||
31.2893 | 54.2759 | |||||||
ExEx | 15.4717 | 20.7674 | 0.2194 | 0.2209 | 1.2910 | 210.8807 | 215.4340 | |
0.0240 | 0.0334 | |||||||
W | 1.8173 | 0.1583 | 0.7439 | 0.0865 | 0.5852 | 195.8812 | 200.4345 | |
0.2856 | 0.0544 | |||||||
KW | 0.7474 | 0.6138 | 0.0917 | 0.0878 | 0.5351 | 196.6326 | 205.7393 | |
0.9899 | 1.0882 | |||||||
3.0474 | 3.9283 | |||||||
1.7871 | 6.0095 | |||||||
MKITL | 1.4212 | 0.1359 | 0.1015 | 0.1272 | 0.7577 | 194.5589 | 199.1122 | |
1.1937 | 0.0725 | |||||||
OWITL | 1.8048 | 0.2146 | 0.0969 | 0.0873 | 0.5415 | 195.0995 | 201.9295 | |
25.9044 | 64.9941 | |||||||
0.2721 | 0.3106 |
Estimation | SE | KS | CVM | AD | AIC | BIC | ||
---|---|---|---|---|---|---|---|---|
ITL | 1.5750 | 0.4981 | 0.3141 | 0.0984 | 0.5089 | 41.4301 | 41.7327 | |
NEITL | 0.4244 | 0.4225 | 0.2129 | 0.0924 | 0.4806 | 41.4921 | 42.0973 | |
5.6463 | 5.1060 | |||||||
EL | 2.6559 | 2.0932 | 0.2181 | 0.0928 | 0.4831 | 43.5499 | 44.4577 | |
3.4714 | 4.0843 | |||||||
3.4753 | 6.7246 | |||||||
ExEx | 1.0925 | 0.7304 | 0.2348 | 0.1133 | 0.6265 | 43.3593 | 43.9644 | |
0.3309 | 0.3558 | |||||||
W | 1.1585 | 0.2641 | 0.5557 | 0.0968 | 0.5082 | 42.9958 | 43.6010 | |
0.3042 | 0.1512 | |||||||
KW | 1.7884 | 2.5890 | 0.2187 | 0.0959 | 0.4999 | 45.6162 | 46.8265 | |
0.4544 | 1.7933 | |||||||
8.9793 | 52.9562 | |||||||
1.3099 | 10.1035 | |||||||
KITL | 1.5511 | 0.5350 | 0.2242 | 0.0944 | 0.4895 | 43.5807 | 44.4885 | |
10.1497 | 9.1324 | |||||||
0.3556 | 1.1931 | |||||||
MKITL | 1.0353 | 0.2709 | 0.2523 | 0.1036 | 0.5577 | 42.1597 | 42.7649 | |
0.9040 | 0.1948 | |||||||
OWITL | 1.3963 | 0.3356 | 0.2173 | 0.0943 | 0.4919 | 43.5921 | 44.4998 | |
55.1455 | 193.5675 | |||||||
0.0780 | 0.1781 |
Estimates | SE | KS | CVM | AD | AIC | BIC | ||
---|---|---|---|---|---|---|---|---|
ITL | 2.0929 | 0.6618 | 0.2130 | 0.0520 | 0.2973 | 32.7512 | 33.0537 | |
NEITL | 0.8260 | 1.5968 | 0.2018 | 0.0405 | 0.2400 | 31.6464 | 32.2516 | |
3.8521 | 8.1014 | |||||||
EL | 7.0316 | 22.8576 | 0.2174 | 0.0527 | 0.2983 | 33.3300 | 34.2377 | |
3.1443 | 7.0486 | |||||||
1.1988 | 6.2228 | |||||||
ExEx | 6.3206 | 23.1429 | 0.1789 | 0.0621 | 0.4414 | 33.7072 | 34.3124 | |
0.0589 | 0.2375 | |||||||
W | 1.5527 | 0.3675 | 0.7012 | 0.0505 | 0.3002 | 32.4143 | 33.0195 | |
0.3519 | 0.1683 | |||||||
KW | 7.7574 | 0.0025 | 0.2124 | 0.0411 | 0.2415 | 33.5910 | 34.8013 | |
0.9910 | 0.0025 | |||||||
70.4798 | 59.0513 | |||||||
0.1124 | 0.0366 | |||||||
KITL | 6.3918 | 26.4265 | 0.2233 | 0.0501 | 0.2878 | 33.0906 | 33.9984 | |
0.2378 | 0.8625 | |||||||
12.4011 | 40.8768 |
MLE | MPS | Bayesian | |||||||
---|---|---|---|---|---|---|---|---|---|
Estimates | SE | R | Estimates | SE | R | Estimates | SE | R | |
0.4246 | 0.4226 | 0.6123 | 0.4143 | 0.4163 | 0.6345 | 0.5423 | 0.3812 | 0.6743 | |
5.6440 | 5.1041 | 5.4284 | 4.9402 | 6.6363 | 4.5001 | ||||
0.8312 | 1.6372 | 0.8312 | 1.2626 | 1.1196 | 0.8512 | ||||
3.8267 | 8.2125 | 3.8267 | 7.4954 | 4.8956 | 3.8509 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Metwally, A.S.M.; Hassan, A.S.; Almetwally, E.M.; Kibria, B.M.G.; Almongy, H.M. Reliability Analysis of the New Exponential Inverted Topp–Leone Distribution with Applications. Entropy 2021, 23, 1662. https://doi.org/10.3390/e23121662
Metwally ASM, Hassan AS, Almetwally EM, Kibria BMG, Almongy HM. Reliability Analysis of the New Exponential Inverted Topp–Leone Distribution with Applications. Entropy. 2021; 23(12):1662. https://doi.org/10.3390/e23121662
Chicago/Turabian StyleMetwally, Ahmed Sayed M., Amal S. Hassan, Ehab M. Almetwally, B M Golam Kibria, and Hisham M. Almongy. 2021. "Reliability Analysis of the New Exponential Inverted Topp–Leone Distribution with Applications" Entropy 23, no. 12: 1662. https://doi.org/10.3390/e23121662
APA StyleMetwally, A. S. M., Hassan, A. S., Almetwally, E. M., Kibria, B. M. G., & Almongy, H. M. (2021). Reliability Analysis of the New Exponential Inverted Topp–Leone Distribution with Applications. Entropy, 23(12), 1662. https://doi.org/10.3390/e23121662