A Statistical Study of the Correlation between Geomagnetic Storms and M ≥ 7.0 Global Earthquakes during 1957–2020
<p>(<b>a</b>) Spatial distribution of each M ≥ 7.0 earthquake during January 1957 to June 2020; (<b>b</b>) the number of earthquakes for different magnitudes; (<b>c</b>) the number of earthquake days for different depths. The depth of the first earthquake is taken as the depth of the earthquake day if there are two or more earthquakes occurring on that day.</p> "> Figure 1 Cont.
<p>(<b>a</b>) Spatial distribution of each M ≥ 7.0 earthquake during January 1957 to June 2020; (<b>b</b>) the number of earthquakes for different magnitudes; (<b>c</b>) the number of earthquake days for different depths. The depth of the first earthquake is taken as the depth of the earthquake day if there are two or more earthquakes occurring on that day.</p> "> Figure 2
<p>A flow chart of the SEA method.</p> "> Figure 3
<p>The probability distribution for obtaining different numbers of storms with <span class="html-italic">n</span> = 72 and <span class="html-italic">p</span> = 0.356. The area marked in red indicates the significance level of <span class="html-italic">x</span> = <span class="html-italic">x</span><sub>0</sub>.</p> "> Figure 4
<p>The Dst index variations in the time span of ± 30 days for four earthquakes: (<b>a</b>) Tohoku, Japan 11 March 2011 M = 9.1; (<b>b</b>) Sumatra, Indonesia 26 December 2004 M = 9.1; (<b>c</b>) Alaska, America 28 March 1964 M = 9.2; (<b>d</b>) Valdivia, Chile 22 May 1960 M = 9.5.</p> "> Figure 5
<p>The proportion of the number of geomagnetic storm days to the total number of days (black lines) and the proportion of storm days to total earthquake days for the 831 M ≥ 7.0 earthquake days (blue lines). From top to bottom, the thresholds for storm definition are Dst ≤ −30 nT, Dst ≤ −50 nT, and Dst ≤ −100 nT, respectively. The red dot denotes 0.05 significance level of the Z test.</p> "> Figure 6
<p>(<b>a</b>) Normalized probabilistic intensity (<math display="inline"><semantics> <mrow> <msub> <mi>P</mi> <mi>N</mi> </msub> </mrow> </semantics></math>) for the 831 M ≥ 7.0 earthquake days; (<b>b</b>) the significance level of geomagnetic storms in relation to the 831 M ≥ 7.0 earthquake days; (<b>c</b>) the normalized probabilistic intensity (<math display="inline"><semantics> <mrow> <msub> <mi>P</mi> <mi>N</mi> </msub> </mrow> </semantics></math>) for the 72 M ≥ 7.0 ‘isolated’ earthquake days; (<b>d</b>) the significance level of geomagnetic storms in relation to the 72 M ≥ 7.0 ‘isolated’ earthquake days. Note that in panels (<b>a</b>,<b>c</b>), <span class="html-italic">P<sub>N</sub></span> within ± 2σ is presented in the same color. In panels (<b>b</b>,<b>d</b>), the color bar only extends to 0.1, and those above 0.1 are presented in the same color.</p> "> Figure 7
<p>The significance level of geomagnetic storms in relation to earthquakes with different depths. (<b>a</b>) Depth <30 km, 339 earthquake days; (<b>b</b>) depth 30–60 km, 275 earthquake days; (<b>c</b>) depth ≥ 60 km, 217 earthquake days. Note that the color bar only extends to 0.1 and those above 0.1 are presented in the same color.</p> "> Figure 8
<p>The proportion of the number of geomagnetic storms hours to the total number of hours (black lines) and the proportion of storm hours to total hours on a given day for the 831 M ≥ 7.0 earthquake days (blue lines). From top to bottom, the thresholds for storm definition are Dst ≤ −30 nT, Dst ≤ −50 nT and Dst ≤ −100 nT, respectively. The red dot denotes a 0.05 significance level of the Z test.</p> "> Figure 9
<p>The SEA result using geomagnetic storm cumulative hours: (<b>a</b>) The result from a Superposed Epoch Analysis (SEA) showing the Dst-Time spectrogram for 30 days before and after the occurrence day of 831 M ≥ 7.0 earthquake days of normalized probabilistic intensity constructed from random days. (<b>b</b>) The result from a Superposed Epoch Analysis (SEA) showing the Dst-Time spectrogram for 30 days before and after the occurrence day of 72 ‘isolated’ M ≥ 7.0 earthquake days of normalized probabilistic intensity constructed from random days. Note that <span class="html-italic">P<sub>N</sub></span> within ± 2σ is presented in the same color.</p> "> Figure 10
<p>The significance level of geomagnetic storms in relation to earthquakes with different depths. (<b>a</b>) The result of 30 days before and after the occurrence day for 378 M ≥ 7.0 earthquake days and depth at < 33 km. (<b>b</b>) The result of 30 days before and after occurrence day for 453 M ≥ 7.0 earthquake days and depth at ≥ 33 km. Note that the color bar only extends to 0.1 and those above 0.1 are presented in the same color.</p> ">
Abstract
:1. Introduction
2. Data and Methods
2.1. Dst Index and Earthquake Data
2.2. SEA Method
2.3. Significance Analysis
3. Case Studies
4. Statistical Analysis
5. Discussion
5.1. The Statistical Results on Cumulative Hours of Geomagnetic Storms
5.2. The Dependence on Depth
5.3. Interpretation
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Park, S.K. Precursors to earthquakes: Seismoelectromagnetic signals. Surv. Geophys. 1996, 17, 493–516. [Google Scholar] [CrossRef]
- Johnston, M.J.S. Review Of Electric And Magnetic Fields Accompanying Seismic And Volcanic Activity. Surv. Geophys. 1997, 18, 441–475. [Google Scholar] [CrossRef]
- Han, P.; Hattori, K.; Huang, Q.; Hirooka, S.; Yoshino, C. Spatiotemporal characteristics of the geomagnetic diurnal variation anomalies prior to the 2011 Tohoku earthquake (Mw 9.0) and the possible coupling of multiple pre-earthquake phenomena. J. Asian Earth Sci. 2016, 129, 13–21. [Google Scholar] [CrossRef]
- Heki, K. Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake. Geophys. Res. Lett. 2011, 38, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.Y.; Chen, Y.I.; Pulinets, S.A.; Tsai, Y.B.; Chuo, Y.J. Seismo-ionospheric signatures prior to M ≥ 6.0 Taiwan earthquakes. Geophys. Res. Lett. 2000, 27, 3113–3116. [Google Scholar] [CrossRef]
- Varotsos, P.; Alexopoulos, K. Physical properties of the variations of the electric field of the earth preceding earthquakes, I. Tectonophysics 1984, 136, 335–339. [Google Scholar] [CrossRef]
- Varotsos, P.; Alexopoulos, K. Physical properties of the variations of the electric field of the earth preceding earthquakes. II. determination of epicenter and magnitude. Tectonophysics 1984, 110, 99–125. [Google Scholar] [CrossRef]
- Varotsos, P.; Sarlis, N.V.; Skordas, E.S. Electric Fields that “Arrive” before the Time Derivative of the Magnetic Field prior to Major Earthquakes. Geophys. Res. Lett. 2003, 91, 148501. [Google Scholar] [CrossRef] [Green Version]
- Hattori, K. ULF geomagnetic changes associated with large earthquakes. Oceanic Sci. 2004, 15, 329–360. [Google Scholar] [CrossRef] [Green Version]
- Jánský, J.; Pasko, V.P. Earthquake Lights: Mechanism of Electrical Coupling of Earth’s Crust to the Lower Atmosphere. J. Geophys. Res. Atmos. 2018, 123, 8901–8914. [Google Scholar] [CrossRef]
- Hayakawa, M.; Kasahara, Y.; Nakamura, T.; Muto, F.; Horie, T.; Maekawa, S.; Hobara, Y.; Rozhnoi, A.A.; Solovieva, M.; Molchanov, O.A. A statistical study on the correlation between lower ionospheric perturbations as seen by subionospheric VLF/LF propagation and earthquakes. J. Geophys. Res. Space Phys. 2010, 115, 1–9. [Google Scholar] [CrossRef]
- Hayakawa, M. Electromagnetic Phenomena Associated with Earthquakes. Ieej Trans. Fundam. Mater. 2006, 126, 43–44. [Google Scholar] [CrossRef] [Green Version]
- Molchanov, O.; Fedorov, E.; Schekotov, A.; Gordeev, E.; Chebrov, V.; Surkov, V.; Rozhnoi, A.; Andreevsky, S.; Iudin, D.; Yunga, S. Lithosphere-atmosphere-ionosphere coupling as governing mechanism for preseismic short-term events in atmosphere and ionosphere. Transl. World Ssmology 2004, 4, 757–767. [Google Scholar] [CrossRef] [Green Version]
- Han, P.; Hattori, K.; Hirokawa, M.; Zhuang, J.; Chen, C.; Febriani, F.; Yamaguchi, H.; Yoshino, C.; Liu, J.; Yoshida, S. Statistical analysis of ULF seismomagnetic phenomena at Kakioka, Japan, during 2001–2010. J. Geophys. Res. 2014, 119, 4998–5011. [Google Scholar] [CrossRef]
- Hattori, K.; Han, P.; Yoshino, C.; Febriani, F.; Yamaguchi, H.; Chen, C. Investigation of ULF Seismo-Magnetic Phenomena in Kanto, Japan During 2000–2010: Case Studies and Statistical Studies. Surv. Geophys. 2013, 34, 293–316. [Google Scholar] [CrossRef]
- Febriani, F.; Han, P.; Yoshino, C.; Hattori, K.; Nurdiyanto, B.; Effendi, N.; Maulana, I.; Gaffar, E.Z. Ultra low frequency (ULF) electromagnetic anomalies associated with large earthquakes in Java Island, Indonesia by using wavelet transform and detrended fluctuation analysis. Nat. Hazards Earth Syst. Sci. 2014, 14, 789–798. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.Y.; Chen, Y.I.; Chuo, Y.J.; Tsai, H.F. Variations of ionospheric total electron content during the Chi-Chi Earthquake. Geophys. Res. Lett. 2001, 28, 1383–1386. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Shi, K.; Liu, X.; Sun, Y.; Li, W.; Kong, Q. Singular spectrum analysis of ionospheric anomalies preceding great earthquakes: Case studies of Kaikoura and Fukushima earthquakes. J. Geodyn. 2019, 124, 1–13. [Google Scholar] [CrossRef]
- Ulukavak, M.; Yalcinkaya, M.; Kayikci, E.T.; Ozturk, S.; Kandemir, R.; Karsli, H. Analysis of ionospheric TEC anomalies for global earthquakes during 2000–2019 with respect to earthquake magnitude (Mw ≥ 6.0). J. Geodyn. 2020, 135, 101721. [Google Scholar] [CrossRef]
- Bakhmutov, V.G.; Sedova, F.I.; Mozgovaya, T.A. Geomagnetic disturbances and earthquakes in the Vrancea zone. Izv. Phys. Solid Earth 2007, 43, 931–937. [Google Scholar] [CrossRef]
- Duma, G.; Ruzhin, Y. Diurnal changes of earthquake activity and geomagnetic Sq-variations. Nat. Hazards Earth Syst. Sci. 2003, 3, 171–177. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.B.; Guo, Z.J.; Wu, J.B.; Ma, L.H. Possible triggering of solar activity to big earthquakes (Ms ≥ 8) in faults with near west-east strike in China. Sci. China Ser. G-Phys. Mech. Astron. 2004, 47, 173–181. [Google Scholar] [CrossRef]
- Odintsov, S.; Boyarchuk, K.; Georgieva, K.; Kirov, B.; Atanasov, D. Long-period trends in global seismic and geomagnetic activity and their relation to solar activity. Phys. Chem. Earth Parts A/B/C 2006, 31, 88–93. [Google Scholar] [CrossRef]
- Shestopalov, I.P.; Kharin, E.P. Relationship between solar activity and global seismicity and neutrons of terrestrial origin. Russ. J. Earth Sci. 2014, 14, 1–10. [Google Scholar] [CrossRef]
- Sukma, I.; Abidin, Z.Z. Study of seismic activity during the ascending and descending phases of solar activity. Indian J. Phys. 2017, 91, 595–606. [Google Scholar] [CrossRef]
- Yuan, G.; Li, H.; Zhang, G.; Pan, Y. Daily Variation Ratio of Geomagnetic Z Component and its Relationship with Magnetic Storms and Earthquakes. Earthquake 2018, 38, 139–146. [Google Scholar]
- Rabeh, T.; Miranda, M.; Hvozdara, M. Strong earthquakes associated with high amplitude daily geomagnetic variations. Nat. Hazards 2010, 53, 561–574. [Google Scholar] [CrossRef]
- Marchitelli, V.; Harabaglia, P.; Troise, C.; De Natale, G. On the correlation between solar activity and large earthquakes worldwide. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef]
- Huzaimy, J.M.; Yumoto, K. Possible correlation between solar activity and global seismicity. In Proceedings of the 2011 IEEE International Conference on Space Science and Communication (IconSpace), Penang, Malaysia, 12–13 July 2011; pp. 138–141. [Google Scholar]
- Urata, N.; Duma, G.; Freund, F. Geomagnetic Kp Index and Earthquakes. Open J. Earthq. Res. 2018, 7, 39–52. [Google Scholar] [CrossRef] [Green Version]
- Love, J.J.; Thomas, J.N. Insignificant solar-terrestrial triggering of earthquakes. Geophys. Res. Lett. 2013, 40, 1165–1170. [Google Scholar] [CrossRef]
- Yesugey, S.C. Comparative Evaluation Of The Influencing Effects Of Geomagnetic Solar Storms On Earthquakes In Anatolian Peninsula. Earth Sci. Res. J. 2009, 13, 82–89. [Google Scholar]
- Gonzalez, W.D.; Joselyn, J.A.; Kamide, Y.; Kroehl, H.W.; Rostoker, G.; Tsurutani, B.T.; Vasyliunas, V.M. What is a geomagnetic storm? J. Geophys. Res. 1994, 99, 5771–5792. [Google Scholar] [CrossRef]
- Adams, J.B.; Mann, M.E.; Ammann, C.M. Proxy evidence for an El Nio-like response to volcanic forcing. Nature 2003, 426, 274–278. [Google Scholar] [CrossRef] [PubMed]
- Hocke, K. Oscillations of global mean TEC. J. Geophys. Res. Space Phys. 2008, 113, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Kon, S.; Nishihashi, M.; Hattori, K. Ionospheric anomalies possibly associated with M ≥ 6.0 earthquakes in the Japan area during 1998–2010: Case studies and statistical study. J. Asian Earth Sci. 2011, 41, 410–420. [Google Scholar] [CrossRef]
- Liu, J.Y.; Chen, Y.I.; Huang, C.H.; Ho, Y.Y.; Chen, C.H. A Statistical Study of Lightning Activities and M ≥ 5.0 Earthquakes in Taiwan During 1993–2004. Surv. Geophys. 2015, 36, 851–859. [Google Scholar] [CrossRef]
- Chen, Y.-I.; Huang, C.-S.; Liu, J.-Y. Statistical evidences of seismo-ionospheric precursors applying receiver operating characteristic (ROC) curve on the GPS total electron content in China. J. Asian Earth Sci. 2015, 114, 393–402. [Google Scholar] [CrossRef]
- Zhuang, J.; Liu, J.; Xue, Y.; Han, P. On statistical correlation and causality: A case study of the relation between gasoline price rises in China and global large earthquakes. Chin. J. Geophys. 2017, 31, 1–9. [Google Scholar]
- Pulinets, S.; Ouzounov, D. Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) model–An unified concept for earthquake precursors validation. J. Asian Earth Sci. 2011, 41, 371–382. [Google Scholar] [CrossRef]
- Ouzounov, D.; Pulinets, S.; Hattori, K.; Taylor, P. Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies; John Wiley & Sons: Hoboken, NJ, USA, 2018; p. 414. [Google Scholar]
- Sobolev, G.A.; Demin, V.M. Electromechanical Phenomena in the Earth; Nauka: Moscow, Russia, 1980. [Google Scholar]
- Mizutani, H.; Ishido, T.; Yokokura, T.; Ohnishi, S. Electrokinetic phenomena associated with earthquakes. Geophys. Res. Lett. 1976, 3, 365–368. [Google Scholar] [CrossRef]
- Nee, T.W.J. Theory of the electroosmosis effect in the electrophoresis. J. Chromatogr. A 1975, 105, 231–249. [Google Scholar] [CrossRef]
- Sarlis, N.V. Statistical Significance of Earth’s Electric and Magnetic Field Variations Preceding Earthquakes in Greece and Japan Revisited. Entropy 2018, 20, 561. [Google Scholar] [CrossRef] [Green Version]
- Sarlis, N.V.; Skordas, E.S.; Lazaridou, M.S.; Varotsos, P.A. Investigation of the seismicity after the initiation of a Seismic Electric Signal activity until the main shock. Proc. Jpn. Acad. Ser. B 2008, 84, 331–343. [Google Scholar] [CrossRef] [PubMed]
- Freund, F. Pre-earthquake signals: Underlying physical processes. J. Asian Earth Sci. 2011, 41, 383–400. [Google Scholar] [CrossRef]
- Freund, F.T.; Takeuchi, A.; Lau, B.W.S. Electric currents streaming out of stressed igneous rocks—A step towards understanding pre-earthquake low frequency EM emissions. Phys. Chem. Earth 2006, 31, 389–396. [Google Scholar] [CrossRef] [Green Version]
- Kuo, C.L.; Lee, L.C.; Huba, J.D. An improved coupling model for the lithosphere-atmosphere-ionosphere system. J. Geophys. Res. Space Phys. 2014, 119, 3189–3205. [Google Scholar] [CrossRef]
- Parrot, M.; Berthelier, J.J.; Lebreton, J.P.; Sauvaud, J.A.; Santolik, O.; Blecki, J. Examples of unusual ionospheric observations made by the DEMETER satellite over seismic regions. Phys. Chem. Earth 2006, 31, 486–495. [Google Scholar] [CrossRef]
- De Santis, A.; De Franceschi, G.; Spogli, L.; Perrone, L.; Alfonsi, L.; Qamili, E.; Cianchini, G.; Di Giovambattista, R.; Salvi, S.; Filippi, E.; et al. Geospace perturbations induced by the Earth: The state of the art and future trends. Phys. Chem. Earth Parts A/B/C 2015, 85, 17–33. [Google Scholar] [CrossRef] [Green Version]
Category | Dst(nT) | Percentage (p) |
---|---|---|
Weak storm and above | Dst index ≤ −30 | 35.6% |
Moderate storm and above | Dst index ≤ −50 | 15.1% |
Intense storm and above | Dst index ≤ −100 | 2.84% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Wang, R.; Miao, M.; Liu, X.; Ma, Y.; Hattori, K.; Han, P. A Statistical Study of the Correlation between Geomagnetic Storms and M ≥ 7.0 Global Earthquakes during 1957–2020. Entropy 2020, 22, 1270. https://doi.org/10.3390/e22111270
Chen H, Wang R, Miao M, Liu X, Ma Y, Hattori K, Han P. A Statistical Study of the Correlation between Geomagnetic Storms and M ≥ 7.0 Global Earthquakes during 1957–2020. Entropy. 2020; 22(11):1270. https://doi.org/10.3390/e22111270
Chicago/Turabian StyleChen, Hongyan, Rui Wang, Miao Miao, Xiaocan Liu, Yonghui Ma, Katsumi Hattori, and Peng Han. 2020. "A Statistical Study of the Correlation between Geomagnetic Storms and M ≥ 7.0 Global Earthquakes during 1957–2020" Entropy 22, no. 11: 1270. https://doi.org/10.3390/e22111270