Quantifying the Predictability of Visual Scanpaths Using Active Information Storage
<p>(<b>A</b>) Relationship between entropy and conditional entropy, <span class="html-italic">H</span>, and mutual information <span class="html-italic">I</span> of two non-independent random variables <math display="inline"><semantics> <msub> <mi>X</mi> <mi>t</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msubsup> <mi mathvariant="bold">X</mi> <mrow> <mi>t</mi> <mo>−</mo> <mn>1</mn> </mrow> <mo>−</mo> </msubsup> </semantics></math> (adapted from [<a href="#B46-entropy-23-00167" class="html-bibr">46</a>]). Here, the conditional entropy corresponds to the gaze transition entropy (GTE). (<b>B</b>) Active information storage (AIS) quantifies the predictability of the value of time series <span class="html-italic">X</span> at time <span class="html-italic">t</span>, <math display="inline"><semantics> <msub> <mi>X</mi> <mi>t</mi> </msub> </semantics></math> (red marker), from its immediate past state, <math display="inline"><semantics> <msubsup> <mi mathvariant="bold">X</mi> <mrow> <mi>t</mi> <mo>−</mo> <mn>1</mn> </mrow> <mo>−</mo> </msubsup> </semantics></math> (blue box). (<b>C</b>) Non-uniform embedding representing the past state of time series, <span class="html-italic">X</span>, as a selection of past variables (blue markers) up to a maximum lag <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo><</mo> <mi>t</mi> </mrow> </semantics></math>, which carry significant information about the next value, <math display="inline"><semantics> <msub> <mi>X</mi> <mi>t</mi> </msub> </semantics></math> (red marker).</p> "> Figure 2
<p>(<b>A</b>) Experimental setup for individual trial consisting of a screen showing the fixation dot and a screen displaying the image pair on a mean grey background. (<b>B</b>) Definition of areas of interest (AOI, green boundaries) on schematic images with target area (red box). The white line denotes an exemplary scanpath, where orange markers indicate ordered fixations and marker size corresponds to fixation time.</p> "> Figure 3
<p>(<b>A</b>) Number of past variables with a given lag <span class="html-italic">l</span> selected through non-uniform embedding over participants and trials. (<b>B</b>) Union past state for each participant used for statistical testing. Selected past variables (blue) with lag <span class="html-italic">l</span> relative to the next fixation, <math display="inline"><semantics> <msub> <mi>X</mi> <mi>t</mi> </msub> </semantics></math> (red). (<b>C</b>) Mean active information storage (AIS, top), entropy (middle), and normalized AIS (bottom), for conditions (<span class="html-italic">time constraint</span> (TC) and <span class="html-italic">time unconstrained</span> (TUC)) and individual participants (* <math display="inline"><semantics> <mrow> <mi>p</mi> <mo><</mo> <mn>0.05</mn> </mrow> </semantics></math>, ** <math display="inline"><semantics> <mrow> <mi>p</mi> <mo><</mo> <mn>0.01</mn> </mrow> </semantics></math>, *** <math display="inline"><semantics> <mrow> <mi>p</mi> <mo><</mo> <mn>0.001</mn> </mrow> </semantics></math>, error bars indicate the standard error of the mean).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Information-Theoretic Preliminaries
2.2. Active Information Storage (AIS)
Relationship between GTE and AIS
2.3. Estimating AIS from Scanpath Data
2.3.1. Optimization of Past States
2.3.2. Estimating AIS from Discrete Scanpath Data
2.4. Experiment
2.4.1. Participants
2.4.2. Task and Experimental Procedure
2.4.3. Apparatus and Stimuli
2.4.4. Preprocessing
3. Results
3.1. Optimization of Past States
3.2. Difference in Experimental Conditions
3.2.1. Overall Effect of Condition on Predictability
3.2.2. Relationship between AIS and Scanpath Entropy
3.3. Decoding of Experimental Condition from Scanpath Predictability
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AIS | Active Information Storage |
GTE | Gaze Transition Entropy |
IDTxl | Information Dynamics Toolkit xl |
IDT | Identification by Dispersion-Threshold |
MI | Mutual Information |
SR Model | Successor Representation Model |
References
- Henderson, J.M. Human gaze control during real-world scene perception. Trends Cogn. Sci. 2003, 7, 498–504. [Google Scholar] [CrossRef]
- Hayhoe, M.; Ballard, D. Eye movements in natural behavior. Trends Cogn. Sci. 2005, 9, 188–194. [Google Scholar] [CrossRef]
- Tatler, B.W.; Hayhoe, M.M.; Land, M.F.; Ballard, D.H. Eye guidance in natural vision: Reinterpreting salience. J. Vis. 2011, 11, 5. [Google Scholar] [CrossRef] [Green Version]
- Foulsham, T. Eye movements and their functions in everyday tasks. Eye 2015, 29, 196–199. [Google Scholar] [CrossRef] [Green Version]
- Shiferaw, B.; Downey, L.; Crewther, D. A review of gaze entropy as a measure of visual scanning efficiency. Neurosci. Biobehav. Rev. 2019, 96, 353–366. [Google Scholar] [CrossRef]
- Holmqvist, K.; Nyström, M.; Andersson, R.; Dewhurst, R.; Jarodzka, H.; Van de Weijer, J. Eye Tracking: A Comprehensive Guide to Methods and Measures; Oxford Univeristy Press: Oxford, UK, 2011. [Google Scholar]
- Hayes, T.R.; Henderson, J.M. Scan patterns during real-world scene viewing predict individual differences in cognitive capacity. J. Vis. 2017, 17, 23. [Google Scholar] [CrossRef] [Green Version]
- Raptis, G.E.; Katsini, C.; Avouris, N.; Belk, M.; Fidas, C.; Samaras, G. Using eye gaze data & visual activities to infer human cognitive styles: Method & feasibility studies. In Proceedings of the UMAP 2017 25th Conference on User Modeling, Adaptation and Personalization, Bratislava, Slovakia, 9–12 July 2017; Association for Computing Machinery: New York, NY, USA, 2017; pp. 164–173. [Google Scholar]
- Baranes, A.; Oudeyer, P.Y.; Gottlieb, J. Eye movements reveal epistemic curiosity in human observers. Vis. Res. 2015, 117, 81–90. [Google Scholar] [CrossRef]
- Allsop, J.; Gray, R.; Bülthoff, H.H.; Chuang, L. Effects of Anxiety and cognitive load on instrument scanning behavior in a flight simulation. In Proceedings of the 2nd Workshop on Eye Tracking and Visualization (ETVIS) 2016, Baltimore, MD, USA, 23–28 October 2016; pp. 55–59. [Google Scholar]
- Ebeid, I.A.; Gwizdka, J. Real-Time Gaze Transition Entropy. In Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications, Warsaw, Poland, 14–17 June 2018; p. 94. [Google Scholar]
- Hao, Q.; Sbert, M.; Ma, L. Gaze information channel in cognitive comprehension of poster reading. Entropy 2019, 21, 444. [Google Scholar] [CrossRef] [Green Version]
- Di Stasi, L.L.; Diaz-Piedra, C.; Rieiro, H.; Carrión, J.M.S.; Berrido, M.M.; Olivares, G.; Catena, A. Gaze entropy reflects surgical task load. Surg. Endosc. 2016, 30, 5034–5043. [Google Scholar] [CrossRef] [PubMed]
- Shiferaw, B.A.; Downey, L.A.; Westlake, J.; Stevens, B.; Rajaratnam, S.M.W.; Berlowitz, D.J.; Swann, P.; Howard, M.E. Stationary gaze entropy predicts lane departure events in sleep-deprived drivers. Sci. Rep. 2018, 8, 2220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schieber, F.; Gilland, J. Visual entropy metric reveals differences in drivers’ eye gaze complexity across variations in age and subsidiary task load. Proc. Hum. Factors Ergon. Soc. 2008, 3, 1883–1887. [Google Scholar] [CrossRef] [Green Version]
- Krejtz, K.; Szmidt, T.; Duchowski, A.T.; Krejtz, I. Entropy-based statistical analysis of eye movement transitions. In Proceedings of the Symposium on Eye Tracking Research and Applications (ETRA), Safety Harbor, CA, USA, 26–29 March 2014; Association for Computing Machinery: New York, NY, USA, 2014; pp. 159–166. [Google Scholar]
- Krejtz, K.; Duchowski, A.; Szmidt, T.; Krejtz, I.; Perilli, F.G.; Pires, A.; Vilaro, A.; Villalobos, N. Gaze transition entropy. ACM Trans. Appl. Percept. 2015, 13, 4. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Chanijani, S.S.M.; Klein, P.; Bukhari, S.S.; Kuhn, J.; Dengel, A. Entropy based transition analysis of eye movement on physics representational competence. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp): Adjunct, Heidelberg, Germany, 12–16 September 2016; ACM: New York, NY, USA, 2016; pp. 1027–1034. [Google Scholar]
- Diaz-Piedra, C.; Rieiro, H.; Cherino, A.; Fuentes, L.J.; Catena, A.; Di Stasi, L.L. The effects of flight complexity on gaze entropy: An experimental study with fighter pilots. Appl. Ergon. 2019, 77, 92–99. [Google Scholar] [CrossRef]
- Allsop, J.; Gray, R. Flying under pressure: Effects of anxiety on attention and gaze behavior in aviation. J. Appl. Res. Mem. Cogn. 2014, 3, 63–71. [Google Scholar] [CrossRef]
- van Dijk, H.; van de Merwe, K.; Zon, R. A coherent impression of the pilots’ situation awareness: Studying relevant human factors tools. Int. J. Aviat. Psychol. 2011, 21, 343–356. [Google Scholar] [CrossRef]
- Gotardi, G.; Schor, P.; Van Der Kamp, J.; Navarro, M.; Orth, D.; Savelsbergh, G.; Polastri, P.F.; Oudejans, R.; Rodrigues, S.T. The influence of anxiety on visual entropy of experienced drivers. In Proceedings of the 3rd Workshop on Eye Tracking and Visualization (ETVIS), Warsaw, Poland, 15 June 2018; ACM: New York, NY, USA, 2018; pp. 1–4. [Google Scholar]
- Simola, J.; Salojärvi, J.; Kojo, I. Using hidden Markov model to uncover processing states from eye movements in information search tasks. Cogn. Syst. Res. 2008, 9, 237–251. [Google Scholar] [CrossRef]
- Hayes, T.R.; Petrov, A.A.; Sederberg, P.B. A novel method for analyzing sequential eye movements reveals strategic influence on Raven’s Advanced Progressive Matrices. J. Vis. 2011, 11, 10. [Google Scholar] [CrossRef] [Green Version]
- Kübler, T.C.; Rothe, C.; Schiefer, U.; Rosenstiel, W.; Kasneci, E. SubsMatch 2.0: Scanpath comparison and classification based on subsequence frequencies. Behav. Res. Methods 2017, 49, 1048–1064. [Google Scholar] [CrossRef] [Green Version]
- Coutrot, A.; Hsiao, J.H.; Chan, A.B. Scanpath modeling and classification with hidden Markov models. Behav. Res. Methods 2018, 50, 362–379. [Google Scholar] [CrossRef] [Green Version]
- Wiebel-Herboth, C.B.; Krüger, M.; Hasenjäger, M. Interactions between inter- and intra-individual effects on gaze behavior. In Proceedings of the Adjunct Publication of the 28th ACM Conference on User Modeling, Adaptation and Personalization (UMAP), Genoa, Italy, 12–18 July 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 35–40. [Google Scholar]
- Sutton, R.S. Learning to predict by the methods of temporal differences. Mach. Learn. 1988, 3, 9–44. [Google Scholar] [CrossRef]
- Dayan, P. Improving generalization for temporal difference learning: The successor representation. Neural Comput. 1993, 5, 613–624. [Google Scholar] [CrossRef] [Green Version]
- Hayes, T.R.; Henderson, J.M. Scan patterns during scene viewing predict individual differences in clinical traits in a normative sample. PLoS ONE 2018, 13, e0196654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoppe, D.; Rothkopf, C.A. Multi-step planning of eye movements in visual search. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Julian, B.; Mondal, D. Exact goodness-of-fit tests for Markov chains. Biometrics 2013, 69, 488–496. [Google Scholar]
- Król, M.; Król, M.E. A novel eye movement data transformation technique that preserves temporal information: A demonstration in a face processing task. Sensors 2019, 19, 2377. [Google Scholar] [CrossRef] [Green Version]
- Lizier, J.T.; Prokopenko, M.; Zomaya, A.Y. Local measures of information storage in complex distributed computation. Inf. Sci. 2012, 208, 39–54. [Google Scholar] [CrossRef]
- Faes, L.; Nollo, G.; Porta, A. Information-based detection of nonlinear Granger causality in multivariate processes via a nonuniform embedding technique. Phys. Rev. E 2011, 5, 051112. [Google Scholar] [CrossRef] [Green Version]
- Wollstadt, P.; Lizier, J.T.; Vicente, R.; Finn, C.; Martínez-Zarzuela, M.; Mediano, P.A.M.; Novelli, L.; Wibral, M. IDTxl: The Information Dynamics Toolkit xl: A Python package for the efficient analysis of multivariate information dynamics in networks. J. Open Source Softw. 2019, 4, 1081. [Google Scholar] [CrossRef]
- Novelli, L.; Wollstadt, P.; Mediano, P.A.M.; Wibral, M.; Lizier, J.T. Large-scale directed network inference with multivariate transfer entropy and hierarchical statistical testing. Netw. Neurosci. 2019, 3, 827–847. [Google Scholar] [CrossRef]
- Gómez, C.; Lizier, J.T.; Schaum, M.; Wollstadt, P.; Grützner, C.; Uhlhaas, P.; Freitag, C.M.; Schlitt, S.; Bölte, S.; Hornero, R.; et al. Reduced predictable information in brain signals in autism spectrum disorder. Front. Neuroinformatics 2014, 8, 9. [Google Scholar]
- Brodski-Guerniero, A.; Paasch, G.F.; Wollstadt, P.; Özdemir, I.; Lizier, J.T.; Wibral, M. Information-theoretic evidence for predictive coding in the face-processing system. J. Neurosci. 2017, 37, 8273–8283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wollstadt, P.; Sellers, K.K.; Rudelt, L.; Priesemann, V.; Hutt, A.; Fröhlich, F.; Wibral, M. Breakdown of local information processing may underlie isoflurane anesthesia effects. PLoS Comput. Biol. 2017, 13, e1005511. [Google Scholar] [CrossRef] [PubMed]
- Faes, L.; Porta, A.; Rossato, G.; Adami, A.; Tonon, D.; Corica, A.; Nollo, G. Investigating the mechanisms of cardiovascular and cerebrovascular regulation in orthostatic syncope through an information decomposition strategy. Auton. Neurosci. 2013, 178, 76–82. [Google Scholar] [CrossRef]
- Wang, X.R.; Miller, J.M.; Lizier, J.T.; Prokopenko, M.; Rossi, L.F. Quantifying and Tracing Information Cascades in Swarms. PLoS ONE 2012, 7, e40084. [Google Scholar] [CrossRef] [PubMed]
- Lizier, J.T.; Prokopenko, M.; Zomaya, A.Y. Coherent information structure in complex computation. Theory Biosci. 2012, 131, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Shiferaw, B.A.; Crewther, D.P.; Downey, L.A. Gaze entropy measures detect alcohol-induced driver impairment. Drug Alcohol Depend. 2019, 204, 107519. [Google Scholar] [CrossRef]
- MacKay, D.J.C. Information Theory, Inference, and Learning Algorithms; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Wibral, M.; Lizier, J.T.; Vögler, S.; Priesemann, V.; Galuske, R. Local active information storage as a tool to understand distributed neural information processing. Front. Neuroinformatics 2014, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Crutchfield, J.P.; Feldman, D.P. Regularities unseen, randomness observed: Levels of entropy convergence. Chaos 2003, 13, 25–54. [Google Scholar] [CrossRef]
- Lizier, J.T.; Rubinov, M. Multivariate Construction of Effective Computational Networks from Observational Data. Preprint no.: 25/2012, Max Planck Institute for Mathematics in the Sciences. 2012. Available online: https://www.mis.mpg.de/publications/preprints/2012/prepr2012-25.html (accessed on 15 December 2012).
- Hlaváčková-Schindler, K.; Paluš, M.; Vejmelka, M.; Bhattacharya, J. Causality detection based on information-theoretic approaches in time series analysis. Phys. Rep. 2007, 441, 1–46. [Google Scholar] [CrossRef]
- Paninski, L. Estimation of entropy and mutual information. Neural Comput. 2003, 15, 1191–1253. [Google Scholar] [CrossRef] [Green Version]
- Miller, G. Note on the bias of information estimates. In Information Theory in Psychology II-B; Quastler, H., Ed.; Free Press: Glencoe, IL, USA, 1955; pp. 95–100. [Google Scholar]
- Panzeri, S.; Treves, A. Analytical estimates of limited sampling biases in different information measures. Netw. Comput. Neural Syst. 1996, 7, 87–107. [Google Scholar] [CrossRef] [PubMed]
- Panzeri, S.; Senatore, R.; Montemurro, M.A.; Petersen, R.S. Correcting for the sampling bias problem in spike train information measures. J. Neurophysiol. 2007, 98, 1064–1072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ince, R.A.A.; Petersen, R.S.; Swan, D.C.; Panzeri, S. Python for information theoretic analysis of neural data. Front. Neuroinformatics 2009, 3, 4. [Google Scholar] [CrossRef] [Green Version]
- Vicente, R.; Wibral, M.; Lindner, M.; Pipa, G. Transfer entropy-a model-free measure of effective connectivity for the neurosciences. J. Comput. Neurosci. 2011, 30, 45–67. [Google Scholar] [CrossRef] [Green Version]
- Sareen, P.; Ehinger, K.A.; Wolfe, J.M. CB Database: A change blindness database for objects in natural indoor scenes. Behav. Res. Methods 2016, 48, 1343–1348. [Google Scholar] [CrossRef]
- Peirce, J.W. PsychoPy—Psychophysics software in Python. J. Neurosci. Methods 2007, 162, 8–13. [Google Scholar] [CrossRef] [Green Version]
- Peirce, J.W. Generating stimuli for neuroscience using PsychoPy. Front. Neuroinformatics 2009, 10, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Kassner, M.; Patera, W.; Bulling, A. Pupil: An open source platform for pervasive eye tracking and mobile gaze-based interaction. In Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp): Adjunct Publication, Downtown Seattle, WA, USA, 13–17 September 2014; ACM: New York, NY, USA, 2014; pp. 1151–1160. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- Salvucci, D.D.; Goldberg, J.H. Identifying fixations and saccades in eye-tracking protocols. In Proceedings of the 2000 Symposium on Eye Tracking Research and Applications (ETRA), Palm Beach Gardens, FL, USA, 6–8 November 2000; ACM: New York, NY, USA, 2000; pp. 71–78. [Google Scholar]
- Fahrmeir, L.; Kneib, T.; Lang, S.; Marx, B. Regression; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Borji, A.; Itti, L. Defending Yarbus: Eye movements reveal observers’ task. J. Vis. 2014, 14, 1–22. [Google Scholar] [CrossRef]
- Greene, M.R.; Liu, T.; Wolfe, J.M. Reconsidering Yarbus: A failure to predict observers’ task from eye movement patterns. Vis. Res. 2012, 62, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yarbus, A.L. Eye Movements and Vision; Plenum: New York, NY, USA, 1967. [Google Scholar]
- Seiffert, C.; Khoshgoftaar, T.M.; Van Hülse, J.; Napolitano, A. RUSBoost: A hybrid approach to alleviating class imbalance. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2010, 40, 185–197. [Google Scholar] [CrossRef]
- Kriegeskorte, N.; Simmons, W.K.; Bellgowan, P.S.F.; Baker, C.I. Circular analysis in systems neuroscience: The dangers of double dipping. Nat. Neurosci. 2009, 12, 535–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krüger, M.; Wiebel, C.B.; Wersing, H. From tools towards cooperative assistants. In Proceedings of the 5th International Conference on Human Agent Interaction (HAI), Bielefeld, Germany, 17–20 October 2017; Association for Computing Machinery: New York, NY, USA, 2017; pp. 287–294. [Google Scholar]
- Celiktutan, O.; Demiris, Y. Inferring human knowledgeability from eye gaze in mobile learning environments. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018. [Google Scholar]
- Zagermann, J.; Pfeil, U.; Reiterer, H. Studying eye movements as a basis for measuring cognitive load. In Proceedings of the Extended Abstracts of the 2018 Conference on Human Factors in Computing Systems (CHI), Montreal, QC, Canada, 21–26 April 2018; pp. 1–6. [Google Scholar]
- Majaranta, P.; Bulling, A. Eye tracking and eye-based human-computer interaction. In Advances in Physiological Computing; Springer: London, UK, 2014; pp. 39–65. [Google Scholar]
- Kraskov, A.; Stögbauer, H.; Grassberger, P. Estimating mutual information. Phys. Rev. E 2004, 69, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, S.; Bandyopadhyay, S.; Ganguly, A.R.; Saigal, S.; Erickson, D.J., III; Protopopescu, V.; Ostrouchov, G. Relative performance of mutual information estimation methods for quantifying the dependence among short and noisy data. Phys. Rev. E 2007, 76, 026209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wollstadt, P.; Hasenjäger, M.; Wiebel-Herboth, C.B. Quantifying the Predictability of Visual Scanpaths Using Active Information Storage. Entropy 2021, 23, 167. https://doi.org/10.3390/e23020167
Wollstadt P, Hasenjäger M, Wiebel-Herboth CB. Quantifying the Predictability of Visual Scanpaths Using Active Information Storage. Entropy. 2021; 23(2):167. https://doi.org/10.3390/e23020167
Chicago/Turabian StyleWollstadt, Patricia, Martina Hasenjäger, and Christiane B. Wiebel-Herboth. 2021. "Quantifying the Predictability of Visual Scanpaths Using Active Information Storage" Entropy 23, no. 2: 167. https://doi.org/10.3390/e23020167
APA StyleWollstadt, P., Hasenjäger, M., & Wiebel-Herboth, C. B. (2021). Quantifying the Predictability of Visual Scanpaths Using Active Information Storage. Entropy, 23(2), 167. https://doi.org/10.3390/e23020167