Sensitivity Analysis of Selected Parameters in the Order Picking Process Simulation Model, with Randomly Generated Orders
"> Figure 1
<p>The changes in the order picking process time in case of the analyzed sample, with the indication of the number of items picked per order of <span class="html-italic">j</span>th number.</p> "> Figure 2
<p>Execution of 100 picking lists for data sample, given in function <math display="inline"><semantics> <mrow> <mi>f</mi> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> in the case of total order picking process time (<span class="html-italic">t</span>).</p> "> Figure 3
<p>Execution of 100 picking lists for data sample, given in function <math display="inline"><semantics> <mrow> <mi>f</mi> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> in the case of the average value of order picking process time.</p> "> Figure 4
<p>Execution of 100 picking lists per data sample, given in function <math display="inline"><semantics> <mrow> <mi>f</mi> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> in the case of the average value of order picking process time—part of the plot (the maximum value on <math display="inline"><semantics> <mrow> <mover accent="true"> <mrow> <mi>t</mi> <mrow> <mo>(</mo> <mrow> <mi>P</mi> <mi>S</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo stretchy="true">¯</mo> </mover> </mrow> </semantics></math> axis would be almost 60 min).</p> ">
Abstract
:1. Introduction
1.1. Significance of Order Picking Process
1.2. Prior Research on Order Picking Process
1.3. Objectives of the Research
2. Conceptual and Simulation Models
- mean value of lift-truck acceleration or stop, A;
- length of a rack in warehouse, L;
- mean time of lift-truck driving forward or backward (with lowered cabin and forks), ;
- mean time of lift-truck driving forward or backward (with lifted cabin and forks), ;
- rack height (from the ground to the bottom of the highest rack storey), ;
- free lift of forks, ;
- medium value of load unit lifting up time, ;
- medium value of load unit lowering time, ;
- mean time of lift-truck fork ejection or rotation, N;
- time of picking list reading by employee, ;
- time of reading the next row in a picking list, ;
- time of single item picking, .
- mean value of lift-truck acceleration or stop, A = 0.0475 [min] (value based on [31]);
- length of a rack in warehouse, L = 150 [m];
- mean time of lift-truck driving forward or backward (with lowered cabin and forks), F1 = 0.0079 [min/m] (the value of mean of transport velocity, i.e., v = 10.5 km/h, given in [105] has been converted to the F1 parameter, which is used in the analytical calculations; in turn, the velocity of the modeled mean of transport has been noted as vsym = 0.8547 [m/s], which is related to the simultaneous considerations on the mean of transport forward or backward movement with the lifted cabin and forks);
- rack height (from the ground to the bottom of the highest rack storey), H = 14.5 [m] (the adoption of this value is dictated by the fact that the lifting height in the catalog [105] is 14 570 [mm]);
- free lift of forks, h2 = 0.8 [m] (value based on [105]);
- medium value of load unit lifting up time, U = 0.0833 [min/m] (the lifting velocity vU = 0.2 [m/s] given in [105] is used to determine this value);
- medium value of load unit lowering time, D = 0.0417 [min/m] (the lowering velocity vD = 0.4 [m/s] given in [105] is used to determine this value);
- mean time of lift-truck fork ejection or rotation, N = 0.13 [min] (value based on [31]);
- time of picking list reading by employee, = 0.0852 [min] (value based on [31]);
- time of reading the next row in a picking list, = 0.118 [min] (value based on [31]);
- time of single item picking, = 0.118 [min] (value based on [31]).
3. Verification and Validation of Simulation Model
4. Discussion on Sensitivity Analysis of Selected Parameters in the Simulation Model
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Alicke, K.; Arnold, D.; Knöss, A.; Töpfer, F. Optimierung von manuellen Kommissionierbereichen. Logistik für Unternehmen 2001, 15, 54–57. [Google Scholar]
- Ulbrich, A.; Galka, S.; Günthner, W.A. Simulation of Multi-Level Order Picking Systems Within Rough Planning for Decision Making. Available online: https://bit.ly/2GGGebA (accessed on 21 March 2016).
- Lu, W.; McFarlane, D.; Giannikas, V.; Zhang, Q. An algorithm for dynamic order picking in warehouse operations. Eur. J. Oper. Res. 2016, 248, 107–122. [Google Scholar] [CrossRef]
- Roodbergen, K.J.; de Koster, R.M.B.M. Routing order pickers in a warehouse with a middle aisle. Eur. J. Oper. Res. 2001, 133, 32–43. [Google Scholar] [CrossRef] [Green Version]
- Chiang, D.M.-H.; Lin, C.-P.; Chen, M.-C. The adaptive approach for storage assignment by mining data of warehouse management system for distribution centres. Enterp. Inf. Syst. 2011, 5, 219–234. [Google Scholar] [CrossRef]
- Kostrzewski, M. Mathematical Models of Time Computing in Two-Dimensional Order Picking Process in High-Bay Warehouses; Sas, J., Ed.; Quantitative Methods in Logistics Management; AGH University of Science and Technology Press: Kraków, Poland, 2014; pp. 55–69. [Google Scholar]
- Drury, J. Towards More Efficient Order Picking; IMM Monograph No. 1, Report; The Institute of Materials Management: Cranfield, Great Britain, UK, 1988; pp. 1–69. [Google Scholar]
- Gałązka, M.; Jakubiak, M. Simulation as a method of choosing the order picking concept. Logist. Transp. 2010, 11, 81–88. [Google Scholar]
- Tompkins, J.A.; White, J.A.; Bozer, Y.A.; Tanchoco, J.M.A. Facilities Planning, 4th ed.; Wiley: New York, NY, USA, 2010; pp. 1–864. [Google Scholar]
- Frazelle, E.H. World-Class Warehousing; Logistics Resources International: Atlanta, GA, USA, 1996; pp. 1–256. [Google Scholar]
- Bartholdi, J.J.; Hackman, S.T. Warehouse & Distribution Science, 0.98th ed.; The Supply Chain & Logistics Institute, H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology: Atlanta, GA, USA, 2016; Available online: https://www.warehouse-science.com/book/index.html (accessed on 20 December 2016).
- de Koster, R.; Le-Duc, T.; Roodbergen, K.J. Design and control of warehouse order picking: A literature review. Eur. J. Oper. Res. 2007, 182, 481–501. [Google Scholar] [CrossRef]
- Coyle, J.J.; Bardi, E.J.; Langley, C.J. The Management of Business Logistics, 6th ed.; West Publishing: Minneapolis, MN, USA, 1996; pp. 1–631. [Google Scholar]
- Chen, T.-L.; Cheng, C.-Y.; Chen, Y.-Y.; Chan, L.-K. An efficient hybrid algorithm for integrated order batching, sequencing and routing problem. Int. J. Prod. Econ. 2015, 159, 158–167. [Google Scholar] [CrossRef]
- Daly, F. Warehousing: The strategic weapon for customer service. Ind. Eng. J. 1993, 25, 61–62. [Google Scholar]
- Marchet, G.; Melacini, M.; Perotti, S. Investigating order picking system adoption: A case-study-based approach. Int. J. Logist. Res. App. 2015, 18, 82–98. [Google Scholar] [CrossRef]
- Wruck, S.; Vis, I.F.A.; Boter, J. Risk control for staff planning in ecommerce warehouses. Int. J. Prod. Res. 2017, 55, 6453–6469. [Google Scholar] [CrossRef] [Green Version]
- van Gils, T.; Ramaekers, K.; Caris, A.; de Koster, R.B.M. Designing efficient order picking systems by combining planning problems: State-of-the-art classification and review. Eur. J. Oper. Res. 2018, 267, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Quader, S.; Castillo-Villar, K.K. Design of an enhanced multi-aisle order picking system considering storage assignments and routing heuristics. Robot. Comput. Integr. Manuf. 2018, 50, 13–29. [Google Scholar] [CrossRef]
- Venkitasubramony, R.; Adil, G.K. Design of an order picking warehouse factoring vertical travel and space sharing. Int. J. Adv. Manuf. Technol. 2017, 91, 1921–1934. [Google Scholar] [CrossRef]
- Zhang, Y. Correlated Storage Assignment Strategy to reduce Travel Distance in Order Picking. IFAC-PapersOnLine 2016, 49, 30–35. [Google Scholar] [CrossRef]
- Pan, J.Ch.-H.; Shih, P.-H.; Wu, M.-H. Storage assignment problem with travel distance and blocking considerations for a picker-to-part order picking system. Comput. Ind. Eng. 2012, 62, 527–535. [Google Scholar] [CrossRef]
- Chew, E.P.; Tang, L.Ch. Travel time analysis for general item location assignment in a rectangular warehouse. Eur. J. Oper. Res. 1999, 112, 582–597. [Google Scholar] [CrossRef]
- Le-Duc, T.; de Koster, R.M.B.M. Travel time estimation and order batching in a 2-block warehouse. Eur. J. Oper. Res. 2007, 176, 374–388. [Google Scholar] [CrossRef]
- Öztürkog, Ö.; Hoser, D. A discrete cross aisle design model for order-picking warehouses. Eur. J. Oper. Res. 2019, 275, 411–430. [Google Scholar] [CrossRef]
- Gibson, D.R.; Sharp, G.P. Order batching procedures. Eur. J. Oper. Res. 1992, 58, 57–67. [Google Scholar] [CrossRef]
- Davarzani, H.; Norrman, A. Toward a relevant agenda for warehousing research: Literature review and practitioners’ input. Logist. Res. 2015, 8, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Chow, H.K.H.; Choy, K.L.; Lee, W.B.; Lau, K.C. Design of a RFID case-based resource management system for warehouse operations. Expert. Syst. Appl. 2006, 30, 561–576. [Google Scholar] [CrossRef]
- House, R.G.; Karrenbauer, J.J. Logistics system modelling. Int. J. Phys. Distrib. Logist. Manag. 1978, 8, 189–199. [Google Scholar] [CrossRef]
- Staudt, F.H.; Alpan, G.; Mascolo, M.D.; Rodriguez, C.M.T. Warehouse performance measurement: A literature review. Int. J. Prod. Res. 2015, 53, 5524–5544. [Google Scholar] [CrossRef]
- Fijałkowski, J. Technologia Magazynowania, Wybrane Zagadnienia; Oficyna Wydawnicza Politechniki Warszawskiej: Warsaw, Poland, 1995; pp. 1–327. [Google Scholar]
- Kostrzewski, M. Modelowanie i Badanie Wybranych Elementów i Obiektów Logistycznych z Wykorzystaniem Metod Symulacyjnych, 1st ed.; Oficyna Wydawnicza Politechniki Warszawskiej: Warszawa, Poland, 2018; pp. 1–212. [Google Scholar]
- Karkula, M. Modelowanie i Symulacja Procesów Logistycznych, 1st ed.; Wydawnictwa Akademii Górniczo-Hutniczej: Kraków, Poland, 2013; pp. 1–281. [Google Scholar]
- Ardjmand, E.; Bajgiran, O.S.; Youssef, E. Using list-based simulated annealing and genetic algorithm for order batching and picker routing in put wall based picking systems. Appl. Soft Comput. 2019, 75, 106–119. [Google Scholar] [CrossRef]
- Boysen, N.; Stephan, K. The deterministic product location problem under a pick-by-order policy. Discrete Appl. Math. 2013, 161, 2862–2875. [Google Scholar] [CrossRef]
- Fumi, A.; Scarabotti, L.; Schiraldi, M.M. The effect of slot-code optimization in warehouse order picking. Int. J. Eng. Bus. Manag. 2013, 5, 1–10. [Google Scholar] [CrossRef]
- Le-Duc, T. Design and Control of Efficient Order Picking Processes. Ph.D. Thesis, ERIM Ph.D. Series Research in Management, Rotterdam, The Netherlands, 2005; pp. 1–174. [Google Scholar]
- Lorenc, A. Method of effectiveness evaluation of products picking process for pick by order type in warehouse on basis of a picking list. In Proceedings of the International Conference on Industrial Logistics, Zakopane, Poland, 28 September–1 October 2016; pp. 156–167. [Google Scholar]
- Hsu, C.-M.; Chen, K.-Y.; Chen, M.-C. Batching orders in warehouses by minimizing travel distance with genetic algorithms. Comput. Ind. 2005, 56, 169–178. [Google Scholar] [CrossRef]
- Pansart, L.; Catusse, N.; Cambazard, H. Exact algorithms for the order picking problem. Comput. Oper. Res. 2018, 100, 117–127. [Google Scholar] [CrossRef] [Green Version]
- Pawlewski, P. Simulation model to optimize picking operations in a distribution center. Prz. Organ. 2015, 10, 37–43. [Google Scholar] [CrossRef]
- Petersen, C.G.; Aase, G. A comparison of picking, storage, and routing policies in manual order picking. Int. J. Prod. Econ. 2004, 92, 11–19. [Google Scholar] [CrossRef]
- Rojanapitoon, T.; Teeravaraprug, J. A computer simulation for economical order picker routing when considering travel distance and vehicle energy consumption. Int. J. Eng. Technol. 2018, 7, 33–37. [Google Scholar] [CrossRef]
- Schwerdfeger, S.; Boysen, N. Order picking along a crane-supplied pick face: The SKU switching problem. Eur. J. Oper. Res. 2017, 260, 534–545. [Google Scholar] [CrossRef]
- Tarczyński, G. Warehouse real-time simulator—How to optimize order picking time (Working Paper). SSRN Electron. J. 2013, 1–18. [Google Scholar] [CrossRef]
- Urzúa, M.; Mendoza, A.; González, A.O. Evaluating the impact of order picking strategies on the order fulfilment time: A simulation study. Acta Logist. Int. Sci. J. Logist. 2019, 6, 103–114. [Google Scholar] [CrossRef]
- van Gils, T.; Caris, A.; Ramaekers, K.; Braekers, K.; de Koster, R.B.M. Designing efficient order picking systems: The effect of real-life features on the relationship among planning problems. Transp. Res. E Logist. 2019, 125, 47–73. [Google Scholar] [CrossRef]
- van Gils, T.; Caris, A.; Ramaekers, K.; Braekers, K. Formulating and solving the integrated batching, routing, and picker scheduling problem in a real-life spare parts warehouse. Eur. J. Oper. Res. 277, 814–830. [CrossRef]
- van Gils, T.; Ramaekers, K.; Braekers, K.; Depaire, B.; Caris, A. Increasing order picking efficiency by integrating storage, batching, zone picking, and routing policy decisions. Int. J. Prod. Econ. 2018, 197, 243–261. [Google Scholar] [CrossRef]
- van Nieuwenhuyse, I.; de Koster, R.B.M. Evaluating order throughput time in 2-block warehouses with time window batching. Int. J. Prod. Econ. 2009, 121, 654–664. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, R.-Q.; Fan, K. Improving order-picking operation through efficient storage location assignment: A new approach. Comput. Ind. Eng. 2020, 139, 106186. [Google Scholar] [CrossRef]
- Weidinger, F.; Boysen, N.; Schneider, M. Picker routing in the mixed-shelves warehouses of e-commerce retailers. Eur. J. Oper. Res. 2019, 274, 501–515. [Google Scholar] [CrossRef]
- Bahrami, B.; Aghezzaf, E.; Limere, V. Using simulation to analyze picker blocking in manual order picking systems. Procedia Manuf. 2017, 11, 1798–1808. [Google Scholar] [CrossRef]
- Bòdis, T.; Botzheim, J.; Földesi, P. Necessity and complexity of order picking routing optimisation based on pallet loading features. Acta Univ. Sapientiae Inform. 2017, 9, 162–194. [Google Scholar] [CrossRef] [Green Version]
- Choe, K.; Sharp, G.P. Small Parts Order Picking: Design and Operation. Available online: http://www.isye.gatech.edu/logisticstutorial/order/article.htm (accessed on 21 January 2019).
- Dąbrowska, A.; Giel, R.; Plewa, M. The picking process model in e-commerce industry. In Engineering in Dependability of Computer Systems and Networks. DepCoS-RELCOMEX 2019. Advances in Intelligent Systems and Computing, 1st ed.; Zamojski, W., Mazurkiewicz, J., Sugier, J., Walkowiak, T., Kacprzyk, J., Eds.; Springer: Cham, Switzerland, 2020; Volume 987, pp. 123–131. [Google Scholar] [CrossRef]
- Füßler, D.; Boysen, N. Efficient order processing in an inverse order picking system. Comput. Oper. Res. 2017, 88, 150–160. [Google Scholar] [CrossRef]
- Giannikas, V.; Lu, W.; Robertson, B.; McFarlane, D. An interventionist strategy for warehouse order picking: Evidence from two case studies. Int. J. Prod. Econ. 2017, 189, 63–76. [Google Scholar] [CrossRef] [Green Version]
- Guan, M.; Li, Z. Genetic Algorithm for scattered storage assignment in Kiva mobile fulfillment system. Am. J. Oper. Res. 2018, 8, 474–485. [Google Scholar] [CrossRef] [Green Version]
- Güller, M.; Hegmanns, T. Simulation-based performance analysis of a miniload multishuttle order picking system. Procedia CIRP 2014, 17, 475–480. [Google Scholar] [CrossRef] [Green Version]
- Henn, S. Algorithms for on-line order batching in an order picking warehouse. Comput. Oper. Res. 2012, 39, 2549–2563. [Google Scholar] [CrossRef]
- Henn, S.; Schmid, V. Metaheuristics for order batching and sequencing in manual order picking systems. Comput. Ind. Eng. 2013, 66, 338–351. [Google Scholar] [CrossRef]
- Henn, S.; Wäscher, G. Tabu search heuristics for the order batching problem in manual order picking systems. Eur. J. Oper. Res. 2012, 222, 484–494. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.; Kim, Y. A route-selecting order batching model with the S-shape routes in a parallel-aisle order picking system. Eur. J. Oper. Res. 2017, 257, 185–196. [Google Scholar] [CrossRef]
- Lee, I.G.; Chung, S.H.; Yoon, S.W. Two-stage storage assignment to minimize travel time and congestion for warehouse order picking operations. Comput. Ind. Eng. 2020, 139, 106129. [Google Scholar] [CrossRef]
- Lin, C.-C.; Kang, J.-R.; Hou, C.-C.; Cheng, C.-Y. Joint order batching and picker Manhattan routing problem. Comput. Ind. Eng. 2016, 95, 164–174. [Google Scholar] [CrossRef]
- Onal, S.; Zhang, J.; Das, S. Modelling and performance evaluation of explosive storage policies in internet fulfilment warehouses. Int. J. Prod. Res. 2017, 55, 5902–5915. [Google Scholar] [CrossRef]
- Öncan, T. MILP formulations and an iterated local search algorithm. Eur. J. Oper. Res. 2015, 243, 142–155. [Google Scholar] [CrossRef]
- Öncan, T.; Cağirici, M. MILP formulations for the order batching problem in low-level picker-to-part warehouse systems. IFAC Proc. Vol. 2013, 46, 471–476. [Google Scholar] [CrossRef]
- Pan, J.C.-H.; Shih, P.-H.; Wu, M.-H.; Lin, J.-H. A storage assignment heuristic method based on genetic algorithm for a pick-and-pass warehousing system. Comput. Ind. Eng. 2015, 81, 1–13. [Google Scholar] [CrossRef]
- Parikh, P.J.; Meller, R.D. A travel-time model for a person-onboard order picking system. Eur. J. Oper. Res. 2010, 200, 385–394. [Google Scholar] [CrossRef]
- Roodbergen, K.J.; Vis, I.F.A. A model for warehouse layout. IIE Trans. 2006, 38, 799–812. [Google Scholar] [CrossRef]
- Rubrico, J.I.U.; Higashi, T.; Tamura, H.; Ota, J. Online rescheduling of multiple picking agents for warehouse management. Robot. Comput. Int. Manuf. 2011, 27, 62–71. [Google Scholar] [CrossRef]
- Scholz, A.; Schubert, D.; Wäscher, G. Order picking with multiple pickers and due dates—Simultaneous solution of order batching, batch assignment and sequencing, and picker routing problems. Eur. J. Oper. Res. 2017, 263, 461–478. [Google Scholar] [CrossRef] [Green Version]
- Tarczyński, G. Estimating order-picking times for return heuristic - equations and simulations. LogForum. 2015, 11, 295–303. [Google Scholar] [CrossRef]
- Yu, M. Enhancing Warehouse Performance by Efficient Order Picking. Ph.D. Thesis, ERIM Ph.D. Series Research in Management, Rotterdam, The Netherlands, 2008; pp. 1–191. [Google Scholar]
- Žulj, I.; Kramer, S.; Schneider, M. A hybrid of adaptive large neighborhood search and tabu search for the order-batching problem. Eur. J. Oper. Res. 2018, 264, 653–664. [Google Scholar] [CrossRef]
- Ashayeri, J.; Strijbosch, L.W.G.; Jacobs, E.; van Asten, L. Redesigning storage assignment and order-picking policies of a miniload AS/RS system: A case study. In Progress in Material Handling Research, 1st ed.; Graves, R.J., McGinnis, L.F., Medeiros, D.J., Ward, R.E., Wilhelm, M.R., Eds.; Braun-Brumfield Inc.: Ann Arbor, MI, USA, 1998; pp. 61–85. [Google Scholar]
- Battini, D.; Calzavara, M.; Persona, A.; Roncari, M.; Sgarbossa, F. Dual-tray vertical lift module for order picking: A performance and storage assignment preliminary study. In Proceedings of the XX Summer School "Francesco Turco"—Industrial Systems Engineering, Naples, Italy, 16–18 September 2015; pp. 85–90. Available online: https://pdfs.semanticscholar:3c95/661ea92d0c6f13c647c98c0d8a53f2ae14a1.pdf (accessed on 6 February 2019).
- Battini, D.; Calzavara, M.; Persona, A.; Sgarbossa, F. Dual-tray vertical lift modules for fast order picking. In Proceedings of the 14th IMHRC Proceedings, Karlsruhe, Germany, 12–16 June 2016; Available online: https://digitalcommons.georgiasouthern.edu/pmhr_2016/6 (accessed on 6 February 2019).
- Bottani, E.; Volpi, A.; Montanari, R. Design and optimization of order picking systems: An integrated procedure and two case studies. Comput. Ind. Eng. 2019, 137, 106035. [Google Scholar] [CrossRef]
- Burinskienė, A. Order picking process at warehouses. Int. J. Logist. Syst. Manag. 2010, 6, 162–178. [Google Scholar] [CrossRef]
- Burinskienė, A.; Davidavičienė, V.; Raudelinienė, I.; Meidutė-Kavaliauskienė, I. Simulation and order picking in a very-narrow- aisle warehouse. Ekon. Istraz. 2018, 31, 1574–1589. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Montoya, R.A.; Correa-Espinal, A.A.; Hernñndez-Vahos, J.D. Picking routing problem with k homogenous material handling equipment for a refrigerated warehouse. Rev. Fac. Ing. Univ. Ant. 2016, 80, 9–20. [Google Scholar] [CrossRef]
- Huang, M.; Guo, Q.; Liu, J.; Huang, X. Mixed model assembly line scheduling approach to order picking problem in online supermarkets. Sustainability 2018, 10, 3931. [Google Scholar] [CrossRef] [Green Version]
- Masood, T.; Weston, R.; Rahimifard, A. A computer integrated unified modelling approach to responsive manufacturing. Int. J. Ind. Syst. Eng. 2010, 5, 287–312. [Google Scholar] [CrossRef] [Green Version]
- Renaud, J.; Ruiz, A. Improving product location and order picking activities in a distribution centre. J. Oper. Res. Soc. 2008, 59, 1603–1613. Available online: www.jstor:stable/20202246 (accessed on 6 February 2020). [CrossRef]
- Santini, B.; de Moura Filho, J.P. A tool for analyzing picking operations within a distribution center. In Proceedings of the 2012 Winter Simulation Conference, Berlin, Germany, 9–12 December 2012; Laroque, C., Himmelspach, J., Pasupathy, R., Rose, O., Uhrmacher, A.M., Eds.; [Google Scholar]
- Takakuwa, S.; Takizawa, H.; Ito, K.; Hiraoka, S. Simulation and analysis of non-automated distribution warehouses. In Proceedings of the 2000 Winter Simulation Conference, Orlando, FL, USA, 10–13 December 2000; Joines, J.A., Barton, R.R., Kang, K., Fishwick, P.A., Eds.; pp. 1177–1184. [Google Scholar]
- Fosso Wamba, S.; Chatfield, A.T. RFID-enabled Warehouse Process Optimization in the TPL Industry. In Proceedings of the 43rd Hawaii International Conference on System Sciences, Kolua, Kauai, HI, USA, 5–8 January 2010; pp. 1–10. [Google Scholar] [CrossRef] [Green Version]
- Wasusri, T.; Theerawongsathon, P. An application of discrete event simulation on order picking strategies: A case study of footwear warehouses. In Proceedings of the 30th European Conference on Modelling and Simulation, Regensburg, Germany, 31 May–3 June 2016; Claus, T., Herrmann, F., Manitz, M., Rose, O., Eds.; pp. 1–7. [Google Scholar]
- Zuñiga, J.B.; Martínez, J.A.S.; Salais Fierro, T.E.; Marmolejo Saucedo, J.A. Optimization of the Storage Location Assignment and the Picker-Routing Problem by Using Mathematical Programming. Appl. Sci. 2020, 10, 534. [Google Scholar] [CrossRef] [Green Version]
- Cano, J.A.; Correa-Espinal, A.A.; Gómez-Montoya, R.A. An evaluation of picking routing policies to improve warehouse efficiency. Int. J. Ind. Eng. Manag. 2017, 8, 229–238. [Google Scholar]
- Charu, T.; Panagiotopoulos, T.; Kotipalli, P.; Haynes, M.; Starner, T. RF-Pick: Comparing Order Picking Using a HUD with Wearable RFID Verification to Traditional Pick Methods. West Point Res. Pap. 2018, 69, 168–175. Available online: https://digitalcommons.usmalibrary:usma_research_papers/69 (accessed on 6 February 2020).
- Chen, M.; Wu, H. An association-based clustering approach to order batching considering customer demand patterns. Omega 2005, 33, 333–343. [Google Scholar] [CrossRef]
- Furmans, K.; Huber, C.; Wisser, J. Queueing Models for manual order picking systems with blocking. Logist. J. 2009, 1, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Kawczyński, Ł.; Aguilar-Sommar, R. Comprehensive design of an order picking line by simulation. IFAC Proc. 2006, 39, 365–370. [Google Scholar] [CrossRef]
- Tappia, E.; Roy, D.; Melacini, M.; de Koster, R.B.M. Integrated Storage-order Picking Systems: Technology, Performance Models, and Design Insights. Eur. J. Oper. Res. 2018, 274, 947–965. [Google Scholar] [CrossRef]
- Yu, M.; de Koster, R.B.M. The impact of order batching and picking area zoning on order picking system performance. Eur. J. Oper. Res. 2009, 198, 480–490. [Google Scholar] [CrossRef]
- Banks, J.; Carson, J.S.; Nelson, B.L.; Nicol, D.M. Discrete Event System Simulation, 3rd ed.; Prentice-Hall: Upper Saddle River, NY, USA, 2000; pp. 1–600. [Google Scholar]
- Zeigler, B.P. Theory of Modeling and Simulation, 1st ed.; Wiley Interscience: New York, NY, USA, 1976; pp. 1–510. [Google Scholar]
- Kostrzewski, M. Comparison of the order picking processes duration based on data obtained from the use of pseudorandom number generator. Transp. Res. Procedia 2019, 40, 317–324. [Google Scholar] [CrossRef]
- Kostrzewski, M. Zastosowanie metod symulacyjnych w badaniu wybranych procesów magazynowych w magazynie wysokoregałowym. Prace Nauk. Politech. Warsz. Transp. 2016, 111, 301–312. [Google Scholar]
- Kostrzewski, M. Zastosowanie wybranego generatora liczb pseudolosowych w analizie procesu komisjonowania. Prace Nauk. Politech. Warsz. Transp. 2017, 117, 129–138. [Google Scholar]
- Jungheinrich, Electric Order Picker/ Tri-Lateral Stacker (1250–1500 kg). Available online: http://www.centralgroup.co.nz/site/centralfor/files/EKX513.pdf (accessed on 14 March 2017).
- Gutenbaum, J. Modelowanie Matematyczne Systemów, 3rd ed.; Akademicka Oficyna Wydawnicza EXIT: Warsaw, Poland, 2003; pp. 1–420. [Google Scholar]
- Lorenz, E.N. Deterministic Nonperiodic Flow. J. Atmos. Sci. 1963, 20, 130–148. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Schuster, H.G. Chaos Deterministyczny; Wydawnictwo Naukowe PWN: Warsaw, Poland, 1993. [Google Scholar]
- L’Ecuyer, P. Efficient and Portable Combined Random Number Generators. Commun. ACM 1988, 31, 742–750. [Google Scholar] [CrossRef]
- Facchini, F.; De Pascale, G.; Faccilongo, N. Pallet Picking Strategy in Food Collecting Center. Appl. Sci. 2018, 8, 1503. [Google Scholar] [CrossRef] [Green Version]
- United Nations. International Standard Industrial Classification of All Economic Activities, Revision 4, 1st ed.; United Nations (Department of Economic and Social Affairs, Statistics Division): New York, NY, USA, 2008; pp. 1–291. Available online: https://unstats.un:unsd/publication/seriesM/seriesm_4rev4e.pdf (accessed on 4 April 2020).
- S&P Global Market Intelligence. GICS® Global Industry Classification Standard, 1st ed.; S&P Global Market Intelligence: New York, NY, USA, 2018; pp. 1–48. Available online: https://www.spglobal.com/marketintelligence/en/documents/112727-gics-mapbook_2018_v3_letter_digitalspreads.pdf (accessed on 4 April 2020).
- Lee, C.K.; Zhang, S.; Ng, K.K. In-Plant Logistics Simulation Model for the Catering Service Industry Towards Sustainable Development: A Case Study. Sustainability 2019, 11, 3655. [Google Scholar] [CrossRef] [Green Version]
- Kostrzewski, M.; Gnap, J.; Varjan, P.; Likos, M. Application of simulation methods for study on availability of one-aisle machine order picking process. Communications 2020, 22, 107–114. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.P.; Zhang, J.L.; Zhang, H.J.; Hua, G.W. Optimal Selection of Movable Shelves under Cargo-to-Person Picking Mode. Int. J. Simul. Model. 2017, 16, 145–156. [Google Scholar] [CrossRef]
- Dinu, O.M.; Rosca, E.; Popa, M.; Rosca, M.A.; Rusca, A. Assessing materials handling and storage capacities in port terminals, MODTECH International Conference–Modern Technologies in Industrial Engineering V, Book Series: IOP Conf. Ser. Mater. Sci. Eng. 2017, 227, 012039. [Google Scholar] [CrossRef] [Green Version]
- Filina-Dawidowicz, L. Rationalization of servicing reefer containers in sea port area with taking into account risk influence. Pol. Marit. Res. 2014, 21, 76–85. [Google Scholar] [CrossRef] [Green Version]
Way of Picking List Application | References that Mention Particular Way | Necessary Comments |
---|---|---|
generalized random picking lists | [19,24,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52] | Fumi et al. (2013) [36] mentioned the variable picking list. Le-Duc and de Koster (2007) [24] applied random picking lists which consisted of only one line. Pawlewski (2015) [41] defined the methodology of the simulation model building, while implementing the design step of creating examples of picking lists (random or historical). Quader et al. (2016) [19] used a fixed and random picking list. Urzuà et al. (2019) [46] applied a random picking list based on historical data. |
uniform distribution picking lists | [53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77] | Giannikas et al. (2017) [58] mentioned the uniform demand for the stock keeping unit. Lee et al. (2020) [65] applied uniform distribution picking list indirectly by implementation of uniform pick-up time. In the case of Žulj et al. (2018) [77], picking lists were indirectly connected to uniform distribution. |
picking lists based on historic data | [41,46,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92] | Battini et al. (2016) and Battini et al. (2015) [79,80] suggested that the actual time needed to pick an item from a vertical lift tray was the average value. Burinskienė (2010) [82] mentioned the picking list data base. Gómez-Montoya et al. (2016) [84] mentioned a variable picking list connected to empirical data. Urzêa et al. (2019) [46] applied a random picking list based on historical data. |
other | [93,94,95,96,97,98,99] | Cano et al. (2017) [93] applied ad hoc picking lists. Charu et al. (2018) [94] mentioned non-uniform distribution. Chen and Wu (2005) [95] applied normal distribution picking lists. Furmans et al. (2009) [96] applied lognormal distribution and suggested pick times that follow exponential distribution. In the case of Kawczyński and Aguilar-Sommar (2006) [97], the number of products per order is variable, and it is assumed to be described by exponential distribution. Tappia et al. (2019) [98] applied pick times that follow an exponential distribution. Yu and de Koster (2009) [99] applied a random picking list with Poisson order arrivals. |
j | {pj1, pj2, pj3, pj4, pj5, pj6, pj7, pj8, pj9, pj10} | j | {pj1, pj2, pj3, pj4, pj5, pj6, pj7, pj8, pj9, pj10} | j | {pj1, pj2, pj3, pj4, pj5, pj6, pj7, pj8, pj9, pj10} |
---|---|---|---|---|---|
1 | {5,9,10,6,2,8,8,0,3,3} | 35 | {4,7,5,0,4,5,1,2,9,9} | 69 | {7,4,8,9,0,1,4,2,5,4} |
2 | {9,4,8,7,9,1,4,6,4,8} | 36 | {1,9,10,7,1,7,9,7,6,4} | 70 | {0,2,2,6,7,1,5,4,6,4} |
3 | {0,6,10,6,8,10,3,1,7,4} | 37 | {3,2,6,9,1,8,6,0,7,6} | 71 | {1,3,6,3,7,9,2,9,2,2} |
4 | {3,5,5,3,9,9,4,6,4,1} | 38 | {2,9,4,10,0,9,9,2,5,2} | 72 | {10,3,9,8,8,0,9,9,2,8} |
5 | {1,9,2,6,8,8,8,3,9,0} | 39 | {3,5,3,0,9,8,1,2,4,3} | 73 | {9,6,9,9,3,2,10,3,2,8} |
6 | {7,1,10,6,9,2,6,0,0,3} | 40 | {9,3,5,5,9,1,1,7,2,5} | 74 | {4,1,8,4,1,5,9,3,1,2} |
7 | {3,2,7,3,3,9,3,6,6,5} | 41 | {10,2,10,8,9,0,5,2,1,4} | 75 | {1,6,2,6,6,10,2,6,3,8} |
8 | {0,4,4,5,6,6,1,6,6,2} | 42 | {4,3,4,6,9,1,8,10,0,8} | 76 | {8,6,0,4,3,3,6,3,1,5} |
9 | {0,6,6,10,7,6,1,10,2,4} | 43 | {2,6,10,3,2,6,9,6,8,7} | 77 | {2,10,1,10,6,5,6,3,7,6} |
10 | {5,8,2,9,1,10,0,7,1,4} | 44 | {6,2,3,1,2,6,2,0,5,3} | 78 | {0,1,2,8,2,5,10,5,1,7} |
11 | {9,0,1,7,3,8,9,9,6,8} | 45 | {1,6,3,4,1,5,4,4,4,3} | 79 | {7,9,6,2,5,2,9,7,0,8} |
12 | {9,7,2,7,9,10,4,5,6,5} | 46 | {1,1,4,7,4,4,6,8,1,7} | 80 | {5,3,7,9,7,3,7,6,9,9} |
13 | {6,1,5,7,2,5,6,2,3,9} | 47 | {8,6,0,0,4,5,9,6,7,0} | 81 | {3,5,2,4,9,8,7,7,6,4} |
14 | {6,1,4,5,7,10,5,7,9,6} | 48 | {4,5,0,2,9,8,4,5,1,6} | 82 | {4,6,0,5,5,8,6,4,6,1} |
15 | {8,4,6,7,9,9,8,8,4,7} | 49 | {1,9,6,2,8,2,5,4,6,3} | 83 | {8,5,7,9,1,0,4,5,1,3} |
16 | {2,9,10,3,4,5,2,10,5,3} | 50 | {3,7,3,9,7,9,7,2,2,9} | 84 | {8,7,1,7,4,9,2,0,3,9} |
17 | {5,5,4,6,10,2,6,4,5,1} | 51 | {5,5,9,8,7,8,4,0,7,2} | 85 | {8,2,4,8,10,7,3,6,9,3} |
18 | {2,6,7,9,2,0,1,4,0,5} | 52 | {5,7,3,8,9,9,1,4,6,7} | 86 | {7,4,8,9,8,4,2,7,1,3} |
19 | {3,2,4,9,5,4,5,8,4,2} | 53 | {7,9,8,1,2,8,6,9,5,5} | 87 | {7,8,9,2,7,9,1,9,9,7} |
20 | {3,5,3,1,5,8,9,5,3,9} | 54 | {2,3,3,10,9,2,8,9,4,5} | 88 | {1,3,9,7,6,4,7,4,10,0} |
21 | {10,5,5,5,8,1,9,7,10,2} | 55 | {9,0,0,9,2,8,6,0,6,2} | 89 | {4,9,3,5,3,5,5,3,3,1} |
22 | {10,10,5,7,1,2,2,5,6,7} | 56 | {6,5,8,7,5,5,2,6,10,2} | 90 | {8,8,6,9,4,9,3,4,0,4} |
23 | {2,3,8,4,7,6,6,8,5,8} | 57 | {8,4,3,3,4,7,7,9,8,7} | 91 | {3,9,4,9,0,1,10,6,9,0} |
24 | {4,8,5,3,10,6,4,4,2,3} | 58 | {5,4,6,7,1,1,7,8,6,8} | 92 | {8,8,2,7,5,4,7,1,4,6} |
25 | {7,3,7,9,0,2,3,5,2,0} | 59 | {3,0,9,9,4,1,2,0,3,8} | 93 | {1,6,8,8,4,7,9,8,9,6} |
26 | {6,7,2,6,2,2,4,2,6,9} | 60 | {8,3,7,0,6,9,10,3,8,9} | 94 | {4,2,5,8,2,8,6,8,9,4} |
27 | {7,5,5,4,7,9,1,0,1,5} | 61 | {8,9,7,6,5,6,8,4,7,2} | 95 | {2,0,5,4,0,10,2,7,3,5} |
28 | {4,1,4,5,4,6,4,3,9,8} | 62 | {4,10,5,2,7,10,1,9,8,3} | 96 | {1,6,9,0,4,1,10,6,2,5} |
29 | {5,7,8,8,2,8,6,6,3,5} | 63 | {9,9,4,1,6,7,8,3,8,4} | 97 | {7,10,10,1,8,2,3,5,3,8} |
30 | {3,6,0,5,2,9,0,1,7,4} | 64 | {7,9,2,7,9,3,5,8,7,7} | 98 | {6,1,1,7,4,1,8,0,1,10} |
31 | {6,2,8,9,8,4,3,8,2,9} | 65 | {4,0,9,6,5,5,5,6,9,9} | 99 | {8,7,3,9,7,7,2,6,2,2} |
32 | {10,9,7,7,2,2,10,4,6,5} | 66 | {7,8,4,1,1,3,8,6,3,3} | 100 | {3,8,2,10,2,10,6,2,5,8} |
33 | {4,5,9,1,1,2,4,1,10,10} | 67 | {1,4,6,3,7,2,4,2,8,1} | - | - |
34 | {5,8,3,8,6,9,6,2,1,3} | 68 | {2,8,1,5,2,10,3,1,8,8} | - | - |
k | [%] | Total Order Picking Process Time for Sample (t) | [min] | [min] | [min] | [min] | |
---|---|---|---|---|---|---|---|
[min] | [h] | ||||||
1 | 0 | 1591.68 | 26.53 | 15.92 | 1.28 | 0.13 | 0.00 |
2 | 5 | 1635.85 | 27.26 | 16.36 | 1.32 | 0.13 | 0.44 |
3 | 10 | 1668.71 | 27.81 | 16.68 | 1.51 | 0.15 | 0.33 |
4 | 15 | 1656.41 | 27.61 | 16.56 | 1.33 | 0.13 | 0.12 |
5 | 20 | 1727.45 | 28.79 | 17.27 | 1.44 | 0.14 | 0.71 |
6 | 25 | 1727.52 | 28.79 | 17.28 | 1.56 | 0.16 | 0.00 |
7 | 30 | 1854.48 | 30.91 | 18.54 | 1.80 | 0.18 | 1.27 |
8 | 35 | 1824.97 | 30.42 | 18.25 | 1.64 | 0.16 | 0.30 |
9 | 40 | 1931.22 | 32.19 | 19.31 | 1.67 | 0.17 | 1.06 |
10 | 45 | 2033.89 | 33.90 | 20.34 | 1.73 | 0.17 | 1.03 |
11 | 50 | 2108.16 | 35.14 | 21.08 | 1.80 | 0.18 | 0.74 |
12 | 55 | 2265.92 | 37.77 | 22.66 | 2.03 | 0.20 | 1.58 |
13 | 60 | 2345.79 | 39.10 | 23.46 | 2.08 | 0.21 | 0.80 |
14 | 65 | 2663.12 | 44.39 | 26.63 | 2.39 | 0.24 | 3.17 |
15 | 70 | 2775.42 | 46.26 | 27.75 | 2.63 | 0.26 | 1.12 |
16 | 75 | 3077.35 | 51.29 | 30.77 | 2.93 | 0.29 | 3.02 |
17 | 80 | 3525.15 | 58.75 | 35.25 | 3.40 | 0.34 | 4.48 |
18 | 85 | 4011.17 | 66.85 | 40.11 | 3.88 | 0.39 | 4.86 |
19 | 90 | 5649.00 | 94.15 | 56.49 | 5.65 | 0.57 | 16.38 |
20 | 95 | 7849.27 | 130.82 | 78.49 | 8.90 | 0.89 | 22.00 |
21 | 99 | 31966.38 | 532.77 | 319.66 | 48.38 | 4.84 | 241.17 |
k | [%] | MTTR [min] | Operational [%] | Failed [%] | [min] | [min] | [min] | |
---|---|---|---|---|---|---|---|---|
Working | Working | |||||||
22 | 10 | 1 | 77.54 | 12.42 | 10.04 | 16.84 | 0.94 | 0.09 |
23 | 10 | 3 | 78.75 | 11.06 | 10.19 | 17.37 | 1.07 | 0.11 |
24 | 10 | 9 | 80.19 | 10.61 | 9.20 | 18.01 | 1.01 | 0.10 |
25 | 10 | 27 | 76.25 | 14.47 | 9.28 | 18.09 | 0.77 | 0.08 |
26 | 10 | 81 | 81.96 | 9.29 | 8.75 | 16.82 | 0.95 | 0.10 |
27 | 10 | 243 | 67.74 | 17.48 | 14.78 | 16.66 | 0.98 | 0.10 |
28 | 20 | 1 | 62.38 | 17.45 | 20.17 | 17.50 | 0.79 | 0.08 |
29 | 20 | 3 | 60.51 | 19.26 | 20.23 | 17.93 | 0.77 | 0.08 |
30 | 20 | 9 | 60.60 | 18.34 | 21.06 | 19.14 | 1.57 | 0.16 |
31 | 20 | 27 | 63.28 | 18.02 | 18.70 | 19.73 | 1.16 | 0.12 |
32 | 20 | 81 | 65.00 | 16.94 | 18.06 | 19.30 | 1.73 | 0.17 |
33 | 20 | 243 | 58.13 | 21.02 | 20.85 | 16.66 | 0.98 | 0.10 |
34 | 30 | 1 | 47.12 | 22.65 | 30.23 | 18.65 | 0.53 | 0.05 |
35 | 30 | 3 | 46.33 | 22.80 | 30.87 | 18.92 | 1.47 | 0.15 |
36 | 30 | 9 | 45.63 | 23.28 | 31.09 | 20.27 | 2.15 | 0.22 |
37 | 30 | 27 | 51.07 | 22.30 | 26.63 | 20.54 | 1.80 | 0.18 |
38 | 30 | 81 | 52.40 | 21.68 | 25.92 | 22.15 | 2.48 | 0.25 |
39 | 30 | 243 | 55.40 | 21.41 | 23.19 | 18.61 | 2.49 | 0.25 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kostrzewski, M. Sensitivity Analysis of Selected Parameters in the Order Picking Process Simulation Model, with Randomly Generated Orders. Entropy 2020, 22, 423. https://doi.org/10.3390/e22040423
Kostrzewski M. Sensitivity Analysis of Selected Parameters in the Order Picking Process Simulation Model, with Randomly Generated Orders. Entropy. 2020; 22(4):423. https://doi.org/10.3390/e22040423
Chicago/Turabian StyleKostrzewski, Mariusz. 2020. "Sensitivity Analysis of Selected Parameters in the Order Picking Process Simulation Model, with Randomly Generated Orders" Entropy 22, no. 4: 423. https://doi.org/10.3390/e22040423
APA StyleKostrzewski, M. (2020). Sensitivity Analysis of Selected Parameters in the Order Picking Process Simulation Model, with Randomly Generated Orders. Entropy, 22(4), 423. https://doi.org/10.3390/e22040423