Strategies for Positive Partial Transpose (PPT) States in Quantum Metrologies with Noise
<p>Classical (<b>A</b>) vs. Quantum strategy(Entangled assisted strategy) (<b>B</b>).</p> "> Figure 2
<p>Two different strategies in which a state is imprinted with phase <math display="inline"><semantics> <mi>θ</mi> </semantics></math> for each qudit and undergoes (<b>A</b>) no noise, and (<b>B</b>) “global” noise.</p> "> Figure 3
<p>Change of strategy from entangled assisted strategy to sequential ancilla assisted strategy where the second qudit acts as an ancilla. However the right one has two iterations and thus two phases are imprinted on the state, just as in the left one. The sequential strategy (with just two iterations) in the ancilla assisted case (<b>right</b>) gives a better QFI compared to the entangled assisted strategy with one iteration (<b>left</b>), the amount of resources being the same in the two strategies.</p> "> Figure 4
<p>Two different strategies in which a state is imprinted with phase <math display="inline"><semantics> <mi>θ</mi> </semantics></math> in both the qudits and undergoes the two cases as in <a href="#entropy-23-00685-f002" class="html-fig">Figure 2</a> but now the output state at one stage is fed into the input for <span class="html-italic">m</span> iterations. The subfigure (<b>A</b>) shows iterations without noise while subfigure (<b>B</b>) involves noise after each iteration.</p> "> Figure 5
<p>Two different strategies in which one qudit of a state is imprinted with phase <math display="inline"><semantics> <mi>θ</mi> </semantics></math> and undergoes the iterated cases as in <a href="#entropy-23-00685-f004" class="html-fig">Figure 4</a>. The (<b>A</b>) part is useless but the (<b>B</b>) with <span class="html-italic">m</span> = 2 is equivalent to <a href="#entropy-23-00685-f004" class="html-fig">Figure 4</a>A (<span class="html-italic">m</span> = 1) thus we only have advantage from <span class="html-italic">m</span> = 2 ∼ <a href="#entropy-23-00685-f004" class="html-fig">Figure 4</a>A (<span class="html-italic">m</span> = 1).</p> "> Figure 6
<p>Quantum Fisher Information Vs Noise (P) plots (In each case blue, green and red are the 1st, 2nd and 3rd iterations respectively).</p> "> Figure 6 Cont.
<p>Quantum Fisher Information Vs Noise (P) plots (In each case blue, green and red are the 1st, 2nd and 3rd iterations respectively).</p> "> Figure 7
<p>This figure shows the comparison between the two strategies of <a href="#entropy-23-00685-f003" class="html-fig">Figure 3</a>. Dimension is varying along x-axis and QFI along y-axis. The Red bars correspond to the left strategy of <a href="#entropy-23-00685-f003" class="html-fig">Figure 3</a> and the blue ones correspond to the right one. Notice that the even dimensional states don’t provide any advantage of using sequential ancilla assisted strategy with two iterations instead of entangled assisted one with one iteration except <math display="inline"><semantics> <mrow> <mn>4</mn> <mo>×</mo> <mn>4</mn> </mrow> </semantics></math> dimensional optimal state (for <span class="html-italic">m</span> = 2).</p> "> Figure 8
<p>One more iteration applied to both the cases of <a href="#entropy-23-00685-f003" class="html-fig">Figure 3</a>.</p> "> Figure 9
<p>Comparison of two schemes in <a href="#entropy-23-00685-f003" class="html-fig">Figure 3</a> with multiple iterations for <math display="inline"><semantics> <mrow> <mn>3</mn> <mo>×</mo> <mn>3</mn> </mrow> </semantics></math> the PPT state using Equations (<a href="#FD22-entropy-23-00685" class="html-disp-formula">22</a>) and (<a href="#FD23-entropy-23-00685" class="html-disp-formula">23</a>) combined as they are considered to be equivalent.</p> "> Figure 10
<p>Comparison of two schemes in <a href="#entropy-23-00685-f003" class="html-fig">Figure 3</a> with multiple iterations for <math display="inline"><semantics> <mrow> <mn>4</mn> <mo>×</mo> <mn>4</mn> </mrow> </semantics></math> the PPT state using Equations (<a href="#FD22-entropy-23-00685" class="html-disp-formula">22</a>) and (<a href="#FD23-entropy-23-00685" class="html-disp-formula">23</a>) combined as they are considered to be equivalent.</p> ">
Abstract
:1. Introduction to Quantum Estimation Theory
2. Quantum Fisher Information
- For pure state the QFI is given by .
- is convex in the state , i.e., .
- .
- For N-qubit separable states, the values of for are bounded as
- For Greenberger-Horne-Zeilinger states (GHZ states) (maximally entangled states), the quantum Fisher information is bounded by
- For N-qubit k-producible states states, the quantum Fisher information is bounded by
3. Classical vs. Quantum Strategy
4. Sequential Strategies
5. A Family of Even Dimensional PPT States Having a Higher Fisher Information for Sequential Ancilla Assisted Strategy Compared to Entanglement Assisted Strategy
6. Applying Iteration to Both Entangled Assisted Strategy and Ancilla Assisted Strategy
6.1. 3 × 3 PPT State
6.2. 4 × 4 PPT State
6.3. General Dimension
7. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Noisy Channels in Quantum Theory
Examples of Noisy Channels
References
- Giovannetti, V.; Lloyd, S.; Maccone, L. Quantum metrology. Phys. Rev. Lett. 2006, 96, 010401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polino, E.; Valeri, M.; Spagnolo, N.; Sciarrino, F. Photonic quantum metrology. AVS Quantum Sci. 2020, 2, 024703. [Google Scholar] [CrossRef]
- Tóth, G.; Apellaniz, I. Quantum metrology from a quantum information science perspective. J. Phys. A Math. Theor. 2014, 47, 424006. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Macchiavello, C.; Maccone, L. Noise-dependent optimal strategies for quantum metrology. Phys. Rev. A 2018, 97, 032333. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Macchiavello, C.; Maccone, L. Usefulness of entanglement-assisted quantum metrology. Phys. Rev. A 2016, 94, 012101. [Google Scholar] [CrossRef] [Green Version]
- Brida, G.; Genovese, M.; Novero, C. An application of two-photon entangled states to quantum metrology. J. Mod. Opt. 2000, 47, 2099–2104. [Google Scholar] [CrossRef]
- Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 2009, 81, 865–942. [Google Scholar] [CrossRef] [Green Version]
- Zatelli, F.; Benedetti, C.; Paris, M.G. Scattering as a quantum metrology problem: A quantum walk approach. Entropy 2020, 22, 1321. [Google Scholar] [CrossRef]
- Peres, A. Separability criterion for density matrices. Phys. Rev. Lett. 1996, 77, 1413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horodecki, M.; Horodecki, P.; Horodecki, R. Separability of n-particle mixed states: Necessary and sufficient conditions in terms of linear maps. Phys. Lett. A 2001, 283, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Horodecki, P.; Horodecki, M.; Horodecki, R. Bound entanglement can be activated. Phys. Rev. Lett. 1999, 82, 1056. [Google Scholar] [CrossRef] [Green Version]
- Masanes, L. All bipartite entangled states are useful for information processing. Phys. Rev. Lett. 2006, 96, 150501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tóth, G.; Vértesi, T. Quantum states with a positive partial transpose are useful for metrology. Phys. Rev. Lett. 2018, 120, 020506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tóth, G.; Vértesi, T.; Horodecki, P.; Horodecki, R. Activating hidden metrological usefulness. Phys. Rev. Lett. 2020, 125, 020402. [Google Scholar] [CrossRef]
- Akbari-Kourbolagh, Y.; Azhdargalam, M. Entanglement criterion for multipartite systems based on quantum Fisher information. Phys. Rev. A 2019, 99, 012304. [Google Scholar] [CrossRef]
- Pál, K.F.; Vértesi, T. Class of genuinely high-dimensionally-entangled states with a positive partial transpose. Phys. Rev. A 2019, 100, 012310. [Google Scholar] [CrossRef] [Green Version]
- Pál, K.F.; Tóth, G.; Bene, E.; Vértesi, T. Bound entangled “singlets” for quantum metrology. arXiv 2020, arXiv:2002.12409. [Google Scholar]
- Petz, D.; Ghinea, C. Introduction to quantum Fisher information. In Quantum Probability and Related Topics; World Scientific: Singapore, 2011; pp. 261–281. [Google Scholar]
- Helstrom, C.W.; Helstrom, C.W. Quantum Detection and Estimation Theory; Academic Press: New York, NY, USA, 1976; Volume 84. [Google Scholar]
- Gudder, S.; Holevo, A.S. Probabilistic and statistical aspects of quantum theory. Bull. (New Ser.) Am. Math. Soc. 1985, 13, 80–85. [Google Scholar] [CrossRef]
- Tóth, G.; Petz, D. Extremal properties of the variance and the quantum Fisher information. Phys. Rev. A 2013, 87, 032324. [Google Scholar] [CrossRef] [Green Version]
- Yu, S. Quantum Fisher information as the convex roof of variance. arXiv 2013, arXiv:1302.5311. [Google Scholar]
- Hyllus, P.; Laskowski, W.; Krischek, R.; Schwemmer, C.; Wieczorek, W.; Weinfurter, H.; Pezzé, L.; Smerzi, A. Fisher information and multiparticle entanglement. Phys. Rev. A 2012, 85, 022321. [Google Scholar] [CrossRef] [Green Version]
- Tóth, G. Multipartite entanglement and high-precision metrology. Phys. Rev. A 2012, 85, 022322. [Google Scholar] [CrossRef] [Green Version]
- Grassl, M.; Kong, L.; Wei, Z.; Yin, Z.Q.; Zeng, B. Quantum error-correcting codes for qudit amplitude damping. IEEE Trans. Inf. Theory 2018, 64, 4674–4685. [Google Scholar] [CrossRef] [Green Version]
Without Decoherence | |||
---|---|---|---|
Dimension (d) of the System | the Corresponding Classical Fisher Information | for Figure 4 (A) (m = 1) | for Figure 5 (B) (m = 2) |
3 | 8 | 8.0085 | 8.27623 |
4 | 8 | 9.3726 | 16. |
5 | 8 | 9.3764 | 12.0935 |
6 | 8 | 10.1436 | 10.1436 |
7 | 8 | 10.1455 | 13.6191 |
8 | 8 | 10.6667 | 10.6667 |
9 | 8 | 10.6675 | 13.2849 |
10 | 8 | 11.0557 | 11.0557 |
11 | 8 | 11.0563 | 13.9923 |
12 | 8 | 11.3616 | 11.3616 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majumder, A.; Shrotriya, H.; Kwek, L.-C. Strategies for Positive Partial Transpose (PPT) States in Quantum Metrologies with Noise. Entropy 2021, 23, 685. https://doi.org/10.3390/e23060685
Majumder A, Shrotriya H, Kwek L-C. Strategies for Positive Partial Transpose (PPT) States in Quantum Metrologies with Noise. Entropy. 2021; 23(6):685. https://doi.org/10.3390/e23060685
Chicago/Turabian StyleMajumder, Arunava, Harshank Shrotriya, and Leong-Chuan Kwek. 2021. "Strategies for Positive Partial Transpose (PPT) States in Quantum Metrologies with Noise" Entropy 23, no. 6: 685. https://doi.org/10.3390/e23060685
APA StyleMajumder, A., Shrotriya, H., & Kwek, L.-C. (2021). Strategies for Positive Partial Transpose (PPT) States in Quantum Metrologies with Noise. Entropy, 23(6), 685. https://doi.org/10.3390/e23060685