Pairwise Elastic Net Representation-Based Classification for Hyperspectral Image Classification
<p>Indian Pines dataset. (<b>a</b>) composite color image. (<b>b</b>,<b>c</b>) ground truth.</p> "> Figure 2
<p>Pavia Center dataset. (<b>a</b>) Composite color image. (<b>b</b>,<b>c</b>) Ground truth.</p> "> Figure 3
<p>Pavia University dataset. (<b>a</b>) Ccomposite color image. (<b>b</b>,<b>c</b>) Ground truth.</p> "> Figure 4
<p>Effects of the number of adaptive dictionary atoms <span class="html-italic">K</span> and balancing parameter <math display="inline"><semantics> <mi>λ</mi> </semantics></math>. (<b>a</b>) Indian Pines dataset, (<b>b</b>) Pavia Center dataset and (<b>c</b>) Pavia University dataset.</p> "> Figure 5
<p>Classification performance for different numbers of training samples per class. (<b>a</b>) Indian Pines dataset, (<b>b</b>) Pavia Center dataset and (<b>c</b>) Pavia University dataset.</p> ">
Abstract
:1. Introduction
2. Related Works
2.1. Sparse Representation for HSI Classification
2.2. Collaborative Representation for HSI Classification
3. Proposed PENRC
Algorithm 1 the Proposed PEN Algorithm |
Input: (1) , the training set. (2) K, . Procedure: |
3.1. Local Adaptive Dictionary
3.2. Pairwise Elastic Net Representation Based Classification
3.3. Coordinate Descent
4. Results
4.1. Data Set
4.2. Parameter Analysis
4.3. Comparisons with Other Approaches
4.4. Computational Complexity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HSI | Hyperspectral Image |
SR | Sparse Representation |
CR | Collaborative Representation |
PENRC | Pairwise Elastic Bet Representation Based Classification |
J-PENRC | Joint-Pairwise Elastic Bet Representation Based Classification |
SVM | Support Vector Machine |
GMM | Gaussian Mixture-Model |
MLC | Maximum-Likelihood Classifier |
SRC | Sparse Representation Classification |
CRC | Collaborative Representation Classification |
JSRC | Joint Sparse Representation Classification |
NRS | Nearest Regularized Subspace |
cdSRC | Class-dependent Sparse |
KCRC | Kernel-Based CRC |
NJCRC | Nonlocal Joint Collaborative Representation |
K-NN | K-Nearest Neighbor |
SAJSRC | Shape Adaptive Joint Sparse Representation |
FRC | Fused Representation-Based Classification |
ENRC | Elastic Net Representation Based Classification |
PEN | Pairwise Elastic Net |
SA | Shape Adaptive |
QP | Quadratic Program |
WINN-JSR | Joint Nearest Neighbor and Sparse Representation |
References
- Bykov, A.; Zherebtsov, E.; Dremin, V.; Popov, A.; Doronin, A.; Meglinski, I. Hyperspecral Skin Imaging with Artificial Neural Networks Validated by Optical Biotissue Phantoms. In Proceedings of the Computational Optical Sensing and Imaging, Munich, Germany, 24–27 June 2019; Optical Society of America: Washington, DC, USA, 2019; p. CW1A–3. [Google Scholar]
- Keshava, N. Distance metrics and band selection in hyperspectral processing with applications to material identification and spectral libraries. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1552–1565. [Google Scholar] [CrossRef]
- Bishop, C.A.; Liu, J.G.; Mason, P.J. Hyperspectral remote sensing for mineral exploration in Pulang, Yunnan Province, China. Int. J. Remote Sens. 2011, 32, 2409–2426. [Google Scholar] [CrossRef]
- Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778–1790. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Prasad, S.; Fowler, J.E. Decision fusion in kernel-induced spaces for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2013, 52, 3399–3411. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Prasad, S.; Fowler, J.E.; Bruce, L.M. Locality-preserving dimensionality reduction and classification for hyperspectral image analysis. IEEE Trans. Geosci. Remote Sens. 2011, 50, 1185–1198. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Ma, Y.; Dai, X.; Li, H.; Mei, X.; Ma, J. Locality-constrained sparse representation for hyperspectral image classification. Inf. Sci. 2021, 546, 858–870. [Google Scholar] [CrossRef]
- Dian, R.; Li, S.; Fang, L. Learning a low tensor-train rank representation for hyperspectral image super-resolution. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 2672–2683. [Google Scholar] [CrossRef]
- Dong, W.; Wang, H.; Wu, F.; Shi, G.; Li, X. Deep spatial–spectral representation learning for hyperspectral image denoising. IEEE Trans. Comput. Imaging 2019, 5, 635–648. [Google Scholar] [CrossRef]
- Sellami, A.; Dupé, F.X.; Cagna, B.; Kadri, H.; Ayache, S.; Artières, T.; Takerkart, S. Mapping individual differences in cortical architecture using multi-view representation learning. In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–8. [Google Scholar]
- Ghamisi, P.; Maggiori, E.; Li, S.; Souza, R.; Tarablaka, Y.; Moser, G.; De Giorgi, A.; Fang, L.; Chen, Y.; Chi, M.; et al. New frontiers in spectral-spatial hyperspectral image classification: The latest advances based on mathematical morphology, Markov random fields, segmentation, sparse representation, and deep learning. IEEE Geosci. Remote Sens. Mag. 2018, 6, 10–43. [Google Scholar] [CrossRef]
- Sellami, A.; Farah, I. Spectra-spatial graph-based deep restricted boltzmann networks for hyperspectral image classification. In Proceedings of the 2019 PhotonIcs & Electromagnetics Research Symposium-Spring (PIERS-Spring), Rome, Italy, 17–20 June 2019; pp. 1055–1062. [Google Scholar]
- Mei, X.; Pan, E.; Ma, Y.; Dai, X.; Huang, J.; Fan, F.; Du, Q.; Zheng, H.; Ma, J. Spectral-spatial attention networks for hyperspectral image classification. Remote Sens. 2019, 11, 963. [Google Scholar] [CrossRef] [Green Version]
- Lei, Z.; Zeng, Y.; Liu, P.; Su, X. Active deep learning for hyperspectral image classification with uncertainty learning. IEEE Geosci. Remote Sens. Lett. 2021. [Google Scholar] [CrossRef]
- Li, C.; Ma, Y.; Mei, X.; Liu, C.; Ma, J. Hyperspectral image classification with robust sparse representation. IEEE Geosci. Remote Sens. Lett. 2016, 13, 641–645. [Google Scholar] [CrossRef]
- Jia, S.; Deng, X.; Zhu, J.; Xu, M.; Zhou, J.; Jia, X. Collaborative representation-based multiscale superpixel fusion for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7770–7784. [Google Scholar] [CrossRef]
- Chen, Y.; Nasrabadi, N.M.; Tran, T.D. Hyperspectral image classification using dictionary-based sparse representation. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3973–3985. [Google Scholar] [CrossRef]
- Li, W.; Tramel, E.W.; Prasad, S.; Fowler, J.E. Nearest regularized subspace for hyperspectral classification. IEEE Trans. Geosci. Remote Sens. 2013, 52, 477–489. [Google Scholar] [CrossRef] [Green Version]
- Cui, M.; Prasad, S. Class-dependent sparse representation classifier for robust hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2014, 53, 2683–2695. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, M.; Feng, X. Sparse representation or collaborative representation: Which helps face recognition? In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 471–478. [Google Scholar]
- Li, W.; Du, Q. Joint within-class collaborative representation for hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2200–2208. [Google Scholar] [CrossRef]
- Li, W.; Du, Q.; Xiong, M. Kernel collaborative representation with Tikhonov regularization for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2014, 12, 48–52. [Google Scholar]
- Li, J.; Zhang, H.; Huang, Y.; Zhang, L. Hyperspectral image classification by nonlocal joint collaborative representation with a locally adaptive dictionary. IEEE Trans. Geosci. Remote Sens. 2013, 52, 3707–3719. [Google Scholar] [CrossRef]
- Fu, W.; Li, S.; Fang, L.; Kang, X.; Benediktsson, J.A. Hyperspectral image classification via shape-adaptive joint sparse representation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 9, 556–567. [Google Scholar] [CrossRef]
- Li, W.; Du, Q.; Zhang, F.; Hu, W. Hyperspectral image classification by fusing collaborative and sparse representations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4178–4187. [Google Scholar] [CrossRef]
- Hui, Z.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. 2005, 67, 768. [Google Scholar]
- Lorbert, A.; Eis, D.; Kostina, V.; Blei, D.; Ramadge, P. Exploiting covariate similarity in sparse regression via the pairwise elastic net. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 13–15 May 2010; pp. 477–484. [Google Scholar]
- Chen, S.; Donoho, D. Basis pursuit. In Proceedings of the 1994 28th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 31 October–2 November 1994; Volume 1, pp. 41–44. [Google Scholar]
- Gill, P.R.; Wang, A.; Molnar, A. The in-crowd algorithm for fast basis pursuit denoising. IEEE Trans. Signal Process. 2011, 59, 4595–4605. [Google Scholar] [CrossRef]
- Mallat, S.G.; Zhang, Z. Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 1993, 41, 3397–3415. [Google Scholar] [CrossRef] [Green Version]
- Bioucas-Dias, J.M.; Plaza, A.; Dobigeon, N.; Parente, M.; Du, Q.; Gader, P.; Chanussot, J. Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 354–379. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Zhang, H.; Pižurica, A. A robust sparse representation model for hyperspectral image classification. Sensors 2017, 17, 2087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, L.; Li, S.; Kang, X.; Benediktsson, J.A. Spectral–spatial hyperspectral image classification via multiscale adaptive sparse representation. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7738–7749. [Google Scholar] [CrossRef]
- Bandos, T.V.; Bruzzone, L.; Camps-Valls, G. Classification of hyperspectral images with regularized linear discriminant analysis. IEEE Trans. Geosci. Remote Sens. 2009, 47, 862–873. [Google Scholar] [CrossRef]
- Friedman, J.; Hastie, T.; Höfling, H.; Tibshirani, R. Pathwise coordinate optimization. Ann. Appl. Stat. 2007, 1, 302–332. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Crawford, M.M.; Tian, J. Local manifold learning-based k-nearest-neighbor for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2010, 48, 4099–4109. [Google Scholar] [CrossRef]
- Tu, B.; Huang, S.; Fang, L.; Zhang, G.; Wang, J.; Zheng, B. Hyperspectral image classification via weighted joint nearest neighbor and sparse representation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 4063–4075. [Google Scholar] [CrossRef]
- Gualtieri, J.A.; Cromp, R. Support vector machines for hyperspectral remote sensing classification. In Proceedings of the 27th AIPR Workshop: Advances in Computer-Assisted Recognition, Washington, DC, USA, 14–16 October 1999; International Society for Optics and Photonics: Bellingham, WA, USA, 1999; Volume 3584, pp. 221–232. [Google Scholar]
- Ma, Y.; Zhang, Y.; Mei, X.; Dai, X.; Ma, J. Multifeature-Based Discriminative Label Consistent K-SVD for Hyperspectral Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 4995–5008. [Google Scholar] [CrossRef]
- Richards, J.A.; Richards, J. Remote Sensing Digital Image Analysis; Springer: Berlin/Heidelberg, Germany, 1999; Volume 3. [Google Scholar]
Indian Pines | Pavia Center | Pavia University | |||||||
---|---|---|---|---|---|---|---|---|---|
No. | Name of Class | Traning | Testing | Name of Class | Traning | Testing | Name of Class | Traning | Testing |
1 | Corn-notill | 142 | 1286 | Water | 100 | 2500 | Asphalt | 100 | 800 |
2 | Corn-mintill | 83 | 747 | Trees | 100 | 2500 | Meadows | 100 | 800 |
3 | Grass-pasture | 49 | 434 | Meadow | 100 | 2500 | Gravel | 100 | 800 |
4 | Grass-trees | 73 | 657 | Self-Blocking Bricks | 100 | 2500 | Trees | 100 | 800 |
5 | Hay-windrowed | 48 | 430 | Bare Soil | 100 | 2500 | Painted mental sheets | 100 | 800 |
6 | Soybean-notill | 98 | 874 | Asphalt | 100 | 2500 | Bare Soil | 100 | 800 |
7 | Soybean-mintill | 246 | 2209 | Bitumen | 100 | 2500 | Bitumen | 100 | 800 |
8 | Soybean-clean | 60 | 533 | Tile | 100 | 2500 | Self-Blocking Bricks | 100 | 800 |
9 | Woods | 127 | 1138 | Shadows | 100 | 2500 | Shadows | 100 | 800 |
No. | KNN | SRC | CRC | FRC | ENRC | NRS | PENRC | SA-JSR | WJNN-JSR | J-PENRC |
---|---|---|---|---|---|---|---|---|---|---|
1 | 58.44 | 59.48 | 66.49 | 64.03 | 57.69 | 78.44 | 91.60 | 94.16 | ||
2 | 54.69 | 62.28 | 63.39 | 64.73 | 67.38 | 78.12 | 86.75 | 92.50 | ||
3 | 95.00 | 90.38 | 96.54 | 97.96 | 93.09 | 63.78 | 94.01 | 99.77 | ||
4 | 96.70 | 98.97 | 96.70 | 93.91 | 99.46 | 89.96 | ||||
5 | 98.44 | 99.22 | 99.22 | 98.18 | 98.62 | |||||
6 | 62.68 | 65.33 | 38.10 | 52.87 | 70.16 | 70.30 | 93.59 | 94.17 | ||
7 | 79.20 | 78.21 | 90.42 | 90.65 | 82.11 | 69.57 | 95.25 | 95.97 | ||
8 | 51.72 | 51.72 | 41.38 | 52.66 | 59.60 | 58.45 | 91.18 | 92.32 | ||
9 | 93.41 | 94.00 | 98.83 | 95.46 | 96.60 | 98.05 | 97.89 | 98.33 | ||
OA (%) | 75.55 | 76.31 | 78.06 | 80.25 | 79.16 | 86.09 | 94.40 | 96.00 | ||
AA (%) | 76.90 | 77.65 | 77.65 | 79.80 | 80.62 | 80.93 | 94.47 | 96.36 | ||
71.27 | 72.14 | 72.14 | 76.54 | 75.57 | 82.39 | 93.42 | 95.31 |
No. | KNN | SRC | CRC | FRC | ENRC | NRS | PENRC | SA-JSR | WJNN-JSR | J-PENRC |
---|---|---|---|---|---|---|---|---|---|---|
1 | 99.11 | 99.67 | 99.67 | 100 | 99.81 | 100 | 100 | 100 | 100 | 100 |
2 | 89.56 | 76.37 | 82.33 | 84.17 | 79.67 | 91.85 | 89.17 | 93.67 | 87.11 | 94.67 |
3 | 87.89 | 90.21 | 88.00 | 86.31 | 92.33 | 87.67 | 99.67 | 98.72 | 95.51 | 99.33 |
4 | 84.33 | 79.32 | 24.56 | 87.42 | 80.17 | 76.29 | 93.16 | 99.82 | 96.60 | 97.31 |
5 | 88.89 | 89.50 | 67.50 | 84.50 | 89.67 | 85.26 | 96.09 | 99.00 | 81.83 | 93.08 |
6 | 88.11 | 77.83 | 97.67 | 79.67 | 76.85 | 97.31 | 80.73 | 68.67 | 97.52 | 99.41 |
7 | 86.44 | 88.81 | 86.10 | 84.43 | 88.23 | 83.83 | 94.25 | 96.83 | 85.14 | 97.28 |
8 | 95.33 | 97.01 | 99.03 | 97.21 | 98.15 | 99.50 | 99.50 | 95.04 | 96.83 | 99.60 |
9 | 100 | 93.00 | 82.33 | 93.42 | 95.50 | 99.50 | 94.62 | 99.71 | 100 | 100 |
OA(%) | 91.07 | 87.06 | 80.19 | 88.56 | 88.93 | 91.24 | 94.11 | 94.83 | 92.97 | 97.78 |
AA(%) | 91.07 | 87.06 | 80.19 | 88.56 | 88.93 | 91.24 | 94.11 | 94.83 | 92.97 | 97.78 |
Kappa | 89.96 | 86.46 | 78.15 | 87.13 | 87.54 | 90.51 | 93.38 | 94.19 | 92.14 | 97.50 |
No. | KNN | SRC | CRC | FRC | ENRC | NRS | PENRC | SA-JSR | WJNN-JSR | J-PENRC |
---|---|---|---|---|---|---|---|---|---|---|
1 | 70.83 | 57.67 | 36.00 | 56.83 | 60.67 | 91.17 | 72.00 | 94.16 | 70.00 | 87.00 |
2 | 70.33 | 78.00 | 75.00 | 80.17 | 68.50 | 71.00 | 97.33 | 92.50 | 81.33 | 100 |
3 | 69.67 | 72.83 | 92.67 | 67.33 | 73.33 | 77.50 | 97.00 | 98.59 | 82.00 | 98.67 |
4 | 88.67 | 89.50 | 96.67 | 94.33 | 92.00 | 95.33 | 93.83 | 100 | 96.73 | 97.13 |
5 | 98.50 | 99.50 | 100 | 99.83 | 99.27 | 99.17 | 99.67 | 100 | 99.83 | 100 |
6 | 66.33 | 65.17 | 57.33 | 64.00 | 68.33 | 83.00 | 95.83 | 94.17 | 85.83 | 97.00 |
7 | 85.50 | 87.00 | 92.17 | 85.83 | 87.00 | 86.50 | 99.17 | 95.97 | 95.00 | 99.00 |
8 | 66.83 | 67.83 | 20.17 | 72.00 | 69.00 | 64.50 | 86.83 | 92.32 | 80.17 | 94.33 |
9 | 100 | 94.95 | 93.33 | 97.33 | 98.17 | 99.67 | 97.83 | 98.33 | 99.83 | 100 |
OA(%) | 79.63 | 79.14 | 73.70 | 79.74 | 79.57 | 85.31 | 93.28 | 96.00 | 87.81 | 96.69 |
AA(%) | 79.63 | 79.14 | 73.70 | 79.74 | 79.57 | 85.31 | 93.28 | 96.00 | 87.81 | 96.69 |
Kappa | 77.08 | 76.31 | 70.42 | 77.21 | 77.02 | 83.48 | 92.44 | 95.31 | 86.29 | 96.17 |
With/Without LAD | Running Time (s) | Overall Accuracy | |
---|---|---|---|
ENRC | - | 32.53 | 79.16 |
PENRC | ✕ | 3472.68 | 85.44 |
✓ | 72.35 | 87.70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Zhang, Y.; Ma, Y.; Mei, X.; Zeng, S.; Li, Y. Pairwise Elastic Net Representation-Based Classification for Hyperspectral Image Classification. Entropy 2021, 23, 956. https://doi.org/10.3390/e23080956
Li H, Zhang Y, Ma Y, Mei X, Zeng S, Li Y. Pairwise Elastic Net Representation-Based Classification for Hyperspectral Image Classification. Entropy. 2021; 23(8):956. https://doi.org/10.3390/e23080956
Chicago/Turabian StyleLi, Hao, Yuanshu Zhang, Yong Ma, Xiaoguang Mei, Shan Zeng, and Yaqin Li. 2021. "Pairwise Elastic Net Representation-Based Classification for Hyperspectral Image Classification" Entropy 23, no. 8: 956. https://doi.org/10.3390/e23080956
APA StyleLi, H., Zhang, Y., Ma, Y., Mei, X., Zeng, S., & Li, Y. (2021). Pairwise Elastic Net Representation-Based Classification for Hyperspectral Image Classification. Entropy, 23(8), 956. https://doi.org/10.3390/e23080956