Applying the Horizontal Visibility Graph Method to Study Irreversibility of Electromagnetic Turbulence in Non-Thermal Plasmas
<p>Construction of Horizontal Visibility Graph. Top, a time series where the degree <math display="inline"><semantics> <msub> <mi>k</mi> <mi>in</mi> </msub> </semantics></math> for in-going links and <math display="inline"><semantics> <msub> <mi>k</mi> <mi>out</mi> </msub> </semantics></math> for out-going links of each of the <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math> nodes are detailed. Bottom, probability distribution <span class="html-italic">P</span> in relation to degree <span class="html-italic">k</span>, where <math display="inline"><semantics> <msub> <mi>n</mi> <mi>in</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>n</mi> <mi>out</mi> </msub> </semantics></math> correspond to the frequency of appearance of the degrees <math display="inline"><semantics> <msub> <mi>k</mi> <mi>in</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>k</mi> <mi>out</mi> </msub> </semantics></math>, respectively, defining <math display="inline"><semantics> <msub> <mi>P</mi> <mi>in</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>P</mi> <mi>out</mi> </msub> </semantics></math>.</p> "> Figure 2
<p>(<b>Left</b>) Average magnetic field energy density fluctuations <math display="inline"><semantics> <msup> <mrow> <mo>(</mo> <mi>δ</mi> <mi>B</mi> <mo>/</mo> <msub> <mi>B</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </semantics></math> as a function of time obtained from Particle In Cell (PIC) simulations for Maxwell–Boltzmann (where MB represents <math display="inline"><semantics> <mrow> <msub> <mi>κ</mi> <mi>e</mi> </msub> <mo>→</mo> <mo>∞</mo> </mrow> </semantics></math>) and Kappa distributions considering different values of the <math display="inline"><semantics> <msub> <mi>κ</mi> <mi>e</mi> </msub> </semantics></math> parameter. (<b>Right</b>) Detrended average magnetic field energy density magnitude.</p> "> Figure 3
<p>Semi-log plot of the degree distributions of HVG associated to Kappa and Maxwell–Boltzmann distribution. There is an exponential behavior <math display="inline"><semantics> <mrow> <mi>P</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>∼</mo> <mo form="prefix">exp</mo> <mfenced separators="" open="(" close=")"> <mo>−</mo> <mi>γ</mi> <mi>k</mi> </mfenced> </mrow> </semantics></math> and the <math display="inline"><semantics> <mi>γ</mi> </semantics></math> value is shown for each distribution. The left panel corresponds to the results for the magnetic field of the trend data from <a href="#entropy-23-00470-f002" class="html-fig">Figure 2</a> (left), while the right panel for the detrended data from <a href="#entropy-23-00470-f002" class="html-fig">Figure 2</a> (right).</p> "> Figure 4
<p>KL-Divergence (<span class="html-italic">D</span>) of magnetic field for different Kappa distributions. (<b>Left</b>) Horizontal Visibility Graph (HVG) method applied on the original data. (<b>Right</b>) HVG on the detrended data. The technique used to determine whether the data represent a reversible process consists of applying the HVG algorithm to randomly disordered copies of the data, obtaining the standard deviation <math display="inline"><semantics> <mi>σ</mi> </semantics></math> around the average divergence computed using the disordered data (black dot and vertical lines).</p> "> Figure 5
<p>Temporal evolution of the KL-divergence considering a moving window that covers 8000 data overlapping every 1000 data on the magnetic time series. (<b>Left</b>) HVG method applied on the original data and (<b>Right</b>) on the detrended data.</p> ">
Abstract
:1. Introduction
2. Horizontal Visibility Graph: Mapping Time Series to Network
Kullback-Leibler Divergence: Measuring Irreversibility
3. Particle in Cell Simulations: Thermal and Non-Thermal Plasma Particle Distributions
4. Results
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kamide, Y.; Chian, A.C.L. (Eds.) Handbook of the Solar-Terrestrial Environment; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Yamada, M.; Kulsrud, R.; Ji, H. Magnetic reconnection. Rev. Mod. Phys. 2010, 82, 603–664. [Google Scholar] [CrossRef]
- Balogh, A.; Treumann, R.A. Physics of Collisionless Shocks; Springer: New York, NY, USA, 2013. [Google Scholar]
- Bruno, R.; Carbone, V. The Solar Wind as a Turbulence Laboratory. Living Rev. Sol. Phys. 2013, 10, 2. [Google Scholar] [CrossRef] [Green Version]
- Yoon, P.H. Kinetic instabilities in the solar wind driven by temperature anisotropies. Rev. Mod. Plasma Phys. 2017, 1, 4. [Google Scholar] [CrossRef]
- Marsch, E. Kinetic Physics of the Solar Corona and Solar Wind. Living Rev. Sol. Phys. 2006, 3. [Google Scholar] [CrossRef] [Green Version]
- Olbert, S. Summary of Experimental Results from M.I.T. Detector on IMP-1. In Physics of the Magnetosphere; Carovillano, R.L., McClay, J.F., Radoski, H.R., Eds.; Springer: Dordrecht, The Netherlands, 1968; pp. 641–659. [Google Scholar] [CrossRef]
- Vasyliunas, V.M. A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3. J. Geophys. Res. (1896–1977) 1968, 73, 2839–2884. [Google Scholar] [CrossRef]
- Maksimovic, M.; Pierrard, V.; Lemaire, J. A kinetic model of the solar wind with Kappa distribution functions in the corona. Astron. Astrophys. 1997, 324, 725–734. [Google Scholar]
- Pierrard, V.; Meyer-Vernet, N. Chapter 11-Electron Distributions in Space Plasmas. In Kappa Distributions; Elsevier: Amsterdam, The Netherlands, 2017; pp. 465–479. [Google Scholar] [CrossRef]
- Livadiotis, G.; Desai, M.I.; Wilson, L.B. Generation of Kappa Distributions in Solar Wind at 1 au. Astrophys. J. 2018, 853, 142. [Google Scholar] [CrossRef]
- Lazar, M.; Pierrard, V.; Poedts, S.; Fichtner, H. Characteristics of solar wind suprathermal halo electrons. Astron. Astrophys. 2020, 642, A130. [Google Scholar] [CrossRef]
- Espinoza, C.M.; Stepanova, M.; Moya, P.S.; Antonova, E.E.; Valdivia, J.A. Ion and Electron κ Distribution Functions Along the Plasma Sheet. Geophys. Res. Lett. 2018, 45, 6362–6370. [Google Scholar] [CrossRef]
- Eyelade, A.V.; Stepanova, M.; Espinoza, C.M.; Moya, P.S. On the Relation between Kappa Distribution Functions and the Plasma Beta Parameter in the Earth’s Magnetosphere: THEMIS Observations. Astrophys. J. Suppl. Ser. 2021, 253, 34. [Google Scholar] [CrossRef]
- Dialynas, K.; Paranicas, C.P.; Carbary, J.F.; Kane, M.; Krimigis, S.M.; Mauk, B.H. Chapter 12-The Kappa-Shaped Particle Spectra in Planetary Magnetospheres. In Kappa Distributions; Elsevier: Amsterdam, The Netherlands, 2017; pp. 481–522. [Google Scholar] [CrossRef]
- Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Tsallis, C. Introduction to Nonextensive Statistical Mechanics; Springer: New York, NY, USA, 2009. [Google Scholar] [CrossRef] [Green Version]
- Yoon, P.H. Thermodynamic, Non-Extensive, or Turbulent Quasi-Equilibrium for the Space Plasma Environment. Entropy 2019, 21, 820. [Google Scholar] [CrossRef] [Green Version]
- Lazar, M.; Fichtner, H.; Yoon, P.H. On the interpretation and applicability of κ-distributions. Astron. Astrophys. 2016, 589, A39. [Google Scholar] [CrossRef] [Green Version]
- Viñas, A.F.; Gaelzer, R.; Moya, P.S.; Mace, R.; Araneda, J.A. Chapter 7-Linear Kinetic Waves in Plasmas Described by Kappa Distributions. In Kappa Distributions; Livadiotis, G., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 329–361. [Google Scholar] [CrossRef]
- Lazar, M.; López, R.A.; Shaaban, S.M.; Poedts, S.; Fichtner, H. Whistler instability stimulated by the suprathermal electrons present in space plasmas. Astrophys. Space Sci. 2019, 364, 171. [Google Scholar] [CrossRef] [Green Version]
- López, R.A.; Lazar, M.; Shaaban, S.M.; Poedts, S.; Yoon, P.H.; Viñas, A.F.; Moya, P.S. Particle-in-cell Simulations of Firehose Instability Driven by Bi-Kappa Electrons. Astrophys. J. Lett. 2019, 873, L20. [Google Scholar] [CrossRef]
- Moya, P.S.; Lazar, M.; Poedts, S. Towards a general quasi-linear approach for the instabilities of bi-Kappa plasmas. Whistler instability. Plasma Phys. Control. Fusion 2020, 63, 025011. [Google Scholar] [CrossRef]
- Navarro, R.E.; Araneda, J.; Muñoz, V.; Moya, P.S.; F.-Viñas, A.; Valdivia, J.A. Theory of electromagnetic fluctuations for magnetized multi-species plasmas. Phys. Plasmas 2014, 21, 092902. [Google Scholar] [CrossRef]
- Viñas, A.F.; Moya, P.S.; Navarro, R.E.; Valdivia, J.A.; Araneda, J.A.; Muñoz, V. Electromagnetic fluctuations of the whistler cyclotron and firehose instabilities in a Maxwellian and Tsallis-kappa-like plasma. J. Geophys. Res. 2015, 120. [Google Scholar] [CrossRef] [Green Version]
- Viñas, A.F.; Moya, P.S.; Navarro, R.; Araneda, J.A. The role of higher-order modes on the electromagnetic whistler-cyclotron wave fluctuations of thermal and non-thermal plasmas. Phys. Plasmas 2014, 21, 012902. [Google Scholar] [CrossRef] [Green Version]
- Lazar, M.; Kim, S.; López, R.A.; Yoon, P.H.; Schlickeiser, R.; Poedts, S. Suprathermal Spontaneous Emissions in κ -distributed Plasmas. Astrophys. J. 2018, 868, L25. [Google Scholar] [CrossRef]
- Sharma, A.S.; Aschwanden, M.J.; Crosby, N.B.; Klimas, A.J.; Milovanov, A.V.; Morales, L.; Sanchez, R.; Uritsky, V. 25 Years of Self-organized Criticality: Space and Laboratory Plasmas. Space Sci. Rev. 2016, 198, 167–216. [Google Scholar] [CrossRef]
- Chapman, S.; Hnat, B.; Kiyani, K. Solar cycle dependence of scaling in solar wind fluctuations. Nonlin. Process. Geophys. 2008, 15, 445–455. [Google Scholar] [CrossRef]
- Domínguez, M.; Nigro, G.; Muñoz, V.; Carbone, V. Study of the fractality of magnetized plasma using an MHD shell model driven by solar wind data. Phys. Plasmas 2018, 25, 092302. [Google Scholar] [CrossRef]
- Domínguez, M.; Nigro, G.; Muñoz, V.; Carbone, V.; Riquelme, M. Study of the fractality in a magnetohydrodynamic shell model forced by solar wind fluctuations. Nonlin. Process. Geophys. 2020, 27, 175–185. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, V.; Domínguez, M.; Valdivia, J.A.; Good, S.; Nigro, G.; Carbone, V. Evolution of fractality in space plasmas of interest to geomagnetic activity. Nonlin. Process. Geophys. 2018, 25, 207–216. [Google Scholar] [CrossRef] [Green Version]
- Wawrzaszek, A.; Echim, M.; Bruno, R. Multifractal Analysis of Heliospheric Magnetic Field Fluctuations Observed by Ulysses. Astrophys. J. 2019, 876, 153–166. [Google Scholar] [CrossRef] [Green Version]
- Alberti, T.; Consolini, G.; Carbone, V.; Yordanova, E.; Marcucci, M.F.; De Michelis, P. Multifractal and chaotic properties of solar wind at MHD and kinetic domains: An empirical mode decomposition approach. Entropy 2019, 21, 320. [Google Scholar] [CrossRef] [Green Version]
- Roberts, O.W.; Thwaites, J.; Sorriso-Valvo, L.; Nakamura, R.; Vörös, Z. Higher-Order Statistics in Compressive Solar Wind Plasma Turbulence: High-Resolution Density Observations From the Magnetospheric MultiScale Mission. Front. Phys. 2020, 8, 464. [Google Scholar] [CrossRef]
- Chhiber, R.; Matthaeus, W.H.; Bowen, T.A.; Bale, S.D. Subproton-scale Intermittency in Near-Sun Solar Wind Turbulence Observed by the Parker Solar Probe. arXiv 2021, arXiv:2102.10181. [Google Scholar]
- Telesca, L.; Pastén, D.; Muñoz, V. Analysis of Time Dynamical Features in Intraplate Versus Interplate Seismicity: The Case Study of Iquique Area (Chile). Pure Appl. Geophys. 2020, 177, 4755–4773. [Google Scholar] [CrossRef]
- Wang, N.; Li, D.; Wang, Q. Visibility graph analysis on quarterly macroeconomic series of China based on complex network theory. Physica A 2012, 391, 6543–6555. [Google Scholar] [CrossRef]
- Zheng, M.; Domanskyi, S.; Piermarocchi, C.; Mias, G.I. Visibility graph based temporal community detection with applications in biological time series. Sci. Rep. 2021, 11, 5623. [Google Scholar] [CrossRef]
- Lacasa, L.; Luque, B.; Luque, J.; Nuño, J. The visibility graph: A new method for estimating the Hurst exponent of fractional Brownian motion. Eur. Phys. J. 2009, 86, 30001. [Google Scholar] [CrossRef] [Green Version]
- Suyal, V.; Prasad, A.; Singh, H.P. Visibility-graph analysis of the solar wind velocity. Sol. Phys. 2014, 289, 379–389. [Google Scholar] [CrossRef] [Green Version]
- Lacasa, L.; Toral, R. Description of stochastic and chaotic series using visibility graphs. Phys. Rev. E 2010, 82, 036120. [Google Scholar] [CrossRef] [Green Version]
- Lacasa, L.; Nunez, A.; Roldán, É.; Parrondo, J.M.; Luque, B. Time series irreversibility: A visibility graph approach. Eur. Phys. J. B 2012, 85, 217. [Google Scholar] [CrossRef] [Green Version]
- Gheibi, A.; Safari, H.; Javaherian, M. The Solar Flare Complex Network. Astrophys. J. 2017, 847, 115–127. [Google Scholar] [CrossRef] [Green Version]
- Najafi, A.; Hossein Darooneh, A.; Gheibi, A.; Farhang, N. Solar Flare Modified Complex Network. Astrophys. J. 2020, 894, 66–80. [Google Scholar] [CrossRef]
- Abe, S.; Suzuki, N. Complex earthquake networks: Hierarchical organization and assortative mixing. Phys. Rev. E 2006, 74, 026113. [Google Scholar] [CrossRef] [Green Version]
- Telesca, L.; Lovallo, M. Analysis of seismic sequences by using the method of visibility graph. EPL 2012, 97, 50002. [Google Scholar] [CrossRef]
- Acosta, B.; Pastén, D.; Moya, P.S. Reversibility of Turbulent and Non-Collisional Plasmas: Solar Wind. Proc. Int. Astron. Union 2019, 15, 363–366. [Google Scholar] [CrossRef]
- Luque, B.; Lacasa, L.; Ballesteros, F.; Luque, J. Horizontal visibility graphs: Exact results for random time series. Phys. Rev. E 2009, 80, 046103. [Google Scholar] [CrossRef] [Green Version]
- Newman, M.E. Properties of highly clustered networks. Phys. Rev. E 2003, 68, 026121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawai, R.; Parrondo, J.M.; Van den Broeck, C. Dissipation: The phase-space perspective. Phys. Rev. Lett. 2007, 98, 080602. [Google Scholar] [CrossRef] [Green Version]
- Parrondo, J.M.; Van den Broeck, C.; Kawai, R. Entropy production and the arrow of time. New J. Phys. 2009, 11, 073008. [Google Scholar] [CrossRef]
- Weiss, G. Time-reversibility of linear stochastic processes. J. Appl. Probab. 1975, 12, 831–836. [Google Scholar] [CrossRef]
- Cover, T.M.; Thomas, J.A. Elements of information theory, 2nd ed.; Wiley: Hoboken, NJ, USA, 2006; p. 19. [Google Scholar]
- López, R.A.; Viñas, A.F.; Araneda, J.A.; Yoon, P.H. Kinetic Scale Structure of Low-frequency Waves and Fluctuations. Astrophys. J. 2017, 845, 60. [Google Scholar] [CrossRef]
- Lazar, M.; Yoon, P.H.; López, R.A.; Moya, P.S. Electromagnetic Electron Cyclotron Instability in the Solar Wind. J. Geophys. Res. Space Phys. 2018, 123, 6–19. [Google Scholar] [CrossRef]
- Bryant, D. Debye length in a kappa-distribution plasma. J. Plasma Phys. 1996, 56, 87–93. [Google Scholar] [CrossRef]
- Chame, A. Irreversible processes: The generalized affinities within Tsallis statistics. Physica A 1998, 255, 423–429. [Google Scholar] [CrossRef]
- Acosta, B.; Pastén, D.; Moya, P.S. Magnetic field fluctuations time series obtained from Particle In Cell (PIC) Simulations of a Magnetized Collisionless Plasma [Data Set]; Zenodo: Geneva, Switzerland, 2021. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acosta-Tripailao, B.; Pastén, D.; Moya, P.S. Applying the Horizontal Visibility Graph Method to Study Irreversibility of Electromagnetic Turbulence in Non-Thermal Plasmas. Entropy 2021, 23, 470. https://doi.org/10.3390/e23040470
Acosta-Tripailao B, Pastén D, Moya PS. Applying the Horizontal Visibility Graph Method to Study Irreversibility of Electromagnetic Turbulence in Non-Thermal Plasmas. Entropy. 2021; 23(4):470. https://doi.org/10.3390/e23040470
Chicago/Turabian StyleAcosta-Tripailao, Belén, Denisse Pastén, and Pablo S. Moya. 2021. "Applying the Horizontal Visibility Graph Method to Study Irreversibility of Electromagnetic Turbulence in Non-Thermal Plasmas" Entropy 23, no. 4: 470. https://doi.org/10.3390/e23040470
APA StyleAcosta-Tripailao, B., Pastén, D., & Moya, P. S. (2021). Applying the Horizontal Visibility Graph Method to Study Irreversibility of Electromagnetic Turbulence in Non-Thermal Plasmas. Entropy, 23(4), 470. https://doi.org/10.3390/e23040470