Entropic Dynamics on Gibbs Statistical Manifolds
<p>The drift velocity field (<a href="#FD71-entropy-23-00494" class="html-disp-formula">71</a>) drives the flux along the entropy gradient.</p> "> Figure 2
<p>Equilibrium stationary probability (<a href="#FD72-entropy-23-00494" class="html-disp-formula">72</a>).</p> "> Figure 3
<p>Drift velocity field for the two-simplex in (<a href="#FD79-entropy-23-00494" class="html-disp-formula">79</a>). The ternary plots ware created using python-ternary library [<a href="#B64-entropy-23-00494" class="html-bibr">64</a>].</p> "> Figure 4
<p>Static invariant stationary probability for the three-state system.</p> ">
Abstract
:1. Introduction
2. The Statistical Manifold of Gibbs Distributions
2.1. Gibbs Distributions
2.2. Information Geometry
3. Entropic Dynamics
3.1. Change Happens
3.2. The Prior
3.3. The Constraints
3.4. Maximizing the Entropy
4. The Transition Probability
5. Entropic Time
5.1. Introducing Time
5.2. The Entropic Arrow of Time
5.3. Calibrating the Clock
6. Diffusion and the Fokker–Planck Equation
Derivatives and Divergence
7. Examples
7.1. A Gaussian Manifold
Gaussian Submanifold around an Entropy Maximum
7.2. 2-Simplex Manifold
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Appendix A. Obtaining the Prior
Appendix B. Derivation of the Fokker-Planck Equation
References
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Jaynes, E.T. Information theory and statistical mechanics: I. Phys. Rev. 1957, 106, 620. [Google Scholar] [CrossRef]
- Jaynes, E.T. Information theory and statistical mechanics. II. Phys. Rev. 1957, 108, 171. [Google Scholar] [CrossRef]
- Rosenkrantz, R.D. (Ed.) E. T. Jaynes: Papers on Probability, Statistics and Statistical Physics; Reidel: Dordrecht, The Netherlands, 1983. [Google Scholar] [CrossRef]
- Jaynes, E.T. Probability Theory: The Logic of Science; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Gibbs, J. Elementary Principles in Statistical Mechanics; Yale University Press: New Haven, Connecticut, 1902; Reprinted by Ox Bow Press: Woodbridge, Connecticut, 1981. [Google Scholar]
- Shore, J.; Johnson, R. Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy. IEEE Trans. Inf. Theory 1980, 26, 26–37. [Google Scholar] [CrossRef] [Green Version]
- Skilling, J. The Axioms of Maximum Entropy. In Maximum-Entropy and Bayesian Methods in Science and Engineering; Erickson, G.J., Smith, C.R., Eds.; Springer: Dordrecht, The Netherlands, 1988; Volumes 31–32, pp. 173–187. [Google Scholar] [CrossRef]
- Caticha, A. Relative Entropy and Inductive Inference. AIP Conf. Proc. Am. Inst. Phys. 2004, 707, 75–96. [Google Scholar] [CrossRef]
- Caticha, A. Information and Entropy. AIP Conf. Proc. Am. Inst. Phys. 2007, 954, 11–22. [Google Scholar] [CrossRef] [Green Version]
- Caticha, A.; Giffin, A. Updating Probabilities. AIP Conf. Proc. Am. Inst. Phys. 2006, 872, 31–42. [Google Scholar] [CrossRef] [Green Version]
- Vanslette, K. Entropic Updating of Probabilities and Density Matrices. Entropy 2017, 19, 664. [Google Scholar] [CrossRef] [Green Version]
- Caticha, A. Entropic Physics: Probability, Entropy, and the Foundations of Physics. Available online: https://www.albany.edu/physics/faculty/ariel-caticha (accessed on 19 April 2021).
- Caticha, A.; Golan, A. An entropic framework for modeling economies. Phys. A Stat. Mech. Appl. 2014, 408, 149–163. [Google Scholar] [CrossRef]
- Harte, J. Maximum Entropy and Ecology: A Theory of Abundance, Distribution, and Energetics; OUP Oxford: Oxford, UK, 2011. [Google Scholar]
- Banavar, J.R.; Maritan, A.; Volkov, I. Applications of the principle of maximum entropy: From physics to ecology. J. Phys. Condens. Matter 2010, 22, 063101. [Google Scholar] [CrossRef] [Green Version]
- De Martino, A.; De Martino, D. An introduction to the maximum entropy approach and its application to inference problems in biology. Heliyon 2018, 4, e00596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dixit, P.D.; Lyashenko, E.; Niepel, M.; Vitkup, D. Maximum entropy framework for predictive inference of cell population heterogeneity and responses in signaling networks. Cell Syst. 2020, 10, 204–212. [Google Scholar] [CrossRef]
- Cimini, G.; Squartini, T.; Saracco, F.; Garlaschelli, D.; Gabrielli, A.; Caldarelli, G. The statistical physics of real-world networks. Nat. Rev. Phys. 2019, 1, 58–71. [Google Scholar] [CrossRef] [Green Version]
- Radicchi, F.; Krioukov, D.; Hartle, H.; Bianconi, G. Classical information theory of networks. J. Phys. Complex. 2020, 1, 025001. [Google Scholar] [CrossRef]
- Vicente, R.; Susemihl, A.; Jericó, J.P.; Caticha, N. Moral foundations in an interacting neural networks society: A statistical mechanics analysis. Phys. A Stat. Mech. Its Appl. 2014, 400, 124–138. [Google Scholar] [CrossRef] [Green Version]
- Alves, F.; Caticha, N. Sympatric Multiculturalism in Opinion Models; AIP Conference Proceedings; AIP Publishing LLC.: New York, NY, USA, 2016; Volume 1757, p. 060005. [Google Scholar] [CrossRef] [Green Version]
- Jaynes, E.T. Where do we stand on maximum entropy? In The Maximum Entropy Principle; Levine, R.D., Tribus, M., Eds.; MIT Press: Cambridge, MA, USA, 1979. [Google Scholar] [CrossRef]
- Balian, R. From Microphysics to Macrophysics: Methods and Applications of Statistical Mechanics. Volumes I and II; Springer: Heidelberg, Germany, 1991–1992. [Google Scholar]
- Pressé, S.; Ghosh, K.; Lee, J.; Dill, K.A. Principles of maximum entropy and maximum caliber in statistical physics. Rev. Mod. Phys. 2013, 85, 1115–1141. [Google Scholar] [CrossRef] [Green Version]
- Davis, S.; González, D. Hamiltonian formalism and path entropy maximization. J. Phys. A Math. Theor. 2015, 48, 425003. [Google Scholar] [CrossRef] [Green Version]
- Cafaro, C.; Ali, S.A. Maximum caliber inference and the stochastic Ising model. Phys. Rev. E 2016, 94. [Google Scholar] [CrossRef] [Green Version]
- Caticha, A. Entropic dynamics, time and quantum theory. J. Phys. A Math. Theor. 2011, 44, 225303. [Google Scholar] [CrossRef] [Green Version]
- Caticha, A. The Entropic Dynamics Approach to Quantum Mechanics. Entropy 2019, 21, 943. [Google Scholar] [CrossRef] [Green Version]
- Ipek, S.; Abedi, M.; Caticha, A. Entropic dynamics: Reconstructing quantum field theory in curved space-time. Class. Quantum Gravity 2019, 36, 205013. [Google Scholar] [CrossRef] [Green Version]
- Pessoa, P.; Caticha, A. Exact renormalization groups as a form of entropic dynamics. Entropy 2018, 20, 25. [Google Scholar] [CrossRef] [Green Version]
- Abedi, M.; Bartolomeo, D. Entropic Dynamics of Exchange Rates and Options. Entropy 2019, 21, 586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abedi, M.; Bartolomeo, D. Entropic Dynamics of Stocks and European Options. Entropy 2019, 21, 765. [Google Scholar] [CrossRef] [Green Version]
- Caticha, N. Entropic Dynamics in Neural Networks, the Renormalization Group and the Hamilton-Jacobi-Bellman Equation. Entropy 2020, 22, 587. [Google Scholar] [CrossRef]
- Fisher, R.A. Theory of Statistical Estimation. Proc. Camb. Philos. Soc. 1925, 122, 700. [Google Scholar] [CrossRef] [Green Version]
- Rao, C.R. Information and the accuracy attainable in the estimation of statistical parameters. Bull. Calcutta Math. Soc. 1945, 37, 81. [Google Scholar] [CrossRef]
- Amari, S.; Nagaoka, H. Methods of Information Geometry; American Mathematical Society: Providence, RI, USA, 2000. [Google Scholar]
- Amari, S. Information Geometry and Its Applications; Springer International Publishing: Berlin, Germany, 2016. [Google Scholar] [CrossRef]
- Ay, N.; Jost, J.; Lê, H.V.; Schwachhöfer, L. Information Geometry; Springer International Publishing: Berlin, Germany, 2017. [Google Scholar] [CrossRef]
- Caticha, A. The basics of information geometry. AIP Conf. Proc. Am. Inst. Phys. 2015, 1641, 15–26. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, F.; Garcia, V. Statistical exponential families: A digest with flash cards. arXiv 2009, arXiv:cs.LG/0911.4863. [Google Scholar]
- Ruppeiner, G. Riemannian geometry in thermodynamic fluctuation theory. Rev. Mod. Phys. 1995, 67, 605. [Google Scholar] [CrossRef]
- Janyszek, H.; Mrugala, R. Riemannian geometry and stability of ideal quantum gases. J. Phys. A Math. Gen. 1990, 23, 467. [Google Scholar] [CrossRef]
- Brody, D.; Rivier, N. Geometrical aspects of statistical mechanics. Phys. Rev. E 1995, 51, 1006. [Google Scholar] [CrossRef]
- Oshima, H.; Obata, T.; Hara, H. Riemann scalar curvature of ideal quantum gases obeying Gentiles statistics. J. Phys. A Math. Gen. 1999, 32, 6373–6383. [Google Scholar] [CrossRef]
- Brody, D.; Hook, D.W. Information geometry in vapour–liquid equilibrium. J. Phys. A Math. Theor. 2008, 42, 023001. [Google Scholar] [CrossRef]
- Yapage, N.; Nagaoka, H. An information geometrical approach to the mean-field approximation for quantum Ising spin models. J. Phys. A Math. Theor. 2008, 41, 065005. [Google Scholar] [CrossRef]
- Tanaka, S. Information geometrical characterization of the Onsager-Machlup process. Chem. Phys. Lett. 2017, 689, 152–155. [Google Scholar] [CrossRef]
- Nicholson, S.B.; del Campo, A.; Green, J.R. Nonequilibrium uncertainty principle from information geometry. Phys. Rev. E 2018, 98, 032106. [Google Scholar] [CrossRef] [Green Version]
- Ay, N.; Olbrich, E.; Bertschinger, N.; Jost, J. A geometric approach to complexity. Chaos Interdiscip. J. Nonlinear Sci. 2011, 21, 037103. [Google Scholar] [CrossRef] [PubMed]
- Felice, D.; Mancini, S.; Pettini, M. Quantifying networks complexity from information geometry viewpoint. J. Math. Phys. 2014, 55, 043505. [Google Scholar] [CrossRef] [Green Version]
- Felice, D.; Cafaro, C.; Mancini, S. Information geometric methods for complexity. Chaos Interdiscip. J. Nonlinear Sci. 2018, 28, 032101. [Google Scholar] [CrossRef]
- Fisher, R.A. On the mathematical foundations of theoretical statistics. Philos. Trans. R. Soc. Lond. 1922, 222, 309–368. [Google Scholar] [CrossRef] [Green Version]
- Pitman, E.J.G. Sufficient statistics and intrinsic accuracy. Mathematical Proceedings of the Cambridge Philosophical Society; Cambridge University Press: Cambridge, UK, 1936; Volume 32, pp. 567–579. [Google Scholar] [CrossRef]
- Darmois, G. Sur les lois de probabilitéa estimation exhaustive. CR Acad. Sci. Paris 1935, 260, 85. [Google Scholar]
- Koopman, B.O. On distributions admitting a sufficient statistic. Trans. Am. Math. Soc. 1936, 39, 399–409. [Google Scholar] [CrossRef]
- Brody, D. A note on exponential families of distributions. J. Phys. A Math. Theor. 2007, 40, F691. [Google Scholar] [CrossRef] [Green Version]
- Cencov, N.N. Statistical decision rules and optimal inference. Am. Math. Soc. 1981, 53. [Google Scholar] [CrossRef]
- Campbell, L.L. An extended Cencov characterization of the information metric. Proc. Am. Math. Soc. 1986, 98, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Beck, C.; Cohen, E.G.D. Superstatistics. Phys. A Stat. Mech. Appl. 2003, 322, 267–275. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, S.; Nomizu, K. Foundations of Differential Geometry (Wiley Classics Library); John Wiley and Sons: New York, NY, USA, 1963; Volume 1. [Google Scholar]
- Nawaz, S.; Abedi, M.; Caticha, A. Entropic Dynamics on Curved Spaces; AIP Conference Proceedings; AIP Publishing LLC.: New York, NY, USA, 2016; Volume 1757, p. 030004. [Google Scholar] [CrossRef] [Green Version]
- Nelson, E. Quantum Fluctuations; Princeton University Press: Princeton, NJ, USA, 1985. [Google Scholar]
- Python-ternary: Ternary Plots in Python. GitHub Repository. Available online: https://github.com/marcharper/python-ternary/ (accessed on 19 April 2021).
- Costa, F.X.; Pessoa, P. Entropic dynamics of networks. Northeast J. Complex Syst. 2021, 3, 5. [Google Scholar] [CrossRef]
Distribution | Parameter | Suff. Stat. | Prior |
---|---|---|---|
Exponent Polynomial | uniform | ||
Gaussian | uniform | ||
Multinomial (k) | |||
Poisson | |||
Mixed power laws | uniform |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pessoa, P.; Costa, F.X.; Caticha, A. Entropic Dynamics on Gibbs Statistical Manifolds. Entropy 2021, 23, 494. https://doi.org/10.3390/e23050494
Pessoa P, Costa FX, Caticha A. Entropic Dynamics on Gibbs Statistical Manifolds. Entropy. 2021; 23(5):494. https://doi.org/10.3390/e23050494
Chicago/Turabian StylePessoa, Pedro, Felipe Xavier Costa, and Ariel Caticha. 2021. "Entropic Dynamics on Gibbs Statistical Manifolds" Entropy 23, no. 5: 494. https://doi.org/10.3390/e23050494
APA StylePessoa, P., Costa, F. X., & Caticha, A. (2021). Entropic Dynamics on Gibbs Statistical Manifolds. Entropy, 23(5), 494. https://doi.org/10.3390/e23050494