Uniform Manifold Approximation and Projection Analysis of Soccer Players
<p>Histograms characterizing the FIFA 2021 dataset according to the attributes: (<b>a</b>) <tt>age</tt>; (<b>b</b>) <math display="inline"><semantics> <mrow> <mo form="prefix">ln</mo> <mo>(</mo> <mi mathvariant="monospace">value</mi> <mo>_</mo> <mi mathvariant="monospace">eur</mi> <mo>)</mo> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mrow> <mo form="prefix">ln</mo> <mo>(</mo> <mi mathvariant="monospace">wage</mi> <mo>_</mo> <mi mathvariant="monospace">eur</mi> <mo>)</mo> </mrow> </semantics></math>; (<b>d</b>) <math display="inline"><semantics> <mrow> <mo form="prefix">ln</mo> <mo>(</mo> <mi mathvariant="monospace">release</mi> <mo>_</mo> <mi mathvariant="monospace">clause</mi> <mo>_</mo> <mi mathvariant="monospace">eur</mi> <mo>)</mo> </mrow> </semantics></math>.</p> "> Figure 2
<p>Box plots characterizing the attributes of {Goalkeepers, Defenders, Centre Midfielders, Wingers, Strikers} in the FIFA 2021 dataset.</p> "> Figure 3
<p>The attributes <math display="inline"><semantics> <mrow> <mo form="prefix">ln</mo> <mo>(</mo> <mi mathvariant="monospace">value</mi> <mo>_</mo> <mi mathvariant="monospace">eur</mi> <mo>)</mo> </mrow> </semantics></math> and <tt>potential</tt> versus age of Goalkeepers and Strikers (FIFA 2021 dataset).</p> "> Figure 4
<p>Attribute ratings of Goalkeepers and Strikers (FIFA 2021 dataset).</p> "> Figure 5
<p>The 3D loci of players in the FIFA 2021 dataset obtained by the UMAP with the distances: (<b>a</b>) <math display="inline"><semantics> <msup> <mi>d</mi> <mrow> <mi>A</mi> <mi>r</mi> </mrow> </msup> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <msup> <mi>d</mi> <mrow> <mi>C</mi> <mi>a</mi> </mrow> </msup> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <msup> <mi>d</mi> <mrow> <mi>C</mi> <mi>o</mi> </mrow> </msup> </semantics></math>; (<b>d</b>) <math display="inline"><semantics> <msup> <mi>d</mi> <mrow> <mi>L</mi> <mi>o</mi> </mrow> </msup> </semantics></math>.</p> "> Figure 6
<p>The 3D loci obtained by the UMAP with the Canberra distance <math display="inline"><semantics> <msup> <mi>d</mi> <mrow> <mi>C</mi> <mi>a</mi> </mrow> </msup> </semantics></math> for the FIFA 2021 dataset. The colormap is proportional to the attributes: (<b>a</b>) <math display="inline"><semantics> <mrow> <mo form="prefix">ln</mo> <mo>(</mo> <mi mathvariant="monospace">overall</mi> <mo>)</mo> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <mo form="prefix">ln</mo> <mo>(</mo> <mi mathvariant="monospace">value</mi> <mo>_</mo> <mi mathvariant="monospace">eur</mi> <mo>)</mo> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mrow> <mo form="prefix">ln</mo> <mo>(</mo> <mi mathvariant="monospace">wage</mi> <mo>_</mo> <mi mathvariant="monospace">eur</mi> <mo>)</mo> </mrow> </semantics></math>; (<b>d</b>) <math display="inline"><semantics> <mrow> <mo form="prefix">ln</mo> <mo>(</mo> <mi mathvariant="monospace">release</mi> <mo>_</mo> <mi mathvariant="monospace">clause</mi> <mo>_</mo> <mi mathvariant="monospace">eur</mi> <mo>)</mo> </mrow> </semantics></math>.</p> "> Figure 7
<p>The 3D loci of players in the groups {Defenders, Centre Midfielders, Wingers, Strikers} the FIFA 2021 dataset obtained by the UMAP with the distances: (<b>a</b>) <math display="inline"><semantics> <msup> <mi>d</mi> <mrow> <mi>A</mi> <mi>r</mi> </mrow> </msup> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <msup> <mi>d</mi> <mrow> <mi>C</mi> <mi>a</mi> </mrow> </msup> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <msup> <mi>d</mi> <mrow> <mi>C</mi> <mi>o</mi> </mrow> </msup> </semantics></math>; (<b>d</b>) <math display="inline"><semantics> <msup> <mi>d</mi> <mrow> <mi>L</mi> <mi>o</mi> </mrow> </msup> </semantics></math>.</p> "> Figure 8
<p>The 3D loci obtained by the UMAP with the Canberra distance for the FIFA 2021 dataset: (<b>a</b>) Goalkeepers; (<b>b</b>) Strikers. The colormap is proportional to the attribute <math display="inline"><semantics> <mrow> <mo form="prefix">ln</mo> <mo>(</mo> <mi mathvariant="monospace">value</mi> <mo>_</mo> <mi mathvariant="monospace">eur</mi> <mo>)</mo> </mrow> </semantics></math>.</p> "> Figure 9
<p>The 3D locus generated by the UMAP with the Canberra distance for the <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math> most valuable goalkeepers in the FIFA 2021 dataset. The reference is J. Oblak and <math display="inline"><semantics> <mrow> <mi>w</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>. The size of the circular marks and the colormap are proportional to the attributes <math display="inline"><semantics> <mrow> <mi mathvariant="monospace">wage</mi> <mo>_</mo> <mi mathvariant="monospace">eur</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi mathvariant="monospace">value</mi> <mo>_</mo> <mi mathvariant="monospace">eur</mi> </mrow> </semantics></math>, respectively.</p> "> Figure 10
<p>The 3D locus generated by the UMAP with the Canberra distance for the <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math> most valuable defenders in the FIFA 2021 dataset. The reference is V. van Dijkand and <math display="inline"><semantics> <mrow> <mi>w</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>. The size of the circular marks and the colormap are proportional to the attributes <math display="inline"><semantics> <mrow> <mi mathvariant="monospace">wage</mi> <mo>_</mo> <mi mathvariant="monospace">eur</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi mathvariant="monospace">value</mi> <mo>_</mo> <mi mathvariant="monospace">eur</mi> </mrow> </semantics></math>, respectively.</p> "> Figure 11
<p>The 3D locus generated by the UMAP with the Canberra distance for the <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math> most valuable midfielders in the FIFA 2021 dataset. The reference is K. De Bruyne and <math display="inline"><semantics> <mrow> <mi>w</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>. The size of the circular marks and the colormap are proportional to the attributes <math display="inline"><semantics> <mrow> <mi mathvariant="monospace">wage</mi> <mo>_</mo> <mi mathvariant="monospace">eur</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi mathvariant="monospace">value</mi> <mo>_</mo> <mi mathvariant="monospace">eur</mi> </mrow> </semantics></math>, respectively.</p> "> Figure 12
<p>The 3D locus generated by the UMAP with the Canberra distance for the <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math> most valuable wingers in the FIFA 2021 dataset. The reference is Neymar Jr and <math display="inline"><semantics> <mrow> <mi>w</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>. The size of the circular marks and the colormap are proportional to the attributes <math display="inline"><semantics> <mrow> <mi mathvariant="monospace">wage</mi> <mo>_</mo> <mi mathvariant="monospace">eur</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi mathvariant="monospace">value</mi> <mo>_</mo> <mi mathvariant="monospace">eur</mi> </mrow> </semantics></math>, respectively.</p> "> Figure 13
<p>The 3D locus generated by the UMAP with the Canberra distance for the <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math> most valuable strikers in the FIFA 2021 dataset. The reference is L. Messi and <math display="inline"><semantics> <mrow> <mi>w</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>. The size of the circular marks and the colormap are proportional to the attributes <math display="inline"><semantics> <mrow> <mi mathvariant="monospace">wage</mi> <mo>_</mo> <mi mathvariant="monospace">eur</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi mathvariant="monospace">value</mi> <mo>_</mo> <mi mathvariant="monospace">eur</mi> </mrow> </semantics></math>, respectively.</p> "> Figure 14
<p>The normalized distance between the most valuable player in each group {Goalkeepers, Defenders, Centre Midfielders, Wingers, Strikers}, with reference {J. Oblak, V. van Dijk, K. De Bruyne, Neymar Jr, L. Messi}, and with relation to their <math display="inline"><semantics> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>…</mo> <mo>,</mo> <mn>10</mn> </mrow> </semantics></math> closer elements.</p> ">
Abstract
:1. Introduction
2. The Uniform Manifold Approximation and Projection
3. Description of the Dataset
4. The UMAP for Global Comparison and Visualization of Soccer Players
5. The UMAP for Local Comparison and Visualization of Soccer Players
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carling, C.; Williams, A.M.; Reilly, T. Handbook of Soccer Match Analysis: A Systematic Approach to Improving Performance; Routledge: London, UK, 2007. [Google Scholar]
- Giulianotti, R. Football. In The Wiley-Blackwell Encyclopedia of Globalization; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Couceiro, M.S.; Clemente, F.M.; Martins, F.M.; Machado, J.A.T. Dynamical stability and predictability of football players: The study of one match. Entropy 2014, 16, 645–674. [Google Scholar] [CrossRef] [Green Version]
- Verstraete, K.; Decroos, T.; Coussement, B.; Vannieuwenhoven, N.; Davis, J. Analyzing Soccer Players’ Skill Ratings Over Time Using Tensor-Based Methods. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases; Springer: Berlin/Heidelberg, Germany, 2019; pp. 225–234. [Google Scholar]
- Barron, D.; Ball, G.; Robins, M.; Sunderland, C. Artificial neural networks and player recruitment in professional soccer. PLoS ONE 2018, 13, e0205818. [Google Scholar] [CrossRef] [Green Version]
- Folgado, H.; Duarte, R.; Fernandes, O.; Sampaio, J. Competing with lower level opponents decreases intra-team movement synchronization and time-motion demands during pre-season soccer matches. PLoS ONE 2014, 9, e97145. [Google Scholar] [CrossRef]
- Araújo, D.; Passos, P.; Esteves, P.; Duarte, R.; Lopes, J.; Hristovski, R.; Davids, K. The micro-macro link in understanding sport tactical behaviours: Integrating information and action at different levels of system analysis in sport. Mov. Sport Sci.-Sci. Mot. 2015, 89, 53–63. [Google Scholar] [CrossRef]
- Caetano, F.G.; da Silva, V.P.; da Silva Torres, R.; de Oliveira Anido, R.; Cunha, S.A.; Moura, F.A. Analysis of match dynamics of different soccer competition levels based on the player dyads. J. Hum. Kinet. 2019, 70, 173–182. [Google Scholar] [CrossRef] [Green Version]
- Neuman, Y.; Israeli, N.; Vilenchik, D.; Cohen, Y. The adaptive behavior of a soccer team: An entropy-based analysis. Entropy 2018, 20, 758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merlin, M.; Cunha, S.A.; Moura, F.A.; Torres, R.d.S.; Gonçalves, B.; Sampaio, J. Exploring the determinants of success in different clusters of ball possession sequences in soccer. Res. Sports Med. 2020, 28, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, J.; Davids, K.; Araújo, D.; Silva, P.; Ramos, J.; Lopes, R.; Garganta, J. The role of hypernetworks as a multilevel methodology for modelling and understanding dynamics of team sports performance. Sports Med. 2019, 49, 1337–1344. [Google Scholar] [CrossRef] [PubMed]
- Silva, P.; Duarte, R.; Esteves, P.; Travassos, B.; Vilar, L. Application of entropy measures to analysis of performance in team sports. Int. J. Perform. Anal. Sport 2016, 16, 753–768. [Google Scholar] [CrossRef]
- Machado, J.T.; Lopes, A.M. Multidimensional scaling analysis of soccer dynamics. Appl. Math. Model. 2017, 45, 642–652. [Google Scholar] [CrossRef]
- Lopes, A.M.; Tenreiro Machado, J. Entropy Analysis of Soccer Dynamics. Entropy 2019, 21, 187. [Google Scholar] [CrossRef] [Green Version]
- Lopes, A.M.; Tenreiro Machado, J.A. Fractional Dynamics in Soccer Leagues. Symmetry 2020, 12, 356. [Google Scholar] [CrossRef] [Green Version]
- Berrar, D.; Lopes, P.; Davis, J.; Dubitzky, W. Guest editorial: Special issue on machine learning for soccer. Mach. Learn. 2019, 108, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Karlis, D.; Ntzoufras, I. Analysis of sports data by using bivariate Poisson models. J. R. Stat. Soc. 2003, 52, 381–393. [Google Scholar] [CrossRef]
- Baio, G.; Blangiardo, M. Bayesian hierarchical model for the prediction of football results. J. Appl. Stat. 2010, 37, 253–264. [Google Scholar] [CrossRef] [Green Version]
- Hvattum, L.M.; Arntzen, H. Using ELO ratings for match result prediction in association football. Int. J. Forecast. 2010, 26, 460–470. [Google Scholar] [CrossRef]
- Berrar, D.; Lopes, P.; Dubitzky, W. Incorporating domain knowledge in machine learning for soccer outcome prediction. Mach. Learn. 2019, 108, 97–126. [Google Scholar] [CrossRef] [Green Version]
- Hubáček, O.; Šourek, G.; Železnỳ, F. Learning to predict soccer results from relational data with gradient boosted trees. Mach. Learn. 2019, 108, 29–47. [Google Scholar] [CrossRef] [Green Version]
- Tsokos, A.; Narayanan, S.; Kosmidis, I.; Baio, G.; Cucuringu, M.; Whitaker, G.; Király, F. Modeling outcomes of soccer matches. Mach. Learn. 2019, 108, 77–95. [Google Scholar] [CrossRef] [Green Version]
- Dobson, S.; Goddard, J.A.; Dobson, S. The Economics of Football; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Groot, L. Economics, Uncertainty and European Football: Trends in Competitive Balance; Edward Elgar Publishing: Cheltenham, UK, 2008. [Google Scholar]
- Criado, R.; García, E.; Pedroche, F.; Romance, M. A new method for comparing rankings through complex networks: Model and analysis of competitiveness of major European soccer leagues. Chaos Interdiscip. J. Nonlinear Sci. 2013, 23, 043114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pawlowski, T.; Breuer, C.; Hovemann, A. Top clubs’ performance and the competitive situation in European domestic football competitions. J. Sports Econ. 2010, 11, 186–202. [Google Scholar] [CrossRef]
- Dejonghe, T.; Van Opstal, W. Competitive balance between national leagues in European football after the Bosman case. Riv. Dirit. Econ. Dello Sport 2010, 6, 41–61. [Google Scholar]
- Liu, G.; Luo, Y.; Schulte, O.; Kharrat, T. Deep soccer analytics: Learning an action-value function for evaluating soccer players. Data Min. Knowl. Discov. 2020, 34, 1531–1559. [Google Scholar] [CrossRef]
- Link, D. Data Analytics in Professional Soccer; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Sellitto, C.; Hawking, P. Enterprise systems and data analytics: A fantasy football case study. Int. J. Enterp. Inf. Syst. (IJEIS) 2015, 11, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Sha, L.; Lucey, P.; Zheng, S.; Kim, T.; Yue, Y.; Sridharan, S. Fine-grained retrieval of sports plays using tree-based alignment of trajectories. arXiv 2017, arXiv:1710.02255. [Google Scholar]
- Tian, C.; De Silva, V.; Caine, M.; Swanson, S. Use of machine learning to automate the identification of basketball strategies using whole team player tracking data. Appl. Sci. 2020, 10, 24. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; Lucey, P.; Morgan, S.; Sridharan, S. Predicting shot locations in tennis using spatiotemporal data. In Proceedings of the 2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA), Hobart, Australia, 26–28 November 2013; pp. 1–8. [Google Scholar]
- Fernandez-Navarro, J.; Fradua, L.; Zubillaga, A.; McRobert, A.P. Evaluating the effectiveness of styles of play in elite soccer. Int. J. Sports Sci. Coach. 2019, 14, 514–527. [Google Scholar] [CrossRef]
- Wu, Y.; Xie, X.; Wang, J.; Deng, D.; Liang, H.; Zhang, H.; Cheng, S.; Chen, W. Forvizor: Visualizing spatio-temporal team formations in soccer. IEEE Trans. Vis. Comput. Graph. 2018, 25, 65–75. [Google Scholar] [CrossRef]
- Williams, A.M.; Reilly, T. Talent identification and development in soccer. J. Sports Sci. 2000, 18, 657–667. [Google Scholar] [CrossRef]
- Bidaurrazaga-Letona, I.; Lekue, J.A.; Amado, M.; Santos-Concejero, J.; Gil, S.M. Identifying talented young soccer players: Conditional, anthropometrical and physiological characteristics as predictors of performance. Rev. Int. Cienc. Deporte 2014, 11, 79–95. [Google Scholar] [CrossRef]
- Sarmento, H.; Marcelino, R.; Anguera, M.T.; CampaniÇo, J.; Matos, N.; LeitÃo, J.C. Match analysis in football: A systematic review. J. Sports Sci. 2014, 32, 1831–1843. [Google Scholar] [CrossRef] [Green Version]
- Soto-Valero, C. A Gaussian mixture clustering model for characterizing football players using the EA Sports’ FIFA video game system. Rev. Int. Cienc. Deporte 2017, 13, 244–259. [Google Scholar] [CrossRef]
- Strnad, D.; Nerat, A.; Kohek, Š. Neural network models for group behavior prediction: A case of soccer match attendance. Neural Comput. Appl. 2017, 28, 287–300. [Google Scholar] [CrossRef]
- Arndt, C.; Brefeld, U. Predicting the future performance of soccer players. Stat. Anal. Data Min. ASA Data Sci. J. 2016, 9, 373–382. [Google Scholar] [CrossRef]
- Rossi, A.; Pappalardo, L.; Cintia, P.; Iaia, F.M.; Fernàndez, J.; Medina, D. Effective injury forecasting in soccer with GPS training data and machine learning. PLoS ONE 2018, 13, e0201264. [Google Scholar] [CrossRef] [Green Version]
- Moura, F.A.; Martins, L.E.B.; Cunha, S.A. Analysis of football game-related statistics using multivariate techniques. J. Sports Sci. 2014, 32, 1881–1887. [Google Scholar] [CrossRef] [PubMed]
- Brooks, J.; Kerr, M.; Guttag, J. Using machine learning to draw inferences from pass location data in soccer. Stat. Anal. Data Min. ASA Data Sci. J. 2016, 9, 338–349. [Google Scholar] [CrossRef]
- Louzada, F.; Maiorano, A.C.; Ara, A. iSports: A web-oriented expert system for talent identification in soccer. Expert Syst. Appl. 2016, 44, 400–412. [Google Scholar] [CrossRef]
- Maanijou, R.; Mirroshandel, S.A. Introducing an expert system for prediction of soccer player ranking using ensemble learning. Neural Comput. Appl. 2019, 31, 9157–9174. [Google Scholar] [CrossRef]
- Tenreiro Machado, J.; Lopes, A.M.; Galhano, A.M. Multidimensional scaling visualization using parametric similarity indices. Entropy 2015, 17, 1775–1794. [Google Scholar] [CrossRef] [Green Version]
- Dunteman, G.H. Principal Components Analysis; Sage: Newcastle upon Tyne, UK, 1989. [Google Scholar]
- Thompson, B. Canonical correlation analysis. In Encyclopedia of Statistics in Behavioral Science; Wiley: New York, NY, UK, 2005. [Google Scholar]
- Tharwat, A.; Gaber, T.; Ibrahim, A.; Hassanien, A.E. Linear discriminant analysis: A detailed tutorial. AI Commun. 2017, 30, 169–190. [Google Scholar] [CrossRef] [Green Version]
- Child, D. The Essentials of Factor Analysis; Cassell Educational: London, UK, 1990. [Google Scholar]
- France, S.L.; Carroll, J.D. Two-way multidimensional scaling: A review. IEEE Trans. Syst. Man Cybern. Part C 2010, 41, 644–661. [Google Scholar] [CrossRef]
- Lee, J.A.; Lendasse, A.; Verleysen, M. Nonlinear projection with curvilinear distances: Isomap versus curvilinear distance analysis. Neurocomputing 2004, 57, 49–76. [Google Scholar] [CrossRef]
- Belkin, M.; Niyogi, P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 2003, 15, 1373–1396. [Google Scholar] [CrossRef] [Green Version]
- Coifman, R.R.; Lafon, S. Diffusion maps. Appl. Comput. Harmon. Anal. 2006, 21, 5–30. [Google Scholar] [CrossRef] [Green Version]
- Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res 2008, 9, 2579–2605. [Google Scholar]
- McInnes, L.; Healy, J.; Melville, J. UMAP: Uniform manifold approximation and projection for dimension reduction. arXiv 2018, arXiv:1802.03426. [Google Scholar]
- Ware, C. Information Visualization: Perception for Design; Elsevier: Waltham, MA, USA, 2012. [Google Scholar]
- Spence, R. Information Visualization: An Introduction; Springer: Cham, Switzerland, 2001; Volume 1. [Google Scholar]
- Abade, E.A.; Gonçalves, B.V.; Silva, A.M.; Leite, N.M.; Castagna, C.; Sampaio, J.E. Classifying young soccer players by training performances. Percept. Mot. Ski. 2014, 119, 971–984. [Google Scholar] [CrossRef] [PubMed]
- Fortuna, F.; Maturo, F.; Di Battista, T. Clustering functional data streams: Unsupervised classification of soccer top players based on Google trends. Qual. Reliab. Eng. Int. 2018, 34, 1448–1460. [Google Scholar] [CrossRef]
- Kirschstein, T.; Liebscher, S. Assessing the market values of soccer players–a robust analysis of data from German 1. and 2. Bundesliga. J. Appl. Stat. 2019, 46, 1336–1349. [Google Scholar] [CrossRef]
- Gavião, L.O.; Sant’Anna, A.P.; Alves Lima, G.B.; de Almada Garcia, P.A. Evaluation of soccer players under the Moneyball concept. J. Sports Sci. 2020, 38, 1221–1247. [Google Scholar] [CrossRef]
- Becht, E.; McInnes, L.; Healy, J.; Dutertre, C.A.; Kwok, I.W.; Ng, L.G.; Ginhoux, F.; Newell, E.W. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 2019, 37, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Dorrity, M.W.; Saunders, L.M.; Queitsch, C.; Fields, S.; Trapnell, C. Dimensionality reduction by UMAP to visualize physical and genetic interactions. Nat. Commun. 2020, 11, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cotta, L.; de Melo, P.; Benevenuto, F.; Loureiro, A. Using Fifa Soccer Video Game Data for Soccer Analytics. Workshop on Large Scale Sports Analytics. 2016. Available online: https://homepages.dcc.ufmg.br/~fabricio/download/lssa_fifa_CR.pdf (accessed on 12 February 2021).
- Meehan, C.; Ebrahimian, J.; Moore, W.; Meehan, S. Uniform Manifold Approximation and Projection (UMAP). 2021. Available online: https://www.mathworks.com/matlabcentral/fileexchange/71902 (accessed on 12 February 2021).
- Deza, M.M.; Deza, E. Encyclopedia of Distances; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Machado, J.T.; Lopes, A.M. Multidimensional scaling locus of memristor and fractional order elements. J. Adv. Res. 2020, 25, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Lopes, A.M.; Tenreiro Machado, J.A. Dynamical Analysis of the Dow Jones Index Using Dimensionality Reduction and Visualization. Entropy 2021, 23, 600. [Google Scholar] [CrossRef]
Group | Number of Players | Position | Acronym |
---|---|---|---|
Goalkeepers | 2054 | Goalkeepers | GK |
Defenders | 6725 | Centre Back | CB |
Right Back | RB | ||
Left Back | LB | ||
Right Wing Back | RWB | ||
Left Wing Back | LWB | ||
Centre Midfielders | 3556 | Centre Defensive Midfielder | CDM |
Centre Midfielder | CM | ||
Centre Attacking Midfielder | CAM | ||
Wingers | 2854 | Right Midfielder | RM |
Left Midfielder | LM | ||
Right Wing | RW | ||
Left Wing | LW | ||
Strikers | 3519 | Right Forward | RF |
Centre Forward | CF | ||
Left Forward | LF | ||
Striker | ST |
Atributes | |||||||
---|---|---|---|---|---|---|---|
Number | Name | Value | Number | Name | Value | ||
L. Messi | C. Ronaldo | L. Messi | C. Ronaldo | ||||
1 | attacking_crossing | 85 | 84 | 26 | mentality_composure | 96 | 95 |
2 | attacking_finishing | 95 | 95 | 27 | defending_marking | 32 | 28 |
3 | attacking_heading_accuracy | 70 | 90 | 28 | defending_standing_tackle | 35 | 32 |
4 | attacking_short_passing | 91 | 82 | 29 | defending_sliding_tackle | 24 | 24 |
5 | attacking_volleys | 88 | 86 | 30 | goalkeeping_diving | 6 | 7 |
6 | skill_dribbling | 96 | 88 | 31 | goalkeeping_handling | 11 | 11 |
7 | skill_curve | 93 | 81 | 32 | goalkeeping_kicking | 15 | 15 |
8 | skill_fk_accuracy | 94 | 76 | 33 | goalkeeping_positioning | 14 | 14 |
9 | skill_long_passing | 91 | 77 | 34 | goalkeeping_reflexes | 8 | 11 |
10 | skill_ball_control | 96 | 92 | 35 | sofifa_id | 158023 | 20801 |
11 | movement_acceleration | 91 | 87 | 36 | short_name | L. Messi | Cristiano Ronaldo |
12 | movement_sprint_speed | 80 | 91 | 37 | age | 33 | 35 |
13 | movement_agility | 91 | 87 | 38 | overall | 93 | 92 |
14 | movement_reactions | 94 | 95 | 39 | potential | 93 | 92 |
15 | movement_balance | 95 | 71 | 40 | value_eur | 103.5 M | 63M |
16 | power_shot_power | 86 | 94 | 41 | wage_eur | 560 k | 220k |
17 | powerjumping | 68 | 95 | 42 | player_positions | RW, ST, CF | ST, LW |
18 | power_stamina | 72 | 84 | 43 | release_clause_eur | 212.2 M | 104M |
19 | power_strength | 69 | 78 | 44 | height_cm | 170 | 187 |
20 | power_long_shots | 94 | 93 | 45 | weight_kg | 72 | 83 |
21 | mentality_aggression | 44 | 63 | 46 | preferred_foot | left | right |
22 | mentality_interceptions | 40 | 29 | 47 | international_reputation | 5 (maximum 5) | 5 (maximum 5) |
23 | mentality_positioning | 93 | 95 | 48 | work_rate | medium/low | high/low |
24 | mentality_vision | 95 | 82 | 49 | weak_foot | 4 (maximum 5) | 4 (maximum 5) |
25 | mentality_penalties | 75 | 84 | 50 | team_position | CAM | LS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopes, A.M.; Tenreiro Machado, J.A. Uniform Manifold Approximation and Projection Analysis of Soccer Players. Entropy 2021, 23, 793. https://doi.org/10.3390/e23070793
Lopes AM, Tenreiro Machado JA. Uniform Manifold Approximation and Projection Analysis of Soccer Players. Entropy. 2021; 23(7):793. https://doi.org/10.3390/e23070793
Chicago/Turabian StyleLopes, António M., and José A. Tenreiro Machado. 2021. "Uniform Manifold Approximation and Projection Analysis of Soccer Players" Entropy 23, no. 7: 793. https://doi.org/10.3390/e23070793
APA StyleLopes, A. M., & Tenreiro Machado, J. A. (2021). Uniform Manifold Approximation and Projection Analysis of Soccer Players. Entropy, 23(7), 793. https://doi.org/10.3390/e23070793