Complex Contagion Features without Social Reinforcement in a Model of Social Information Flow
<p>Denser networks are associated with higher information flow for simple contagion but lower information flow for both complex contagion and the quoter model. Here density is measured by average degree <math display="inline"><semantics> <mfenced open="〈" close="〉"> <mi>k</mi> </mfenced> </semantics></math> for Erdős-Rényi (ER) & Barabási-Albert (BA) model networks. (<b>A</b>) Simple contagion. (<b>B</b>) Complex contagion (<b>C</b>) Quoter model. (Panel C, inset) Average cross-entropy on links; higher cross-entropies correspond to lower predictabilities and lower information flow, unlike for contagions where higher average peak sizes correspond to higher information flow. Networks consisted of <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>1000</mn> </mrow> </semantics></math> nodes and each point constitutes 200 simulations; parameters for simulating information flow in these models are described in <a href="#sec3-entropy-22-00265" class="html-sec">Section 3</a>.</p> "> Figure 2
<p>Information flow on real-world networks. (<b>A</b>) Simple contagion. (<b>B</b>) Complex contagion. (<b>C</b>) Quoter model. Here information flow measures (average peak size, average text predictability) are compared to network density <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>/</mo> <mfenced separators="" open="(" close=")"> <mfrac linethickness="0pt"> <mi>N</mi> <mn>2</mn> </mfrac> </mfenced> </mrow> </semantics></math>. The association between information flow and density, either positive (simple contagion) or negative (complex contagion, quoter model), is significant (Wald test on non-zero regression slope, <math display="inline"><semantics> <mrow> <mi>p</mi> <mo><</mo> <mn>0.05</mn> </mrow> </semantics></math>). Each point constitutes 300 simulations.</p> "> Figure 3
<p>Exploring the variance of information flow. (<b>A</b>) Variance of cross-entropy is higher at low densities for BA than ER networks despite the average <math display="inline"><semantics> <msub> <mi>h</mi> <mo>×</mo> </msub> </semantics></math> being similar (<a href="#entropy-22-00265-f001" class="html-fig">Figure 1</a>C). (<b>B–D</b>) Information flow on dichotomous networks (random networks where all nodes have degree <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> or degree <math display="inline"><semantics> <msub> <mi>k</mi> <mn>2</mn> </msub> </semantics></math>, allowing tunable degree heterogeneity) of size <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>∈</mo> <mo>{</mo> <mn>500</mn> <mo>,</mo> <mn>1000</mn> <mo>}</mo> </mrow> </semantics></math> with <math display="inline"><semantics> <mrow> <mo>〈</mo> <mi>k</mi> <mo>〉</mo> <mo>∈</mo> <mo>{</mo> <mn>16</mn> <mo>,</mo> <mn>32</mn> <mo>}</mo> </mrow> </semantics></math>. Each point constitutes 500 trials. (<b>B</b>) Average cross-entropy versus <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>/</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> </mrow> </semantics></math>. Degree heterogeneity does not affect average cross-entropy, supporting <a href="#entropy-22-00265-f001" class="html-fig">Figure 1</a>C. Network size has a smaller effect on <math display="inline"><semantics> <msub> <mi>h</mi> <mo>×</mo> </msub> </semantics></math> compared to the average degree. (<b>C</b>) Variance of cross-entropy versus <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>/</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> </mrow> </semantics></math>. Higher degree heterogeneity (lower <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>/</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> </mrow> </semantics></math>) leads to higher variation in <math display="inline"><semantics> <msub> <mi>h</mi> <mo>×</mo> </msub> </semantics></math> over links, indicating the existence of highly predictive nodes and nodes that contribute little predictive information within heterogeneous networks. (<b>D</b>) Dichotomous networks of size <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>1000</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mo>〈</mo> <mi>k</mi> <mo>〉</mo> <mo>=</mo> <mn>16</mn> </mrow> </semantics></math>. Average cross-entropy over links conditioned on degrees of endpoints (predicting ego from alter). Only the degree of the ego matters, approximately, not the degree of the alter.</p> "> Figure 4
<p>Mixed effects of clustering on information flow. (<b>A</b>) Information flow on small-world networks of size <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>∈</mo> <mo>{</mo> <mn>200</mn> <mo>,</mo> <mn>400</mn> <mo>}</mo> </mrow> </semantics></math> and average degree <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>∈</mo> <mo>{</mo> <mn>6</mn> <mo>,</mo> <mn>12</mn> <mo>}</mo> </mrow> </semantics></math>. As network rewiring increases (and clustering decreases) <math display="inline"><semantics> <msub> <mi>h</mi> <mo>×</mo> </msub> </semantics></math> increases. This suggests that clustered networks promote information flow. Rewiring a small-world network changes the diameter (<span class="html-italic">L</span>) as well the clustering (panel A, bottom); however, <math display="inline"><semantics> <msub> <mi>h</mi> <mo>×</mo> </msub> </semantics></math> begins to increase primarily when the clustering begins to drop, not when diameter begins to drop. Each point constitutes 300 trials. (<b>B</b>) Average cross-entropy versus transitivity for real-world networks. By randomizing networks using the standard “x-swap” method (<a href="#sec3dot4-entropy-22-00265" class="html-sec">Section 3.4</a>), we can lower the transitivity and investigate how <math display="inline"><semantics> <msub> <mi>h</mi> <mo>×</mo> </msub> </semantics></math> changes. Some networks show little change in <math display="inline"><semantics> <msub> <mi>h</mi> <mo>×</mo> </msub> </semantics></math> on randomized networks compared with the original networks, while others show a slight decrease in <math display="inline"><semantics> <msub> <mi>h</mi> <mo>×</mo> </msub> </semantics></math>. This is especially visible in the inset comparing <math display="inline"><semantics> <msub> <mi>h</mi> <mo>×</mo> </msub> </semantics></math> directly. Each point constitutes 300 simulations. (<b>C</b>) Several network properties before and after the x-swap method. While the x-swap method lowers transitivity, it also alters other important network properties, making it challenging to isolate the role of clustering from other properties.</p> "> Figure 5
<p>Information flow within the stochastic block model (SBM) of <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math> (two blocks of size <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>50</mn> </mrow> </semantics></math>). Each point constitutes 10k trials. (<b>A</b>) Average cross-entropy on within-block edges and between-block edges as a function of the within-block connection probability <math display="inline"><semantics> <msub> <mi>p</mi> <mn>0</mn> </msub> </semantics></math> for different between-block connection probabilities <math display="inline"><semantics> <msub> <mi>p</mi> <mn>1</mn> </msub> </semantics></math>. (<b>B</b>, <b>C</b>) Examining the cross-entropy difference <math display="inline"><semantics> <mrow> <mo>Δ</mo> <msub> <mi>h</mi> <mo>×</mo> </msub> <mo>≡</mo> <mrow> <mo>〈</mo> <msub> <mi>h</mi> <mo>×</mo> </msub> <mrow> <mo>(</mo> <mi>between</mi> <mo>)</mo> </mrow> <mo>〉</mo> </mrow> <mo>−</mo> <mrow> <mo>〈</mo> <msub> <mi>h</mi> <mo>×</mo> </msub> <mrow> <mo>(</mo> <mi>within</mi> <mo>)</mo> </mrow> <mo>〉</mo> </mrow> </mrow> </semantics></math> across (<b>B</b>) connection probabilities and (<b>C</b>) modularity <span class="html-italic">Q</span>. Examining <math display="inline"><semantics> <mrow> <mo>Δ</mo> <msub> <mi>h</mi> <mo>×</mo> </msub> </mrow> </semantics></math> as a function of modularity <span class="html-italic">Q</span> shows a clear collapse across values of SBM probabilities. Interestingly, anti-community structure (<math display="inline"><semantics> <mrow> <mi>Q</mi> <mo><</mo> <mn>0</mn> </mrow> </semantics></math>) still leads to positive <math display="inline"><semantics> <mrow> <mo>Δ</mo> <msub> <mi>h</mi> <mo>×</mo> </msub> </mrow> </semantics></math>, indicating that information flow is still more prevalent within blocks.</p> "> Figure 6
<p>Effects of dynamic heterogeneity on information flow in the stochastic block model. Nodes in group <span class="html-italic">A</span> have Zipfian vocabulary distribution with exponent <math display="inline"><semantics> <msub> <mi>α</mi> <mi>A</mi> </msub> </semantics></math> while nodes in <span class="html-italic">B</span> have exponent <math display="inline"><semantics> <msub> <mi>α</mi> <mi>B</mi> </msub> </semantics></math>. The between-block connection probability is fixed (<math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.15</mn> </mrow> </semantics></math>) and the within-block connection probability <math display="inline"><semantics> <msub> <mi>p</mi> <mn>0</mn> </msub> </semantics></math> is varied to generate a range of modularities. Since the structure is symmetric (subgraphs <span class="html-italic">A</span> and <span class="html-italic">B</span> have the same size and expected density), we only show the result of fixing <math display="inline"><semantics> <mrow> <msub> <mi>α</mi> <mi>A</mi> </msub> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math> and varying <math display="inline"><semantics> <msub> <mi>α</mi> <mi>B</mi> </msub> </semantics></math>. Each point constitutes 150 trials. (<b>A</b>) The vocabulary distribution of group <span class="html-italic">A</span> has a lower Shannon entropy than of <span class="html-italic">B</span>, and this difference is visible from examining links <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>→</mo> <mi>A</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>B</mi> <mo>→</mo> <mi>B</mi> </mrow> </semantics></math>. When examining links <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>→</mo> <mi>B</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>B</mi> <mo>→</mo> <mi>A</mi> </mrow> </semantics></math>, the cross-entropy is mainly dependent on the vocabulary distribution of the alter. As modularity increases, differences between the predictabilities of various nodes are exaggerated. (<b>B</b>) In homogeneous communities, the cross-entropy does not vary with modularity at such a scale. (<b>C</b>) The vocabulary distribution of group <span class="html-italic">A</span> has a higher Shannon entropy than of <span class="html-italic">B</span>. Similar mirror results are seen as in panel A.</p> "> Figure A1
<p>Trends in information flow in ER, BA, and small-world networks for <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>∈</mo> <mo>{</mo> <mn>0.1</mn> <mo>,</mo> <mn>0.5</mn> <mo>,</mo> <mn>0.9</mn> <mo>}</mo> </mrow> </semantics></math>. Except for very low quote probabilities, we see qualitatively similar trends. (<b>A</b>) ER & BA networks of size <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math> with varying average degree. Each point constitutes 200 simulations. (<b>B</b>) Small-world networks of size <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>200</mn> </mrow> </semantics></math> with <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>6</mn> </mrow> </semantics></math> with varying rewiring probability. Each point constitutes 500 simulations.</p> "> Figure A2
<p>Effects of quoter model parameter choices on observed trends. Information flow is lower for denser ER and BA networks across a range of <span class="html-italic">q</span> and <math display="inline"><semantics> <mi>λ</mi> </semantics></math> with the effect being more pronounced at higher values of <span class="html-italic">q</span> and <math display="inline"><semantics> <mi>λ</mi> </semantics></math>. Likewise, for small-world networks, more clustering (lower <span class="html-italic">p</span>) exhibits higher <math display="inline"><semantics> <msub> <mi>h</mi> <mo>×</mo> </msub> </semantics></math> than less clustering (higher <span class="html-italic">p</span>), with the effect being most pronounced at <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>></mo> <mn>0.5</mn> </mrow> </semantics></math> regardless of <math display="inline"><semantics> <mi>λ</mi> </semantics></math>. Here, ER & BA networks had <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math> and small-world networks had <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>200</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>6</mn> </mrow> </semantics></math>. Each cell constitutes 100 simulations.</p> "> Figure A3
<p>The distributions of <math display="inline"><semantics> <msub> <mi>h</mi> <mo>×</mo> </msub> </semantics></math> for quoter model simulations on various networks. Examining the distributions supports using <math display="inline"><semantics> <mfenced separators="" open="〈" close="〉"> <msub> <mi>h</mi> <mo>×</mo> </msub> </mfenced> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>Var</mi> <mo>(</mo> <msub> <mi>h</mi> <mo>×</mo> </msub> <mo>)</mo> </mrow> </semantics></math> as summary statistics, although some real networks show a small bimodality (an excess of <math display="inline"><semantics> <mrow> <msub> <mi>h</mi> <mo>×</mo> </msub> <mo><</mo> <mn>3</mn> </mrow> </semantics></math> bits). We also remark that the mean and median are approximately equal (solid line shows <math display="inline"><semantics> <mrow> <mo>〈</mo> <msub> <mi>h</mi> <mo>×</mo> </msub> <mo>〉</mo> </mrow> </semantics></math>, dashed line shows median <math display="inline"><semantics> <msub> <mi>h</mi> <mo>×</mo> </msub> </semantics></math>) for all networks. ER & BA networks have <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>1000</mn> </mrow> </semantics></math> nodes with <math display="inline"><semantics> <mrow> <mo>〈</mo> <mi>k</mi> <mo>〉</mo> <mo>=</mo> <mn>12</mn> </mrow> </semantics></math>, and 200 simulations as in <a href="#entropy-22-00265-f001" class="html-fig">Figure 1</a>. Small-world networks have <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>200</mn> </mrow> </semantics></math> nodes with <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>6</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>4</mn> </mrow> </msup> </mrow> </semantics></math>, and 500 simulations as in <a href="#entropy-22-00265-f004" class="html-fig">Figure 4</a>A. Real-world networks are from 300 simulations as in <a href="#entropy-22-00265-f002" class="html-fig">Figure 2</a> and <a href="#entropy-22-00265-f004" class="html-fig">Figure 4</a>B,C. Quoter model parameters are given in <a href="#sec3dot1-entropy-22-00265" class="html-sec">Section 3.1</a>.</p> ">
Abstract
:1. Introduction
2. Background
2.1. Measuring Information Flow
2.2. Quoter Model
2.3. Other Models of Information Flow
3. Materials and Methods
3.1. The Quoter Model
3.2. Measuring Information Flow over the Network
3.3. Simulating Contagion Models
3.4. Assessing the Impact of Structure on Dynamics
3.5. Network Datasets
4. Results
4.1. Information Flow and Models of Contagion
4.2. Interplay of Clustering and Information Flow
4.3. Community Structure and the Weakness of Long Ties
4.4. The Role of Dynamic Heterogeneity
5. Discussion
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ASPL | Average Shortest Path Length |
BA | Barabási-Albert |
ER | Erdos-Rényi |
SBM | Stochastic Block Model |
SI | Susceptible-Infected |
SIR | Susceptible-Infected-Recovered |
WS | Watts–Strogatz |
Appendix A. Further Exploring Quoter Model Parameters
Appendix B. Summarizing
Appendix C. Network Corpus
- Les Miserables co-appearances [44] [Undirected, Weighted].
- Hollywood film music [45] [Undirected, Weighted]. This is a bipartite network; we converted it to a one-mode projection (nodes are composers and two composers are linked if they worked with the same producer).
- Freeman’s EIES dataset [46] [Directed, Weighted]. We used the “personal relationships (time 1)” network.
- Sampson’s monastery [47] [Directed, Weighted]. We used the Pajek dataset. The weight of a directed link represents how an individual rates the other. The rating can be positive (1,2,3 = top 3 ranked) or negative (-1,-2,-3 = worst 3 ranked). We chose to only keep links which were positive.
- Golden Age of Hollywood [48] [Directed, Weighted]. We used the aggregated network over 1909-2009.
- 9-11 terrorist network [49] [Undirected, Unweighted].
- CKM physicians social network [50] (1966) [Directed, Unweighted]. We used “CKM physicians Freeman” networks hosted by Linton Freeman, and chose the “friend” network (i.e., the third adjacency matrix). We took only the giant component.
- Kapferer tailor shop [51] (1972) [Undirected, Unweighted]. We used the “Kapferer tailor shop 1” Pajek dataset (kapfts1.dat).
- Dolphin social network [52] (1994-2001) [Undirected, Unweighted].
- Email network (Uni. R-V, Spain, 2003) [53] [Directed, Unweighted]. We used the “email-uni-rv-spain-arenas” network.
References
- Lazer, D.; Pentland, A.; Adamic, L.; Aral, S.; Barabasi, A.L.; Brewer, D.; Christakis, N.; Contractor, N.; Fowler, J.; Gutmann, M.; et al. SOCIAL SCIENCE: Computational Social Science. Science 2009, 323, 721–723. [Google Scholar] [CrossRef] [Green Version]
- Tumasjan, A.; Sprenger, T.O.; Sandner, P.G.; Welpe, I.M. Predicting elections with twitter: What 140 characters reveal about political sentiment. In Proceedings of the Fourth International AAAI Conference on Weblogs and Social Media, Washington, DC, USA, 23–26 May 2010; pp. 178–185. [Google Scholar]
- Conover, M.D.; Ferrara, E.; Menczer, F.; Flammini, A. The Digital Evolution of Occupy Wall Street. PLoS ONE 2013, 8, e64679. [Google Scholar] [CrossRef] [Green Version]
- Castells, M. Networks of Outrage and Hope: Social Movements in the Internet Age; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- De Montjoye, Y.A.; Radaelli, L.; Singh, V.; Pentland, A. Unique in the shopping mall: On the reidentifiability of credit card metadata. Science 2015, 347, 536–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia, D. Leaking privacy and shadow profiles in online social networks. Sci. Adv. 2017, 3, e1701172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schreiber, T. Measuring Information Transfer. Phys. Rev. Lett. 2000, 85, 461–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J.; Bollt, E.M. Causation entropy identifies indirect influences, dominance of neighbors and anticipatory couplings. Phys. D 2014, 267, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Borge-Holthoefer, J.; Perra, N.; Gonçalves, B.; González-Bailón, S.; Arenas, A.; Moreno, Y.; Vespignani, A. The dynamics of information-driven coordination phenomena: A transfer entropy analysis. Sci. Adv. 2016, 2, e1501158. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Wen, Z.; Tong, H.; Lin, C.Y.; Song, C.; Barabási, A.L. Information spreading in context. In Proceedings of the 20th international conference on World wide web (WWW 2011), Hyderabad, India, 28 March–1 April 2011; pp. 735–744. [Google Scholar]
- Bagrow, J.P.; Liu, X.; Mitchell, L. Information flow reveals prediction limits in online social activity. Nat. Hum. Behav. 2019, 3, 122–128. [Google Scholar] [CrossRef] [Green Version]
- Bagrow, J.P.; Mitchell, L. The quoter model: A paradigmatic model of the social flow of written information. Chaos 2018, 28, 075304. [Google Scholar] [CrossRef] [Green Version]
- Centola, D. The Spread of Behavior in an Online Social Network Experiment. Science 2010, 329, 1194–1197. [Google Scholar] [CrossRef]
- Borge-Holthoefer, J.; Banos, R.; Gonzalez-Bailon, S.; Moreno, Y. Cascading behaviour in complex socio-technical networks. J. Complex Netw. 2013, 1, 3–24. [Google Scholar] [CrossRef] [Green Version]
- Shannon, C. Prediction and Entropy of Printed English. Bell Labs Tech. J. 1951, 30, 50–64. [Google Scholar] [CrossRef]
- Kontoyiannis, I.; Algoet, P.; Suhov, Y.; Wyner, A. Nonparametric entropy estimation for stationary processes and random fields, with applications to English text. IEEE Trans. Inf. Theory 1998, 44, 1319–1327. [Google Scholar] [CrossRef]
- Song, C.; Qu, Z.; Blumm, N.; Barabasi, A.L. Limits of Predictability in Human Mobility. Science 2010, 327, 1018–1021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziv, J.; Merhav, N. A Measure of Relative Entropy between Individual Sequences with Application to Universal Classification. In Proceedings of the IEEE International Symposium on Information Theory, San Antonio, TX, USA, 17–22 January 1993; p. 352. [Google Scholar]
- Sun, J.; Taylor, D.; Bollt, E.M. Causal Network Inference by Optimal Causation Entropy. SIAM J. Appl. Dyn. Syst. 2015, 14, 73–106. [Google Scholar] [CrossRef] [Green Version]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1991. [Google Scholar]
- Granovetter, M. Threshold Models of Collective Behavior. Am. J. Sociol. 1978, 83, 1420–1443. [Google Scholar] [CrossRef] [Green Version]
- Watts, D. A simple model of global cascades on random networks. Proc. Natl. Acad. Sci. USA 2002, 99, 5766–5771. [Google Scholar] [CrossRef] [Green Version]
- Centola, D.; Eguíluz, V.M.; Macy, M.W. Cascade dynamics of complex propagation. Phys. A 2007, 374, 449–456. [Google Scholar] [CrossRef] [Green Version]
- Ugander, J.; Backstrom, L.; Marlow, C.; Kleinberg, J. Structural diversity in social contagion. Proc. Natl. Acad. Sci. USA 2012, 109, 5962–5966. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.C. Percolation and epidemics in random clustered networks. Phys. Rev. E 2009, 80, 020901. [Google Scholar] [CrossRef] [Green Version]
- Pastor-Satorras, R.; Castellano, C.; Van Mieghem, P.; Vespignani, A. Epidemic processes in complex networks. Rev. Mod. Phys. 2015, 87, 925–979. [Google Scholar] [CrossRef] [Green Version]
- O’Sullivan, D.J.; O’Keeffe, G.J.; Fennell, P.G.; Gleeson, J.P. Mathematical modeling of complex contagion on clustered networks. Front. Phys. 2015, 3, 71. [Google Scholar] [CrossRef] [Green Version]
- Gray, C.; Mitchell, L.; Roughan, M. Super-blockers and the effect of network structure on information cascades. In Proceedings of the Companion Proceedings of the The Web Conference 2018, Lyon, France, 23–27 April 2018; pp. 1435–1441. [Google Scholar]
- Centola, D.; Macy, M. Complex Contagions and the Weakness of Long Ties. Am. J. Sociol. 2007, 113, 702–734. [Google Scholar] [CrossRef] [Green Version]
- Granovetter, M.S. The Strength of Weak Ties. In Social Networks; Elsevier: New York, NY, USA, 1977; pp. 347–367. [Google Scholar]
- Miller, J.; Ting, T. EoN (Epidemics on Networks): A fast, flexible Python package for simulation, analytic approximation, and analysis of epidemics on networks. J. Open Source Softw. 2019, 4, 1731. [Google Scholar] [CrossRef]
- Lambiotte, R. How does degree heterogeneity affect an order-disorder transition? Europhys. Lett. 2007, 78, 68002. [Google Scholar] [CrossRef]
- Watts, D.J.; Strogatz, S.H. Collective dynamics of ‘small-world’ networks. Nature 1998, 393, 440–442. [Google Scholar] [CrossRef]
- Singh, P.; Sreenivasan, S.; Szymanski, B.; Korniss, G. Threshold-limited spreading in social networks with multiple initiators. Sci. Rep. 2013, 3, 2330. [Google Scholar] [CrossRef] [Green Version]
- Milo, R.; Kashtan, N.; Itzkovitz, S.; Newman, M.E.; Alon, U. On the uniform generation of random graphs with prescribed degree sequences. arXiv 2003, arXiv:cond-mat/0312028. [Google Scholar]
- Blitzstein, J.; Diaconis, P. A Sequential Importance Sampling Algorithm for Generating Random Graphs with Prescribed Degrees. Internet Math. 2011, 6, 489–522. [Google Scholar] [CrossRef] [Green Version]
- Newman, M.; Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 2004, 69, 026113. [Google Scholar] [CrossRef] [Green Version]
- Danon, L.; Díaz-Guilera, A.; Duch, J.; Arenas, A. Comparing community structure identification. J. Stat. Mech. 2005, 2005, P09008. [Google Scholar] [CrossRef]
- Karrer, B.; Newman, M. Stochastic blockmodels and community structure in networks. Phys. Rev. E 2011, 83, 016107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blondel, V.D.; Guillaume, J.L.; Lambiotte, R.; Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. 2008, 2008, P10008. [Google Scholar] [CrossRef] [Green Version]
- De Arruda, G.F.; Petri, G.; Rodrigues, F.A.; Moreno, Y. Impact of the distribution of recovery rates on disease spreading in complex networks. Phys. Rev. Res. 2020, 2, 013046. [Google Scholar] [CrossRef] [Green Version]
- Nematzadeh, A.; Ferrara, E.; Flammini, A.; Ahn, Y.Y. Erratum: Optimal Network Modularity for Information Diffusion. Phys. Rev. Lett. 2014, 113, 088701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clauset, A.; Tucker, E.; Sainz, M. The Colorado index of complex networks. Retrieved July 2016, 20, 2018. Available online: https://icon.colorado.edu (accessed on 25 February 2020).
- Knuth, D.E. Stanford GraphBase: A platform for Combinatorial Computing; Addison-Wesley: Boston, MA, USA, 1993. [Google Scholar]
- Faulkner, R.R. Music on Demand: Composers and Careers in the Hollywood Film Industry; Transaction Books: New Brunswick, NJ, USA, 1983. [Google Scholar]
- Freeman, S.C.; Freeman, L.C. The Networkers Network: A Study of the Impact of a New Communications Medium on Sociometric Structure; University of California: Irvine, CA, USA, 1979. [Google Scholar]
- Sampson, S.F. A novitiate in a Period of Change: An Experimental and Case Study of Social Relationships. Ph.D. Thesis, Cornell University, Ithaca, NY, USA, 1968. [Google Scholar]
- Taylor, D.; Myers, S.A.; Clauset, A.; Porter, M.A.; Mucha, P.J. Eigenvector-Based Centrality Measures for Temporal Networks. Multiscale Model. Simul. 2017, 15, 537–574. [Google Scholar] [CrossRef] [Green Version]
- Krebs, V. Uncloaking Terrorist Networks. First Monday 2002, 7, 43–52. [Google Scholar] [CrossRef]
- Burt, R.S. Social Contagion and Innovation: Cohesion versus Structural Equivalence. Am. J. Sociol. 1987, 92, 1287–1335. [Google Scholar] [CrossRef]
- Kapferer, B. Strategy and Transaction in an African Factory: African Workers and Indian Management in a Zambian Town; Manchester University Press: Manchester, UK, 1972. [Google Scholar]
- Lusseau, D.; Schneider, K.; Boisseau, O.J.; Haase, P.; Slooten, E.; Dawson, S.M. The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations. Behav. Ecol. Sociobiol. 2003, 54, 396–405. [Google Scholar] [CrossRef]
- Guimerà, R.; Danon, L.; Díaz-Guilera, A.; Giralt, F.; Arenas, A. Self-similar community structure in a network of human interactions. Phys. Rev. E 2003, 68, 065103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Network | Density | Transitivity | ASPL | Modularity | Assortativity | |||
---|---|---|---|---|---|---|---|---|
Sampson’s monastery | 18 | 71 | 7.9 | 0.464 | 0.53 | 1.54 | 0.29 | −0.07 |
Freeman’s EIES | 34 | 415 | 24.4 | 0.740 | 0.82 | 1.26 | 0.07 | −0.15 |
Kapferer tailor | 39 | 158 | 8.1 | 0.213 | 0.39 | 2.04 | 0.32 | −0.18 |
Hollywood music | 39 | 219 | 11.2 | 0.296 | 0.56 | 1.86 | 0.20 | −0.08 |
Golden Age | 55 | 564 | 20.5 | 0.380 | 0.53 | 1.64 | 0.45 | −0.13 |
Dolphins | 62 | 159 | 5.1 | 0.084 | 0.31 | 3.36 | 0.52 | −0.04 |
Terrorist | 62 | 152 | 4.9 | 0.080 | 0.36 | 2.95 | 0.52 | −0.08 |
Les Miserables | 77 | 254 | 6.6 | 0.087 | 0.50 | 2.64 | 0.56 | −0.17 |
CKM physicians | 110 | 193 | 3.5 | 0.032 | 0.16 | 4.24 | 0.61 | −0.11 |
Email Spain | 1133 | 5452 | 9.6 | 0.009 | 0.17 | 3.61 | 0.57 | −0.08 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pond, T.; Magsarjav, S.; South, T.; Mitchell, L.; Bagrow, J.P. Complex Contagion Features without Social Reinforcement in a Model of Social Information Flow. Entropy 2020, 22, 265. https://doi.org/10.3390/e22030265
Pond T, Magsarjav S, South T, Mitchell L, Bagrow JP. Complex Contagion Features without Social Reinforcement in a Model of Social Information Flow. Entropy. 2020; 22(3):265. https://doi.org/10.3390/e22030265
Chicago/Turabian StylePond, Tyson, Saranzaya Magsarjav, Tobin South, Lewis Mitchell, and James P. Bagrow. 2020. "Complex Contagion Features without Social Reinforcement in a Model of Social Information Flow" Entropy 22, no. 3: 265. https://doi.org/10.3390/e22030265
APA StylePond, T., Magsarjav, S., South, T., Mitchell, L., & Bagrow, J. P. (2020). Complex Contagion Features without Social Reinforcement in a Model of Social Information Flow. Entropy, 22(3), 265. https://doi.org/10.3390/e22030265