An Efficient DenseNet-Based Deep Learning Model for Malware Detection
<p>A sample of malware images belonging to various classes of the malware datasets (<b>a</b>) Adialer.C, (<b>b</b>) Autorun.K, (<b>c</b>) Obfuscator.ACY, (<b>d</b>) Ramnit, (<b>e</b>) Dinwold, and (<b>f</b>) Regrun.</p> "> Figure 2
<p>Structural diagram of the proposed model.</p> "> Figure 3
<p>Flow of the DenseNet Model.</p> "> Figure 4
<p>Distribution of malware over classes in the (<b>a</b>) Malimg, (<b>b</b>) BIG 2015, (<b>c</b>) MaleVis, and (<b>d</b>) Malicia datasets.</p> "> Figure 5
<p>Training and test accuracy and loss for the Malimg dataset.</p> "> Figure 6
<p>Training and test accuracy and loss for the BIG2015 dataset.</p> "> Figure 7
<p>Training and test accuracy and loss for the MaleVis dataset.</p> "> Figure 8
<p>Confusion matrix for the Malimg dataset.</p> "> Figure 9
<p>Confusion matrix for the BIG 2015 dataset.</p> "> Figure 10
<p>Confusion matrix for the MaleVis dataset.</p> "> Figure 11
<p>Receiver Operating Characteristic (ROC) curve for the Malimg dataset.</p> "> Figure 12
<p>ROC curve for the BIG 2015 dataset.</p> "> Figure 13
<p>ROC curve for the MaleVis dataset.</p> ">
Abstract
:1. Introduction
- An effective and expeditious deep learning-based malware detection and classification system using raw binary images while requiring no binary execution (behavioral analysis), reverse engineering, or code disassembly language skills is provided.
- The proposed methodology employs pretrained Densely Connected Convolutional Networks (DenseNet) to achieve faster preprocessing and training of binary samples. The DenseNet model allows for concatenation of features and utilizes fewer parameters compared to other CNN models. The implicit deep supervision mechanism of the DenseNet model contributes to effective malware detection. Additionally, the dense connections with its regularizing power help reduce overfitting with smaller malware training datasets.
- The data imbalance problem in classifying malware is tackled using reweighting of the class-balanced categorical cross-entropy loss function in the softmax layer.
- We conduct an extensive evaluation on four different malware datasets, of which three datasets are used for training and one dataset is used for testing the proposed model. The results show that the proposed system is very efficient and effective. It is also resilient against sophisticated malware evolution over time and against anti-malware evasion tactics.
- Without the need for complex feature engineering tasks, the proposed deep learning-based malware detection model achieves higher accuracy rates of 98.23%, 98.46%, and 98.21% for the three datasets and of 89.48% for the unseen (Malicia) dataset. The model has high computational performance, achieving an efficient malware detection system.
2. Literature Survey
3. Proposed Methodology
3.1. Preprocessing of Input Binaries
3.2. DenseNet
Algorithm 1. DenseNet algorithm. |
Input: PE binary files |
Output: Correct matching class ci |
1. Transform binaries to two—dimensional array grayscale images , where , —set of all input images. |
2. Train the model. |
a. Extract raw features from the input image. |
b. Perform initial convolution and generate feature maps. |
c. Link each layer by concatenating the feature maps of all preceding layers. |
d. Perform 1 × 1 and 3 × 3 convolutions for 6 times in the first Dense Conv block. |
e. Perform 1 × 1 convolution with 2 × 2 average pooling in the first transition layer. |
f. Perform 1 × 1 and 3 × 3 convolutions 12 times in the second Dense Conv block. |
g. Perform 1 × 1 convolution with 2 × 2 average pooling in the second transition layer. |
h. Perform 1 × 1 and 3 × 3 convolutions for 48 times in the third Dense Conv block. |
i. Perform 1 × 1 convolution with 2 × 2 average pooling in the third transition layer. |
j. Perform 1 × 1 and 3 × 3 convolutions for 32 times in the fourth Dense Conv block. |
k. Perform 1 × 1 convolution with 2 × 2 average pooling in the fourth transition layer. |
l. Perform global average pooling at the end of step 2(k). |
3. Classify the input images into their respective classes using a softmax classifier. |
3.3. Classification
3.4. Training
4. Experimental Results
4.1. Datasets
4.2. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jang-Jaccard, J.; Nepal, S. A survey of emerging threats in cybersecurity. J. Comput. Syst. Sci. 2014, 80, 973–993. [Google Scholar] [CrossRef]
- Amoroso, E. Recent progress in software security. IEEE Softw. 2018, 35, 11–13. [Google Scholar] [CrossRef]
- Drew, J.; Moore, T.; Hahsler, M. Polymorphic malware detection using sequence classification methods. In Proceedings of the 2016 IEEE Security and Privacy Workshops (SPW), San Jose, CA, USA, 22–26 May 2016; pp. 81–87. [Google Scholar]
- Canfora, G.; Mercaldo, F.; Visaggio, C.A.; Di Notte, P. Metamorphic Malware Detection Using Code Metrics. Inf. Secur. J. A Glob. Perspect. 2014, 23, 57–67. [Google Scholar] [CrossRef]
- OKane, P.; Sezer, S.; McLaughlin, K. Obfuscation The hidden malware. IEEE Secur. Priv. 2011, 9, 41–47. [Google Scholar] [CrossRef]
- Kuraku, S.; Kalla, D. Emotet Malware—A Banking Credentials Stealer. Iosr J. Comput. Eng. 2020, 22, 31–41. [Google Scholar]
- Celik, R.; Gezer, A. Behavioral Analysis of Trickbot Banking Trojan with its New Tricks. Int. J. Technol. Eng. Stud. 2019, 5, 95–105. [Google Scholar] [CrossRef]
- Islam, R.; Tian, R.; Batten, L.M.; Versteeg, S. Classification of malware based on integrated static and dynamic features. J. Netw. Comput. Appl. 2013, 36, 646–656. [Google Scholar] [CrossRef]
- Subairu, S.O.; Alhassan, J.; Misra, S.; Abayomi-Alli, O.; Ahuja, R.; Damasevicius, R.; Maskeliunas, R. An experimental approach to unravel effects of malware on system network interface. In Lecture Notes in Electrical Engineering; Springer: Singapore, 2020; pp. 225–235. [Google Scholar] [CrossRef]
- Nataraj, L.; Karthikeyan, S.; Jacob, G.; Manjunath, B.S. Malware images. In Proceedings of the 8th International Symposium on Visualization for Cyber Security—VizSec 11, Pittsburgh, PA, USA, 20 July 2011. [Google Scholar] [CrossRef]
- Ronen, R.; Radu, M.; Feuerstein, C.; Yom-Tov, E.; Ahmadi, M. Microsoft Malware Classification Challenge. arXiv 2018, arXiv:1802.10135. [Google Scholar]
- Bozkir, A.S.; Cankaya, A.O.; Aydos, M. Utilization and Comparison of Convolutional Neural Networks in Malware Recognition. In Proceedings of the 27th Signal Processing and Communications Applications Conference (SIU), Sivas, Turkey, 24–26 April 2019; pp. 1–4. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.; Li, K.; Li, F. ImageNet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2009), Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar] [CrossRef] [Green Version]
- Tensorflow. Available online: www.tensorflow.org (accessed on 10 February 2020).
- Nappa, A.; Rafique, M.Z.; Caballero, J. The MALICIA dataset identification and analysis of drive-by download operations. Int. J. Inf. Secur. 2015, 14, 15–33. [Google Scholar] [CrossRef]
- Souri, A.; Hosseini, R. A state-of-the-art survey of malware detection approaches using data mining techniques. Hum. Cent. Comput. Inf. Sci. 2018, 8. [Google Scholar] [CrossRef]
- Odusami, M.; Abayomi-Alli, O.; Misra, S.; Shobayo, O.; Damasevicius, R.; Maskeliunas, R. Android malware detection: A survey. In Applied Informatics. ICAI 2018. Communications in Computer and Information Science; Springer: Cham, Switzerland, 2018; Volume 942, pp. 255–266. [Google Scholar] [CrossRef]
- Santos, I.; Brezo, F.; Ugarte-Pedrero, X.; Bringas, P.G. Opcode sequences as representation of executables for data-mining-based unknown malware detection. Inf. Sci. 2013, 231, 64–82. [Google Scholar] [CrossRef]
- Tian, R.; Batten, L.M.; Versteeg, S.C. Function length as a tool for malware classification. In Proceedings of the 3rd International Conference on Malicious and Unwanted Software (MALWARE), Fairfax, VI, USA, 7–8 October 2008; pp. 69–76. [Google Scholar]
- Kong, D.; Yan, G. Discriminant malware distance learning on structural information for automated malware classification. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago, IL, USA, 11–14 August 2013; pp. 1357–1365. [Google Scholar]
- Wadkar, M.; Di Troia, F.; Stamp, M. Detecting malware evolution using support vector machines. Expert Syst. Appl. 2020, 143, 113022. [Google Scholar] [CrossRef]
- Schultz, M.G.; Eskin, E.; Zadok, F.; Stolfo, S.J. Data mining methods for detection of new malicious executables. In Proceedings of the 2001 IEEE Symposium on Security and Privacy (SP 2001), Oakland, CA, USA, 14–16 May 2001; pp. 38–49. [Google Scholar]
- Roseline, S.A.; Geetha, S. Intelligent Malware Detection using Oblique Random Forest Paradigm. In Proceedings of the International Conference on Advances in Computing, Communications and Informatics (ICACCI), Bangalore, India, 19–22 September 2018; pp. 330–336. [Google Scholar]
- Kim, H.; Kim, J.; Kim, Y.; Kim, I.; Kim, K.J.; Kim, H. Improvement of malware detection and classification using API call sequence alignment and visualization. Clust. Comput. 2019, 22, 921–929. [Google Scholar] [CrossRef]
- Imran, M.; Afzal, M.T.; Qadir, M.A. Similarity-based malware classification using hidden Markov model. In Proceedings of the Fourth International Conference on Cyber Security, Cyber Warfare, and Digital Forensic (CyberSec), Jakarta, Indonesia, 29–31 October 2015; pp. 129–134. [Google Scholar]
- Kolter, J.Z.; Maloof, M.A. Learning to detect and classify malicious executables in the wild. J. Mach. Learn. Res. 2006, 7, 2721–2744. [Google Scholar]
- Rieck, K.; Trinius, P.; Willems, C.; Holz, T. Automatic analysis of malware behavior using machine learning. J. Comput. Secur. 2011, 19, 639–668. [Google Scholar] [CrossRef]
- Roseline, S.A.; Hari, G.; Geetha, S.; Krishnamurthy, R. Vision-Based Malware Detection and Classification Using Lightweight Deep Learning Paradigm. In Proceedings of the International Conference on Computer Vision and Image Processing, Jaipur, India, 27–29 September 2019; pp. 62–73. [Google Scholar]
- Roseline, S.A.; Sasisri, A.D.; Geetha, S.; Balasubramanian, C. Towards Efficient Malware Detection and Classification using Multilayered Random Forest Ensemble Technique. In Proceedings of the 2019 International Carnahan Conference on Security Technology (ICCST), Chennai, India, 1–3 October 2019; pp. 1–6. [Google Scholar]
- Singh, A.; Handa, A.; Kumar, N.; Shukla, S.K. Malware classification using image representation. In Proceedings of the International Symposium on Cyber Security Cryptography and Machine Learning, Beer Sheva, Israel, 27–28 June 2019; pp. 75–92. [Google Scholar]
- Shiva Darshan, S.L.; Jaidhar, C.D. Windows malware detector using convolutional neural network based on visualization images. IEEE Trans. Emerg. Top. Comput. 2019. [Google Scholar] [CrossRef]
- Vasan, D.; Alazab, M.; Wassan, S.; Safaei, B.; Zheng, Q. Image-based malware classification using ensemble of CNN architectures (IMCEC). Comput. Secur. 2020, 92. [Google Scholar] [CrossRef]
- Zhang, J.; Qin, Z.; Yin, H.; Ou, L.; Xiao, S.; Hu, Y. Malware variant detection using opcode image recognition with small training sets. In Proceedings of the 25th International Conference on Computer Communication and Networks (ICCCN), Waikoloa, HI, USA, 1–4 August 2016; pp. 1–9. [Google Scholar]
- Han, K.; Kang, B.; Im, E.G. Malware analysis using visualized image matrices. Sci. World J. 2014. [Google Scholar] [CrossRef] [Green Version]
- Yan, H.; Zhou, H.; Zhang, H. Automatic malware classification via PRICoLBP. Chin. J. Electron. 2018, 27, 852–859. [Google Scholar] [CrossRef]
- Conti, G.; Dean, E.; Sinda, M.; Sangster, B. Visual reverse engineering of binary and data files. In Proceedings of the International Workshop on Visualization for Computer Security, Cambridge, MA, USA, 15 September 2008; Springer: Berlin/Heidelberg, Germany, 2008; pp. 1–17. [Google Scholar]
- Kancherla, K.; Mukkamala, S. Image visualization based malware detection. In Proceedings of the 2013 IEEE Symposium on Computational Intelligence in Cyber Security (CICS), Singapore, 16–19 April 2013; pp. 40–44. [Google Scholar]
- Liu, L.; Wang, B. Malware classification using gray-scale images and ensemble learning. In Proceedings of the 3rd International Conference on Systems and Informatics (ICSAI), Shangai, China, 19–21 November 2016; pp. 1018–1022. [Google Scholar]
- Fu, J.; Xue, J.; Wang, Y.; Liu, Z.; Shan, C. Malware visualization for fine-grained classification. IEEE Access 2018, 6, 14510–14523. [Google Scholar] [CrossRef]
- Nisa, M.; Shah, J.H.; Kanwal, S.; Raza, M.; Khan, M.A.; Damaševičius, R.; Blažauskas, T. Hybrid malware classification method using segmentation-based fractal texture analysis and deep convolution neural network features. Appl. Sci. 2020, 10, 4966. [Google Scholar] [CrossRef]
- Azab, A.; Khasawneh, M. MSIC Malware spectrogram image classification. IEEE Access 2020, 8, 102007–102021. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, X.; Hu, J.; Xu, W. Android malware detection method based on bytecode image. J. Ambient Intell. Humaniz. Comput. 2020. [Google Scholar] [CrossRef]
- Mahdavifar, S.; Ghorbani, A.A. DeNNeS Deep embedded neural network expert system for detecting cyber attacks. Neural Comput. Appl. 2020, 32, 14753–14780. [Google Scholar] [CrossRef]
- Naeem, H.; Ullah, F.; Naeem, M.R.; Khalid, S.; Vasan, D.; Jabbar, S.; Saeed, S. Malware detection in industrial internet of things based on hybrid image visualization and deep learning model. Ad Hoc Netw. 2020, 105. [Google Scholar] [CrossRef]
- Singh, J.; Thakur, D.; Ali, F.; Gera, T.; Kwak, K.S. Deep feature extraction and classification of android malware images. Sensors 2020, 20, 7013. [Google Scholar] [CrossRef]
- Sun, G.; Qian, Q. Deep learning and visualization for identifying malware families. IEEE Trans. Dependable Secur. Comput. 2021, 18, 283–295. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Zhong, W.; Gu, F. A multi-level deep learning system for malware detection. Expert Syst. Appl. 2019, 133, 151–162. [Google Scholar] [CrossRef]
- Ni, S.; Qian, Q.; Zhang, R. Malware identification using visualization images and deep learning. Comput. Secur. 2018, 77, 871–885. [Google Scholar] [CrossRef]
- Yong, B.; Wei, W.; Li, K.; Shen, J.; Zhou, Q.; Wozniak, M.; Połap, D.; Damaševičius, R. Ensemble machine learning approaches for webshell detection in internet of things environments. Trans. Emerg. Telecommun. Technol. 2020. [Google Scholar] [CrossRef]
- Azeez, N.A.; Odufuwa, O.E.; Misra, S.; Oluranti, J.; Damaševičius, R. Windows PE Malware Detection Using Ensemble Learning. Informatics 2021, 8, 10. [Google Scholar] [CrossRef]
- Damaševičius, R.; Venčkauskas, A.; Toldinas, J.; Grigaliūnas, Š. Ensemble-Based Classification Using Neural Networks and Machine Learning Models for Windows PE Malware Detection. Electronics 2021, 10, 485. [Google Scholar] [CrossRef]
- Cui, Z.; Xue, F.; Cai, X.; Cao, Y.; Wang, G.G.; Chen, J. Detection of malicious code variants based on deep learning. IEEE Trans. Ind. Inform. 2018, 14, 3187–3196. [Google Scholar] [CrossRef]
- Agarap, A.F.; Pepito, F.J.H. Towards building an intelligent anti-malware system a deep learning approach using support vector machine (SVM) for malware classification. arXiv 2017, arXiv:1801.00318. [Google Scholar]
- Cui, Y.; Jia, M.; Lin, T.Y.; Song, Y.; Belongie, S. Class-balanced loss based on effective number of samples. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 9268–9277. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Roseline, S.A.; Geetha, S.; Kadry, S.; Nam, Y. Intelligent Vision-based Malware Detection and Classification using Deep Random Forest Paradigm. IEEE Access 2020, 8, 206303–206324. [Google Scholar] [CrossRef]
- Vinayakumar, R.; Alazab, M.; Soman, K.P.; Poornachandran, P.; Venkatraman, S. Robust intelligent malware detection using deep learning. IEEE Access 2019, 7, 46717–46738. [Google Scholar] [CrossRef]
- Luo, J.S.; Lo, D.C.T. Binary malware image classification using machine learning with local binary pattern. In Proceedings of the IEEE International Conference on Big Data (Big Data), Boston, MA, USA, 11–14 December 2017; pp. 4664–4667. [Google Scholar]
Datasets | Family Name |
---|---|
Malimg [10] | Yuner.A, Wintrim.BX, VB.AT, Swizzor.gen!E, Skintrim.N, Rbot!gen, Obfuscator.AD, Malex.gen!J, Lolyda.AT, Lolyda.AA3, Lolyda.AA2, Lolyda.AA1, Instantaccess, Fakerean, Dontovo.A, Dialplatform.B, C2LOP.P, C2LOP.gen!g, Autorun.K, Alueron.gen!J, Allaple.L, Allaple.A, Agent.FYI, Adialer.C |
BIG 2015 [11] | Vundo, Tracur, Simda, Ramnit, Obfuscator.ACY, Lollipop, Kelihos_ver3, Kelihos_ver1, Gatak |
MaleVis [12] | Vilsel, VBKrypt, VBA/Hilium.A, Stantinko, Snarasite.D!tr, Sality, Regrun.A, Neshta, Neoreklami, MultiPlug, InstallCore.C, Injector, Hlux!IK, HackKMS.A, Fasong, Expiro-H, Elex, Dinwod!rfn, BrowseFox, AutoRun-PU, Androm, Amonetize, Allaple.A, Agent-fyi, Adposhel |
Malicia [16] | Zeroaccess, Zbot, Winwebsec, Smarthdd, Securityshield Harebot, Cridex, Cleaman |
Models | Malimg Dataset | BIG2015 Dataset | MaleVis Dataset | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Acc (%) | Pr | Re | F-Score | Acc (%) | Pr | Re | F-Score | Acc (%) | Pr | Re | F-Score | |
KNN | 82.4 | 0.8146 | 0.8233 | 0.8189 | 85.28 | 0.8614 | 0.8464 | 0.8538 | 84.36 | 0.8531 | 0.8357 | 0.8443 |
LR | 69.2 | 0.6955 | 0.668 | 0.6815 | 62.59 | 0.6421 | 0.6235 | 0.6327 | 66.47 | 0.6686 | 0.6575 | 0.6630 |
SVM | 75.1 | 0.7459 | 0.7534 | 0.7496 | 89.25 | 0.9042 | 0.8846 | 0.8943 | 88.38 | 0.8779 | 0.8748 | 0.8763 |
NB | 56.25 | 0.5678 | 0.5547 | 0.5612 | 52.14 | 0.5158 | 0.5223 | 0.5190 | 55.62 | 0.5622 | 0.5474 | 0.5547 |
DT | 88.47 | 0.8798 | 0.8721 | 0.8759 | 86.41 | 0.8632 | 0.8575 | 0.8603 | 87.35 | 0.8787 | 0.8663 | 0.8725 |
RF | 90.75 | 0.9127 | 0.8963 | 0.9044 | 91.22 | 0.9179 | 0.9064 | 0.9121 | 90.28 | 0.8985 | 0.9055 | 0.9020 |
Adaboost | 74.36 | 0.7463 | 0.7286 | 0.7373 | 83.68 | 0.8512 | 0.8244 | 0.8376 | 76.44 | 0.7564 | 0.7652 | 0.7608 |
Proposed | 98.23 | 0.9778 | 0.9792 | 0.9785 | 98.46 | 0.9858 | 0.9784 | 0.9821 | 98.21 | 0.9856 | 0.9774 | 0.9815 |
Models | Malimg Dataset | BIG 2015 Dataset | MaleVis Dataset | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Acc (%) | Pr | Re | F-Score | Acc (%) | Pr | Re | F-Score | Acc (%) | Pr | Re | F-Score | |
CNN | 97.59 | 0.9761 | 0.9748 | 0.9754 | 95.67 | 0.9573 | 0.9570 | 0.9571 | 94.38 | 0.9441 | 0.9438 | 0.9439 |
VGG16 | 97.44 | 0.9754 | 0.9742 | 0.9748 | 88.61 | 0.8872 | 0.8861 | 0.8866 | 96.18 | 0.9644 | 0.9576 | 0.9610 |
VGG19 | 97.51 | 0.9765 | 0.9753 | 0.9759 | 88.82 | 0.8886 | 0.8879 | 0.8882 | 96.27 | 0.9637 | 0.9627 | 0.9632 |
Inception-v3 | 97.65 | 0.9870 | 0.9864 | 0.9867 | 93.29 | 0.9336 | 0.9328 | 0.9332 | 95.32 | 0.9568 | 0.9499 | 0.9533 |
Resnet-50 | 97.68 | 0.9761 | 0.9768 | 0.9764 | 88.52 | 0.8868 | 0.8852 | 0.8860 | 90.36 | 0.9063 | 0.8994 | 0.9028 |
Xception | 98.03 | 0.9796 | 0.9803 | 0.9799 | 96.78 | 0.9680 | 0.9673 | 0.9676 | 97.49 | 0.9757 | 0.9738 | 0.9747 |
DenseNet-121 | 98.15 | 0.9808 | 0.9814 | 0.9811 | 96.77 | 0.9672 | 0.9675 | 0.9673 | 95.27 | 0.9532 | 0.9515 | 0.9523 |
Proposed | 98.23 | 0.9778 | 0.9792 | 0.9785 | 98.46 | 0.9858 | 0.9784 | 0.9821 | 98.21 | 0.9856 | 0.9774 | 0.9815 |
Methods | Acc (%) | Pr | Re | F-Score | |
---|---|---|---|---|---|
ML Methods | KNN | 76.75 | 0.7753 | 0.7618 | 0.7685 |
LR | 56.33 | 0.5779 | 0.5612 | 0.5694 | |
SVM | 80.33 | 0.8138 | 0.7961 | 0.8049 | |
Naïve Bayes | 46.93 | 0.4642 | 0.4701 | 0.4671 | |
Decision Tree | 77.77 | 0.7769 | 0.7718 | 0.7743 | |
Random Forest | 82.10 | 0.8261 | 0.8158 | 0.8209 | |
Adaboost | 75.31 | 0.7661 | 0.742 | 0.7538 | |
DL Methods | CNN | 71.42 | 0.722 | 0.7061 | 0.7139 |
VGG16 | 77.66 | 0.7817 | 0.7765 | 0.7791 | |
VGG19 | 82.92 | 0.8288 | 0.827 | 0.8279 | |
Inception-v3 | 83.7 | 0.8358 | 0.825 | 0.8304 | |
Resnet-50 | 82.52 | 0.8312 | 0.8062 | 0.8185 | |
Densenet-121 | 83.02 | 0.8261 | 0.8186 | 0.8224 | |
Xception | 83.02 | 0.8261 | 0.8186 | 0.8224 | |
Proposed Method | 89.48 | 0.8936 | 0.8922 | 0.8929 |
Models | Training Time (in sec) | Testing Time (in sec) | ||||
---|---|---|---|---|---|---|
Malimg | BIG 2015 | MaleVis | Malimg | BIG 2015 | MaleVis | |
CNN | 6140 | 4406 | 10946 | 7.82 | 8.14 | 8.58 |
VGG16 | 5174 | 3652 | 12721 | 6.67 | 6.84 | 7.04 |
VGG19 | 5363 | 3870 | 15144 | 6.35 | 6.61 | 6.74 |
Inception-v3 | 5604 | 4146 | 11379 | 5.89 | 6.08 | 6.36 |
Resnet-50 | 6097 | 4712 | 8861 | 7.36 | 8.12 | 8.58 |
Densenet-121 | 6574 | 5259 | 8328 | 8.48 | 8.70 | 8.96 |
Xception | 5674 | 4226 | 10448 | 5.08 | 5.53 | 6.36 |
Proposed | 1941 | 2237 | 2351 | 4.36 | 4.49 | 5.09 |
Methods | Malimg Dataset | BIG 2015 Dataset | MaleVis Dataset | Malicia Dataset | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Acc (%) | Pr | Re | F-Score | Acc (%) | Pr | Re | F-Score | Acc (%) | Pr | Re | F-Score | Acc (%) | Pr | Re | F-Score | |
Nataraj et al. [10] | 97.18 | 0.9657 | 0.9685 | 0.9671 | 96.48 | 0.9646 | 0.9544 | 0.9595 | 91.69 | 0.9236 | 0.8958 | 0.9095 | 85.26 | 0.8493 | 0.8520 | 0.8506 |
Roseline et al. [58] | 98.65 | 0.9886 | 0.9863 | 0.9874 | 97.2 | 0.9761 | 0.9679 | 0.9720 | 97.43 | 0.9753 | 0.9732 | 0.9742 | 86.45 | 0.8615 | 0.8636 | 0.8625 |
Cui et al. [54] | 94.5 | 0.9464 | 0.9431 | 0.9447 | 93.4 | 0.9328 | 0.9354 | 0.9341 | 92.13 | 0.9209 | 0.9189 | 0.9199 | 80.17 | 0.7894 | 0.8008 | 0.7951 |
Agarap et al. [55] | 84.92 | 0.8547 | 0.8464 | 0.8505 | 80.51 | 0.8135 | 0.7986 | 0.8060 | 79.36 | 0.8022 | 0.7845 | 0.7933 | 72.05 | 0.7195 | 0.7200 | 0.7197 |
Vinayakumar et al. [59] | 96.3 | 0.963 | 0.9582 | 0.9606 | 91.27 | 0.9221 | 0.9132 | 0.9176 | 86.29 | 0.8685 | 0.8628 | 0.8656 | 84.63 | 0.8433 | 0.8426 | 0.8429 |
Luo et al. [60] | 93.72 | 0.9413 | 0.9254 | 0.9333 | 93.57 | 0.9447 | 0.9268 | 0.9357 | 92.24 | 0.9179 | 0.9096 | 0.9137 | 82.54 | 0.8227 | 0.8235 | 0.8231 |
Singh [31] | 96.08 | 0.9576 | 0.9616 | 0.9596 | 94.24 | 0.9423 | 0.9289 | 0.9356 | 93 | 0.9287 | 0.9167 | 0.9227 | 84.28 | 0.8384 | 0.8469 | 0.8426 |
Proposed | 98.23 | 0.9778 | 0.9792 | 0.9785 | 98.46 | 0.9858 | 0.9784 | 0.9821 | 98.21 | 0.9856 | 0.9774 | 0.9815 | 89.48 | 0.8936 | 0.8922 | 0.8929 |
Performance Metrics | Malimg Dataset | BIG2015 Dataset | MaleVis Dataset |
---|---|---|---|
Acc (%) | 97.55 | 97.72 | 96.81 |
Pr | 0.9743 | 0.9756 | 0.9650 |
Re | 0.9750 | 0.9748 | 0.9681 |
F-score | 0.9746 | 0.9752 | 0.9665 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hemalatha, J.; Roseline, S.A.; Geetha, S.; Kadry, S.; Damaševičius, R. An Efficient DenseNet-Based Deep Learning Model for Malware Detection. Entropy 2021, 23, 344. https://doi.org/10.3390/e23030344
Hemalatha J, Roseline SA, Geetha S, Kadry S, Damaševičius R. An Efficient DenseNet-Based Deep Learning Model for Malware Detection. Entropy. 2021; 23(3):344. https://doi.org/10.3390/e23030344
Chicago/Turabian StyleHemalatha, Jeyaprakash, S. Abijah Roseline, Subbiah Geetha, Seifedine Kadry, and Robertas Damaševičius. 2021. "An Efficient DenseNet-Based Deep Learning Model for Malware Detection" Entropy 23, no. 3: 344. https://doi.org/10.3390/e23030344