Performance Improvement of Discretely Modulated Continuous-Variable Quantum Key Distribution with Untrusted Source via Heralded Hybrid Linear Amplifier
<p>(Color online) Schematic of the entangled source in middle (ESIM) CVQKD using a hybrid amplifier. In the entanglement-based model, Alice detects one of the EPR states by heterodyne detector and the hybrid linear amplifier is installed before Bob uses either the homodyne or heterodyne detector to measure the other half of EPR states. Eve’s attack consists of two entangling cloner attacks on either side of the source. The yellow box of <math display="inline"><semantics> <msup> <mi>g</mi> <mover accent="true"> <mi>n</mi> <mo stretchy="false">^</mo> </mover> </msup> </semantics></math> shows the hybrid linear amplifier.</p> "> Figure 2
<p>(Color online) Four-state discrete modulation in phase space.</p> "> Figure 3
<p>(Color online) An EPR state <math display="inline"><semantics> <mrow> <mo stretchy="false">|</mo> <mi>λ</mi> <mo stretchy="false">〉</mo> </mrow> </semantics></math> sent through a Gaussian quantum channel with transmittance <math display="inline"><semantics> <msub> <mi>T</mi> <mn>1</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>T</mi> <mn>2</mn> </msub> </semantics></math>, excess noise <math display="inline"><semantics> <mi>ϵ</mi> </semantics></math>, and detection-added noise <math display="inline"><semantics> <mi>χ</mi> </semantics></math> has been replaced by an EPR state <math display="inline"><semantics> <mrow> <mo stretchy="false">|</mo> <mi>ζ</mi> <mo stretchy="false">〉</mo> </mrow> </semantics></math> sent through a Gaussian quantum channel with transmittance <math display="inline"><semantics> <msub> <mi>η</mi> <mi>a</mi> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>η</mi> <mn>2</mn> </msub> </semantics></math>, excess noise <math display="inline"><semantics> <msub> <mi>ϵ</mi> <mrow> <mi>g</mi> <mi>n</mi> </mrow> </msub> </semantics></math>, and detection-added noise <math display="inline"><semantics> <msub> <mi>χ</mi> <mrow> <mi>g</mi> <mi>d</mi> </mrow> </msub> </semantics></math>, but without the hybrid amplifier.</p> "> Figure 4
<p>(Color online) The heralded hybrid linear amplifier is applied at Bob side. The mode <math display="inline"><semantics> <msub> <mi>B</mi> <mn>1</mn> </msub> </semantics></math> first goes through into a beam splitter with transmissivity <math display="inline"><semantics> <msub> <mi>T</mi> <mi>g</mi> </msub> </semantics></math>, then the reflected mode goes through into the MB-NLA concatenated by a dual-heterodyne detection and NLA. Here, the dual-heterodyne detection is used to measure the <span class="html-italic">X</span> and <span class="html-italic">P</span> quadrature of the reflected mode, respectively. After that we set a DLA and an elector-optic modulator (EOM) to dispose the amplified signal pulse and output mode <math display="inline"><semantics> <msub> <mi>B</mi> <mn>2</mn> </msub> </semantics></math> by a beam splitter with transmissivity 99:1.</p> "> Figure 5
<p>(Color online) The optimal value range for <math display="inline"><semantics> <msub> <mi>g</mi> <mrow> <mi>N</mi> <mi>L</mi> <mi>A</mi> </mrow> </msub> </semantics></math>. The X-coordination and Y-coordination represent gain value of NLA and secret key rate, respectively. The figure shows that the proposed scheme with different detector (homodyne detector and heterodyne detector) can obtain relative higher secrete key rate in the public area 1. Here, the distance be set as 15, 20, and 25 km. Moreover, the fixed parameter values are set with <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mi>D</mi> </msub> <mo>=</mo> <mn>12</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>η</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mi>M</mi> </msub> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>.</p> "> Figure 6
<p>(Color online) The optimal value range for <math display="inline"><semantics> <msub> <mi>g</mi> <mrow> <mi>N</mi> <mi>L</mi> <mi>A</mi> </mrow> </msub> </semantics></math>. The X-coordination and Y-coordination represent the gain value of NLA and secret key rate, respectively. The figure shows that the proposed scheme with different detectors (homodyne detector and heterodyne detector) can obtain relative higher secrete key rate in the public area 2. Here, the distance be set as 30, 35, 40, and 45 km. Moreover, the fixed parameter values are set with <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mi>D</mi> </msub> <mo>=</mo> <mn>12</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>η</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mi>M</mi> </msub> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>.</p> "> Figure 7
<p>(Color online) The optimal value range for <math display="inline"><semantics> <msub> <mi>g</mi> <mrow> <mi>N</mi> <mi>L</mi> <mi>A</mi> </mrow> </msub> </semantics></math>. The X-coordination and Y-coordination represent gain value of NLA and secret key rate, respectively. The figure shows that the proposed scheme with different detector (homodyne detector and heterodyne detector) can obtain relative higher secrete key rate in the public area 3. Here, the distance be set as 90, 95, and 100 km. Moreover, the fixed parameter values are set with <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mi>D</mi> </msub> <mo>=</mo> <mn>12</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>η</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mi>M</mi> </msub> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>.</p> "> Figure 8
<p>(Color online) Considering the above three public areas denoted in <a href="#entropy-22-00882-f005" class="html-fig">Figure 5</a>, <a href="#entropy-22-00882-f006" class="html-fig">Figure 6</a> and <a href="#entropy-22-00882-f007" class="html-fig">Figure 7</a>, we get the overlapping region in this figure, which represents the optimal gain value range of proposed scheme.</p> "> Figure 9
<p>(Color online) The performance of proposed schemes for different <math display="inline"><semantics> <msub> <mi>L</mi> <mn>1</mn> </msub> </semantics></math>. The fixed parameters are set with <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mi>N</mi> </msub> <mo>=</mo> <mn>8</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mi>D</mi> </msub> <mo>=</mo> <mn>12</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>η</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mi>M</mi> </msub> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>. Here, the light blue solid lines and red solid lines express the scheme without hybrid amplifier, moreover dark blue solid lines and orange lines represent the scheme with hybrid amplifier.</p> "> Figure 10
<p>(Color online) The performance of schemes with four-state untested source via hybrid amplifier and heterodyne detection in different <math display="inline"><semantics> <msub> <mi>L</mi> <mn>1</mn> </msub> </semantics></math>. The fixed parameters are set with <math display="inline"><semantics> <msub> <mi>g</mi> <mi>N</mi> </msub> </semantics></math> = 8, <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mi>D</mi> </msub> <mo>=</mo> <mn>12</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>η</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mi>M</mi> </msub> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>.</p> "> Figure 11
<p>(Color online) The performance of schemes with four-state untested source via hybrid amplifier and homodyne detection in different <math display="inline"><semantics> <msub> <mi>L</mi> <mn>1</mn> </msub> </semantics></math>. The fixed parameters are set with <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mi>N</mi> </msub> <mo>=</mo> <mn>8</mn> </mrow> </semantics></math><math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mi>D</mi> </msub> <mo>=</mo> <mn>12</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>η</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mi>M</mi> </msub> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>.</p> "> Figure 12
<p>(Color online) Panel (<b>a</b>) shows the relationship between the transmission distance and secret key rate. It demonstrates the maximal transmission distance for the scheme with Gaussian modulation. Here, the parameters are set as <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mi>N</mi> </msub> <mo>=</mo> <mn>8</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mi>D</mi> </msub> <mo>=</mo> <mn>12</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>η</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mi>M</mi> </msub> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>. The dot-dash lines in the figure represent Gaussian modulation with an untested source. Furthermore, the solid lines represent Gaussian modulation with untested source via hybrid amplifier. Panel (<b>b</b>) also shows the relationship between transmission distance and secret key rate. Here, the parameters are also set as <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mi>N</mi> </msub> <mo>=</mo> <mn>8</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mi>D</mi> </msub> <mo>=</mo> <mn>12</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>η</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mi>M</mi> </msub> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>. In panel (<b>b</b>), the green, dark blue, red, and light blue solid lines represent the Gaussian modulation with untested source via hybrid amplifier. Furthermore, the red dash line and yellow solid line represent the four-state discrete modulation with untested source. The red dot-dash line and yellow dot-dash line denote our proposed scheme (four-state discrete modulation with untested source via hybrid amplifier).</p> ">
Abstract
:1. Introduction
2. Discretely Modulated CVQKD with Untested Source via Hybrid Amplifier
2.1. Deploying a Four-State Discrete Modulation at Alice Side
2.2. Eve Producing the Untrusted Entanglement Source
2.3. Implementing a Hybrid Linear Amplifier at Bob Side
3. Simulation of the Secret Key Rate
3.1. The Gaussian Modulation with Untested Source via Hybrid Amplifier Scheme
3.2. The Discrete Modulation with Untested Source via Hybrid Amplifier Scheme
4. Performance Analysis and Results Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Brassard, C.H.; Brassard, G. Quantum cryptography: Public key distribution and coin tossing. In Proceedings of the IEEE International Conference on Computers Systems and Signal Processing, Bangalore, India, 9–12 December 1984; pp. 175–179. [Google Scholar]
- Gisin, N.; Grégoire, R.; Tittel, W. Quantum Cryptography. Rev. Mod. Phys. 2002, 74, 154–195. [Google Scholar] [CrossRef] [Green Version]
- Wootters, W.K.; Zurek, W.H. A single quantum cannot be cloned. Nature 1982, 299, 802–803. [Google Scholar] [CrossRef]
- Bang, J.Y.; Berger, M.S. Quantum Mechanics and the Generalized Uncertainty Principle. Phys. Rev. 2006, 74, 125012. [Google Scholar] [CrossRef] [Green Version]
- Scarani, V.; Bechmann-Pasquinucci, H.; Cerf, N.; Dušek, M.; Lütkenhaus, N.; Peev, M. The Security of Practical Quantum Key Distribution. Rev. Mod. Phys. 2009, 81, 1301. [Google Scholar] [CrossRef] [Green Version]
- Pirandola, S.; Ottaviani, C.; Spedalieri, G. High-rate measurement-device-independent quantum cryptography. Nat. Photonics 2015, 9, 397–402. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.C.; Sun, S.H.; Jiang, M.S. Gaussian-modulated coherent-state measurement-device-independent quantum key distribution. Phys. Rev. A 2013, 89, 23–35. [Google Scholar] [CrossRef] [Green Version]
- Lance, A.M.; Symul, T.; Sharma, V. No-Switching Quantum Key Distribution using Broadband Modulated Coherent Light. Phys. Rev. Lett. 2005, 95, 0503. [Google Scholar] [CrossRef] [Green Version]
- Huang, P.; Fang, J.; Zeng, G. State-discrimination attack on discretely modulated continuous-variable quantum key distribution. Phys. Rev. A 2014, 89, 2330. [Google Scholar] [CrossRef]
- Zhang, H.; Fang, J.; He, G. Improving the performance of the four-state continuous-variable quantum key distribution by using optical amplifiers. Phys. Rev. A 2012, 86, 022338. [Google Scholar] [CrossRef] [Green Version]
- Leverrier, A.; Grangier, P. Continuous-variable quantum-key-distribution protocols with a non-Gaussian modulation. Phys. Rev. A 2011, 83, 2312. [Google Scholar] [CrossRef] [Green Version]
- Leverrier, A.; Grangier, P. Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation. Phys. Rev. Lett. 2009, 102, 0504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, X.F.; Qi, B.; Zhao, Y.; Lo, H.K. Practical Decoy State for Quantum Key Distribution. Phys. Rev. A 2005, 72, 012326. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Qi, B.; Ma, X.F.; Lo, H.K.; Qian, L. Experimental Quantum Key Distribution with Decoy States. Phys. Rev. Lett. 2006, 96, 070502. [Google Scholar] [CrossRef] [Green Version]
- Weedbrook, C. Continuous-Variable Quantum Key Distribution with Entanglement in the Middle. Phys. Rev. A 2012, 87, 1110–1116. [Google Scholar] [CrossRef] [Green Version]
- Leverrier, A.; Grangier, P. Erratum: Unconditional Security Proof of Long-Distance Continuous-Variable Quantum Key Distribution with Discrete Modulation. Phys. Rev. Lett. 2011, 106, 259902. [Google Scholar] [CrossRef]
- Rémi, B.; Leverrier, A.; Barbieri, M. Improving the maximum transmission distance of continuous-variable quantum key distribution using a noiseless amplifier. Phys. Rev. A 2012, 86, 2327. [Google Scholar]
- Wang, T.; Song, T. Improving the maximum transmission distance of continuous-variable quantum key distribution with noisy coherent states using a noiseless amplifier. Phys. Lett. A. 2014, 378, 2808–2812. [Google Scholar] [CrossRef]
- Weedbrook, C.; Lance, A.M.; Bowen, W.P. Quantum cryptography without switching. Phys. Rev. Lett. 2004, 93, 0504. [Google Scholar] [CrossRef] [Green Version]
- Weedbrook, C.; Lance, A.M.; Bowen, W.P. Coherent state quantum key distribution without random basis switching. Phys. Rev. A 2006, 73, 2316. [Google Scholar] [CrossRef] [Green Version]
- García-Patrón, R.; Cerf, N.J. Continuous-variable quantum key distribution protocols over noisy channels. Phys. Rev. Lett. 2009, 102, 0501. [Google Scholar] [CrossRef] [Green Version]
- Qi, B.; Zhao, Y.; Ma, X.F.; Lo, H.K.; Qian, L. Dual detectors scheme in practical quantum key distribution systems. Phys. Rev. A 2007, 75, 2304. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Haw, J.Y.; Symul, T. Characterization of a measurement-based noiseless linear amplifier and its applications. Phys. Rev. A 2017, 96, 2319. [Google Scholar] [CrossRef]
- Jie, Z.; Josephine, D.; Yan, H.J. Quantum enhancement of signal-to-noise ratio with a heralded linear amplifier. Optica 2017, 4, 1421. [Google Scholar]
- Haw, J.Y.; Zhao, J.; Dias, J. Surpassing the no-cloning limit with a heralded hybrid linear amplifier for coherent states. Nat. Commun. 2016, 7, 13222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takada, A.; Imajuku, W. Amplitude noise suppression using a high gain phase sensitive amplifier as a limiting amplifier. Electron. Lett. 1996, 32, 677–679. [Google Scholar] [CrossRef]
- Yoshikawa, J.I.; Miwa, Y.; Filip, R. Demonstration of reversible phase-insensitive optical amplifier. Phys. Rev. A 2011, 83, 4861–4865. [Google Scholar] [CrossRef] [Green Version]
- Müller, C.R.; Wittmann, C.; Marek, P.; Filip, R.; Marquardt, C.; Leuchs, G.; Andersen, U.L. Probabilistic cloning of coherent states without a phase reference. Phys. Rev. A 2011, 86, 18515–18524. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.C.; Li, Z.; Weedbrook, C. Improvement of two-way continuous-variable quantum key distribution using optical amplifiers. J. Phys. B At. Mol. Opt. Phys. 2014, 47, 5501. [Google Scholar] [CrossRef] [Green Version]
- Ralph, T.C.; Lund, P.A. Nondeterministic Noiseless linear amplification of quantum systems. Am. Inst. Phys. Conf. 2009, 1110, 155–160. [Google Scholar]
- Shannon, C.E.; Syst, B. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, K.; Wu, X.; Mao, Y.; Chen, Z.; Liao, Q.; Guo, Y. Performance Improvement of Discretely Modulated Continuous-Variable Quantum Key Distribution with Untrusted Source via Heralded Hybrid Linear Amplifier. Entropy 2020, 22, 882. https://doi.org/10.3390/e22080882
Zhou K, Wu X, Mao Y, Chen Z, Liao Q, Guo Y. Performance Improvement of Discretely Modulated Continuous-Variable Quantum Key Distribution with Untrusted Source via Heralded Hybrid Linear Amplifier. Entropy. 2020; 22(8):882. https://doi.org/10.3390/e22080882
Chicago/Turabian StyleZhou, Kunlin, Xuelin Wu, Yun Mao, Zhiya Chen, Qin Liao, and Ying Guo. 2020. "Performance Improvement of Discretely Modulated Continuous-Variable Quantum Key Distribution with Untrusted Source via Heralded Hybrid Linear Amplifier" Entropy 22, no. 8: 882. https://doi.org/10.3390/e22080882
APA StyleZhou, K., Wu, X., Mao, Y., Chen, Z., Liao, Q., & Guo, Y. (2020). Performance Improvement of Discretely Modulated Continuous-Variable Quantum Key Distribution with Untrusted Source via Heralded Hybrid Linear Amplifier. Entropy, 22(8), 882. https://doi.org/10.3390/e22080882