Entanglement and Non-Locality in Quantum Protocols with Identical Particles
Abstract
:1. Introduction
2. Mode Entanglement
- the notion of locality for distinguishable particles to mode-locality for identical particle systems by declaring local any product:
- the notion of bipartite entanglement for pure states, by declaring entangled those state vectors for which:
Theoretical Setting
- a superposition of two Fock number states,
- a linear superposition of Fock states with uniform weights and arbitrary phases,
- a coherent state of the SU(2) group generated by the two modes and ,
3. Two Quantum Protocols
3.1. Identical Particle Metrology
3.2. Mode Teleportation Protocol
- a projective measurement onto Bell-like states with fixed particle numbers relative to the modes and (see Appendix A), assuming that, as particles A and B in the standard protocol, the location L is close enough to the location Y to allow for coherent manipulations of states;
- a local operation on the mode conditioned to the Bell measurement outcome that needs to be communicated between the locations L and R using classical devices.
4. Discussion
4.1. No-Label Approach
- while the von Neumann entropy of does depend on the chosen subspace , it does not depend on the chosen orthonormal basis of ;
- the operators remove n particles from the N-particle state . Therefore, is supported by the Fock sector with particles; however, it is not an -particle reduced density matrix as would result from a partial trace with respect to the discarded degrees of freedom: for instance, it does not reproduce the expectations of -particle observables [49].
4.2. Particle Entanglement: Another Approach
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Bell-Like Measurement
Appendix B. Teleportation for Distinguishable Particle
References
- Amico, L.; Fazio, R.; Osterloh, A.; Vedral, V. Entanglement in many-body systems. Rev. Mod. Phys. 2008, 80, 517. [Google Scholar] [CrossRef] [Green Version]
- Tichy, M.C.; Mintert, F.; Buchleitner, A. Essential entanglement for atomic and molecular physics. J. Phys. B 2011, 44, 192001. [Google Scholar] [CrossRef]
- Pan, J.W.; Chen, Z.B.; Lu, C.Y.; Weinfurter, H.; Zeilinger, A.; Żukowski, M. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 2012, 84, 777. [Google Scholar] [CrossRef]
- Fabre, C.; Treps, N. Modes and states in Quantum Optics. Rev. Mod. Phys. 2020, 92, 35005. [Google Scholar] [CrossRef]
- Polino, E.; Valeri, M.; Spagnolo, N.; Sciarrino, F. Photonic quantum metrology. AVS Quantum Sci. 2020, 2, 031701. [Google Scholar] [CrossRef]
- Genovese, M. Experimental Quantum Enhanced Optical Interferometry. arXiv 2021, arXiv:2101.02891. [Google Scholar]
- Werner, R.F. Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 1989, 40, 4277. [Google Scholar] [CrossRef] [PubMed]
- Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 2009, 81, 865. [Google Scholar] [CrossRef] [Green Version]
- Braun, D.; Adesso, G.; Benatti, F.; Floreanini, R.; Marzolino, U.; Mitchell, M.W.; Pirandola, S. Quantum-enhanced measurements without entanglement. Rev. Mod. Phys. 2018, 90, 035006. [Google Scholar] [CrossRef] [Green Version]
- Chitambar, E.; Gour, G. Quantum resource theories. Rev. Mod. Phys. 2019, 91, 025001. [Google Scholar] [CrossRef] [Green Version]
- Helstrom, C.W. Quantum Detection and Estimation Theory; Academic Press: New York, NY, USA, 1976. [Google Scholar]
- Holevo, A.S. Probabilistic and Statistical Aspect of Quantum Theory; North-Holland: Amsterdam, The Netherlands, 1982. [Google Scholar]
- Braunstein, S.L.; Caves, C.M.; Milburn, G.J. Generalized Uncertainty Relations: Theory, Examples, and Lorentz Invariance. Ann. Phys. 1996, 247, 135. [Google Scholar] [CrossRef] [Green Version]
- Paris, M.G.A. Quantum estimation for quantum technology. Int. J. Quant. Inf. 2009, 7, 125. [Google Scholar] [CrossRef]
- Tse, M.; Yu, H.; Kijbunchoo, N.; Fernandez-Galiana, A.; Barsotti, L.; Blair, C.D.; Brown, D.D.; Dwyer, S.E.; Effler, A.; Evans, M.; et al. Quantum-Enhanced Advanced LIGO Detectors in the Era of Gravitational-Wave Astronomy. Phys. Rev. Lett. 2019, 123, 231107. [Google Scholar]
- Fink, M.; Steinlechner, F.; Handsteiner, J.; Dowling, J.P.; Sceidl, T.; Ursin, R. Entanglement-enhanced optical gyroscope. New J. Phys. 2019, 21, 053010. [Google Scholar] [CrossRef]
- Moan, E.R.; Horne, R.A.; Arpornthip, T.; Luo, Z.; Fallon, A.J.; Berl, S.J.; Sackett, C.A. Quantum Rotation Sensing with Dual Sagnac Interferometers in an Atom-Optical Waveguide. Phys. Rev. Lett. 2020, 124, 120403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, L.; Schilling, C. Correlation Paradox of the Dissociation Limit: A Quantum Information Perspective. J. Chem. Theory Comput. 2020, 16, 7. [Google Scholar] [CrossRef] [PubMed]
- Grace, M.R.; Gagatsos, C.N.; Zhuang, Q.; Guha, S. Quantum-Enhanced Fiber-Optic Gyroscopes Using Quadrature Squeezing and Continuous-Variable Entanglement. Phys. Rev. Appl. 2020, 14, 034065. [Google Scholar] [CrossRef]
- Wu, Y.; Guo, J.; Feng, X.; Chen, L.Q.; Yuan, C.H.; Zhang, W. Atom-Light Hybrid Quantum Gyroscope. Phys. Rev. Appl. 2020, 14, 064023. [Google Scholar] [CrossRef]
- Stace, T.M. Quantum limits of thermometry. Phys. Rev. A 2010, 82, 011611. [Google Scholar] [CrossRef] [Green Version]
- Benatti, F.; Floreanini, R.; Marzolino, U. Sub-shot-noise quantum metrology with entangled identical particles. Ann. Phys. 2010, 325, 924. [Google Scholar] [CrossRef] [Green Version]
- Benatti, F.; Floreanini, R.; Marzolino, U. Entanglement and squeezing with identical particles: Ultracold atom quantum metrology. J. Phys. B 2010, 325, 924. [Google Scholar] [CrossRef] [Green Version]
- Gottesman, D.; Chuang, I.L. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 1999, 402, 390. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Leung, D.W.; Chuang, I.L. Methodology for quantum logic gate construction. Phys. Rev. A 2000, 62, 052316. [Google Scholar] [CrossRef] [Green Version]
- Childs, A.M.; Leung, D.W.; Nielsen, M.A. Unified derivations of measurement-based schemes for quantum computation. Phys. Rev. A 2005, 71, 032318. [Google Scholar] [CrossRef] [Green Version]
- Gross, D.; Eisert, J. Novel Schemes for Measurement-Based Quantum Computation. Phys. Rev. Lett. 2007, 98, 220503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiu, Y.J.; Chen, X.; Chuang, I.L. Fermionic measurement-based quantum computation. Phys. Rev. A 2013, 87, 012305. [Google Scholar] [CrossRef]
- Hillmich, S.; Zulehner, A.; Wilde, R. Exploiting Quantum Teleportation in Quantum Circuit Mapping. arXiv 2020, arXiv:2011.07314. [Google Scholar]
- Wilde, M.M. Quantum Information Theory, 2nd ed.; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Khatri, S.; Wilde, M.M. Principles of Quantum Communication Theory: A Modern Approach. arXiv 2020, arXiv:2011.04672. [Google Scholar]
- Briegel, H.J.; Dür, W.; Cirac, J.I.; Zoller, P. Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication. Phys. Rev. Lett. 1998, 81, 5932. [Google Scholar] [CrossRef]
- Dür, W.; Briegel, H.J.; Cirac, J.I.; Zoller, P. Quantum repeaters based on entanglement purification. Phys. Rev. A 1999, 59, 169. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Feng, X.; Cui, K.; Liu, F.; Zhang, W.; Huang, Y. Implementing Unitary Operators with Decomposition into Diagonal Matrices of Transform Domains. arXiv 2020, arXiv:2011.03250. [Google Scholar]
- Tschernig, K.; Müller, C.; Smoor, M.; Kroh, T.; Wolters, J.; Benson, O.; Busch, K.; Pérez-Leija, A. Direct observation of the particle exchange phase of photons. arXiv 2020, arXiv:2011.08777. [Google Scholar]
- Garcia-Escartin, J.C.; Gimeno, V.; Moyano-Fernández, J.J. On two misconceptions in current relativistic quantum information. arXiv 2020, arXiv:2011.15048. [Google Scholar]
- Würtz, P.; Langen, T.; Gericke, T.; Koglbauer, A.; Ott, H. Experimental Demonstration of Single-Site Addressability in a Two-Dimensional Optical Lattice. Phys. Rev. Lett. 2009, 103, 080404. [Google Scholar] [CrossRef]
- Bakr, W.S.; Peng, A.; Tai, M.E.; Ma, R.; Simon, J.; Gillen, J.I.; Fölling, S.; Pollet, L.; Greiner, M. Probing the Superfluid-to-Mott Insulator Transition at the Single-Atom Level. Science 2010, 329, 547. [Google Scholar] [CrossRef] [Green Version]
- Sherson, J.F.; Weitenberg, C.; Endres, M.; Cheneau, M.; Bloch, I.; Kuhr, S. Single-atom-resolved fluorescence imaging of an atomic Mott insulator. Nature 2010, 467, 68. [Google Scholar] [CrossRef]
- Schlederer, M.; Mozdzen, A.; Lompe, T.; Moritz, H. Single atom counting in a two-color magneto-optical trap. arXiv 2020, arXiv:2011.10081. [Google Scholar]
- Zanardi, P. Virtual Quantum Subsystems. Phys. Rev. Lett. 2001, 87, 077901. [Google Scholar] [CrossRef] [Green Version]
- Bose, S.; Home, D. Generic Entanglement Generation, Quantum Statistics, and Complementarity. Phys. Rev. Lett. 2002, 88, 050401. [Google Scholar] [CrossRef] [Green Version]
- Zanardi, P. Quantum entanglement in fermionic lattices. Phys. Rev. A 2002, 65, 042101. [Google Scholar] [CrossRef] [Green Version]
- Calsamiglia, J. Generalized measurements by linear elements. Phys. Rev. A 2002, 65, 030301. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y. Quantum entanglement of identical particles. Phys. Rev. A 2003, 67, 024301. [Google Scholar] [CrossRef] [Green Version]
- Schuch, N.; Verstraete, F.; Cirac, J.I. Nonlocal Resources in the Presence of Superselection Rules. Phys. Rev. Lett. 2004, 92, 087904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narnhofer, H. The role of transposition and CPT operation for entanglement. Phys. Lett. A 2004, 310, 423. [Google Scholar] [CrossRef]
- Benatti, F.; Floreanini, R.; Franchini, F.; Marzolino, U. Entanglement in indistinguishable particle systems. Phys. Rep. 2020, 878, 1. [Google Scholar] [CrossRef]
- Benatti, F.; Floreanini, R.; Franchini, F.; Marzolino, U. Remarks on entanglement and identical particles. Open Syst. Inf. Dyn. 2017, 24, 1740004. [Google Scholar] [CrossRef] [Green Version]
- Johann, T.J.F.; Marzolino, U. Non-Locality and Entanglement of Indistinguishable Particles. in preparation.
- Emch, G.C. Algebraic Methods in Statistical Mechanics and Quantum Field Theory; Wiley: New York, NY, USA, 1972. [Google Scholar]
- Narnhofer, H. Entanglement, split and nuclearity in quantum field theory. Rep. Math. Phys. 2002, 50, 111. [Google Scholar] [CrossRef]
- Rangamani, M.; Takayanagi, T. Holographic Entanglement Entropy; Lecture Notes in Physics 931; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Holland, S.; Sanders, K. Entanglement Measures and Their Properties in Quantum Field Theory; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Nishioka, T. Entanglement entropy: Holography and renormalization group. Rev. Mod. Phys. 2018, 90, 035007. [Google Scholar] [CrossRef] [Green Version]
- Witten, E. Entanglement properties of quantum field theory. Rev. Mod. Phys. 2018, 90, 045003. [Google Scholar] [CrossRef] [Green Version]
- Bañuls, M.C.; Cirac, J.I.; Wolf, M.M. Entanglement in fermionic systems. Phys. Rev. A 2007, 76, 022311. [Google Scholar] [CrossRef] [Green Version]
- Benatti, F.; Floreanini, R.; Marzolino, U. Entanglement in fermion systems and quantum metrology. Phys. Rev. A 2014, 89, 032326. [Google Scholar] [CrossRef] [Green Version]
- Benatti, F.; Floreanini, R. Entanglement and algebraic independence in fermion systems. Int. J. Quantum Inform. 2014, 12, 1461002. [Google Scholar] [CrossRef] [Green Version]
- Benatti, F.; Floreanini, R. Entanglement in algebraic quantum mechanics: Majorana fermion systems. J. Phys. A 2016, 49, 305303. [Google Scholar] [CrossRef] [Green Version]
- Benatti, F.; Floreanini, R.; Marzolino, U. Bipartite entanglement in systems of identical particles: The partial transposition criterion. Ann. Phys. 2012, 327, 1304. [Google Scholar] [CrossRef] [Green Version]
- Benatti, F.; Floreanini, R.; Marzolino, U. Entanglement robustness and geometry in systems of identical particles. Phys. Rev. A 2012, 85, 042329. [Google Scholar] [CrossRef] [Green Version]
- Tilma, T.; Hamaji, S.; Munro, W.J.; Nemoto, K. Entanglement is not a critical resource for quantum metrology. Phys. Rev. A 2010, 81, 022108. [Google Scholar] [CrossRef] [Green Version]
- Benatti, F.; Braun, D. Sub-shot-noise sensitivities without entanglement. Phys. Rev. A 2013, 87, 012340. [Google Scholar] [CrossRef] [Green Version]
- Vourdas, A. SU(2) and SU(1,1) phase states. Phys. Rev. A 1990, 41, 1653. [Google Scholar] [CrossRef] [PubMed]
- Gagatsos, C.N.; Oreshkov, O.; Cerf, N.J. Majorization relations and entanglement generation in a beam splitter. Phys. Rev. A 2013, 87, 042307. [Google Scholar] [CrossRef] [Green Version]
- Hari krishnan, S.V.; Dasgupta, S. Obtaining entangled photons from fully mixed states using beam splitters. arXiv 2020, arXiv:2011.11902. [Google Scholar]
- Yurke, B.; Stoler, D. Bell’s-inequality experiments using independent-particle sources. Phys. Rev. A 1992, 46, 2229. [Google Scholar] [CrossRef]
- Li, Y.; Gessner, M.; Li, W.; Smerzi, A. Hyper- and hybrid nonlocality. Phys. Rev. Lett. 2018, 120, 050404. [Google Scholar] [CrossRef] [Green Version]
- Bennett, C.H.; Crassard, G.; Crépeau, C.; Jozsa, R.; Peres, A.; Wootters, W.K. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 1993, 70, 1895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marinatto, L.; Weber, T. Teleportation with indistinguishable particles. Phys. Lett. A 2001, 287, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Schuch, N.; Verstraete, F.; Cirac, J.I. Quantum entanglement theory in the presence of superselection rules. Phys. Rev. A 2004, 70, 042310. [Google Scholar] [CrossRef] [Green Version]
- Heaney, L.; Vedral, V. Natural Mode Entanglement as a Resource for Quantum Communication. Phys. Rev. Lett. 2009, 103, 200502. [Google Scholar] [CrossRef] [Green Version]
- Marzolino, U.; Buchleitner, A. Quantum teleportation with identical partices. Phys. Rev. A 2015, 91, 032316. [Google Scholar] [CrossRef] [Green Version]
- Marzolino, U.; Buchleitner, A. Performances and robustness of quantum teleportation with identical particles. Proc. R. Soc. A 2016, 472, 20150621. [Google Scholar] [CrossRef]
- Chitambar, E.; Leung, D.; Mancinska, L.; Ozols, M.; Winter, A. Everything You Always Wanted to Know About LOCC (But Were Afraid to Ask). Commun. Math. Phys. 2014, 328, 303. [Google Scholar] [CrossRef] [Green Version]
- Lo Franco, R.; Compagno, G. Quantum entanglement of identical particles by standard information-theoretic notions. Sci. Rep. 2016, 6, 20603. [Google Scholar] [CrossRef]
- Compagno, G.; Castellini, A.; Lo Franco, R. Dealing with indistinguishable particles and their entanglement. Phil. Trans. R. Soc. A 2018, 376, 20170317. [Google Scholar] [CrossRef]
- Castellini, A.; Bellomo, B.; Compagno, G.; Lo Franco, R. Activating remote entanglement in a quantum network by local counting of identical particles. Phys. Rev. A 2019, 99, 062322. [Google Scholar] [CrossRef] [Green Version]
- Paskauskas, R.; You, L. Quantum correlations in two-boson wave functions. Phys. Rev. A 2001, 64, 042310. [Google Scholar] [CrossRef] [Green Version]
- Eckert, K.; Schliemann, J.; Bruß, D.; Lewenstein, M. Quantum Correlations in Systems of Indistinguishable Particles. Ann. Phys. 2002, 299, 88. [Google Scholar] [CrossRef] [Green Version]
- Grabowski, J.; Kuś, M.; Marmo, G. Entanglement for multipartite systems of indistinguishable particles. J. Phys. A 2011, 44, 175302. [Google Scholar] [CrossRef]
- Morris, B.; Yadin, B.; Fadel, M.; Zibold, T.; Treutlein, P.; Adesso, G. Entanglement between Identical Particles Is a Useful and Consistent Resource. Phys. Rev. X 2020, 10, 041012. [Google Scholar] [CrossRef]
- Chitambar, E.; de Vicente, J.I.; Girard, M.W.; Gour, G. Entanglement manipulation and distillability beyond local operations and classical communication. J. Math. Phys. 2020, 61, 042201. [Google Scholar] [CrossRef] [Green Version]
- Streltsov, A.; Adesso, G.; Plenio, M.B. Colloquium: Quantum coherence as a resource. Rev. Mod. Phys. 2017, 89, 041003. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benatti, F.; Floreanini, R.; Marzolino, U. Entanglement and Non-Locality in Quantum Protocols with Identical Particles. Entropy 2021, 23, 479. https://doi.org/10.3390/e23040479
Benatti F, Floreanini R, Marzolino U. Entanglement and Non-Locality in Quantum Protocols with Identical Particles. Entropy. 2021; 23(4):479. https://doi.org/10.3390/e23040479
Chicago/Turabian StyleBenatti, Fabio, Roberto Floreanini, and Ugo Marzolino. 2021. "Entanglement and Non-Locality in Quantum Protocols with Identical Particles" Entropy 23, no. 4: 479. https://doi.org/10.3390/e23040479
APA StyleBenatti, F., Floreanini, R., & Marzolino, U. (2021). Entanglement and Non-Locality in Quantum Protocols with Identical Particles. Entropy, 23(4), 479. https://doi.org/10.3390/e23040479