Non-Monogamy of Spatio-Temporal Correlations and the Black Hole Information Loss Paradox
<p>Experimental setup. A maximally entangled singlet state is generated by pumping a type-II <math display="inline"><semantics> <msub> <mrow> <mi>Beta</mi> <mo>−</mo> <mi>BaB</mi> </mrow> <mn>2</mn> </msub> </semantics></math><math display="inline"><semantics> <msub> <mi mathvariant="normal">O</mi> <mn>4</mn> </msub> </semantics></math> (BBO) crystal. Two polarization measurements, M1 and M2 (at times <math display="inline"><semantics> <msub> <mi>t</mi> <mn>1</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>t</mi> <mn>2</mn> </msub> </semantics></math>, respectively) are performed in sequence on photon A, while a single measurement (M3) is carried on photon B. Correlations among them certify entanglement monogamy violation for the whole pseudo-density operator (PDO) <math display="inline"><semantics> <msub> <mi>R</mi> <mn>123</mn> </msub> </semantics></math> in Equation (<a href="#FD2-entropy-22-00228" class="html-disp-formula">2</a>), describing the scenario of the spatio-temporal multi-partite entanglement (outside and inside the black hole) considered.</p> "> Figure 2
<p>Tomographic reconstruction of the real (panel <b>a</b>) and imaginary (panel <b>b</b>) part of the reduced pseudo-density operator <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mn>12</mn> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> <mrow> <mo>(</mo> <mi>I</mi> <mo>+</mo> <msub> <mi mathvariant="sans-serif">Σ</mi> <mn>12</mn> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math>, describing the temporal correlations between qubits 1 and 2, compared with the corresponding theoretical expectations (panels <b>c</b> and <b>d</b>, respectively).</p> "> Figure 3
<p>Tomographic reconstruction of the real (panel <b>a</b>) and imaginary (panel <b>b</b>) part of the reduced pseudo-density operator <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mn>13</mn> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> <mrow> <mo>(</mo> <mi>I</mi> <mo>−</mo> <msub> <mi mathvariant="sans-serif">Σ</mi> <mn>13</mn> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math>, related to the spatially maximally entangled state within the black hole, compared with the corresponding theoretically-expected counterparts (panels <b>c</b> and <b>d</b>, respectively).</p> ">
Abstract
:1. Introduction
2. Results
3. Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Marolf, D. The black hole information problem: Past, present, and future. Rep. Prog. Phys. 2017, 80, 092001. [Google Scholar] [CrossRef] [PubMed]
- Unruh, W.G.; Wald, R.M. Information loss. Rep. Prog. Phys. 2017, 80, 092002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braunstein, S.L.; Pati, A.K. Quantum Information Cannot Be Completely Hidden in Correlations: Implications for the Black-Hole Information Paradox. Phys. Rev. Lett. 2007, 98, 080502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawking, S.W.; Perry, M.J.; Strominger, A. Soft Hair on Black Holes. Phys. Rev. Lett. 2016, 116, 231301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choudhury, S.; Panda, S.; Singh, R. Bell violation in the sky. Eur. Phys. J. C 2017, 77, 60. [Google Scholar] [CrossRef]
- Martin, J.; Vennin, V. Obstructions to Bell CMB experiments. Phys. Rev. D 2017, 96, 063501. [Google Scholar] [CrossRef] [Green Version]
- Maldacena, J. A model with cosmological Bell inequalities. Fortschr. Phys. 2016, 64, 10. [Google Scholar] [CrossRef] [Green Version]
- Choudhury, S.; Panda, S. Spectrum of cosmological correlation from vacuum fluctuation of stringy axion in entangled de Sitter space. Eur. Phys. J. C 2020, 80, 67. [Google Scholar] [CrossRef]
- Hawking, S. Black holes in general relativity. Commun. Math. Phys. 1972, 25, 152. [Google Scholar] [CrossRef]
- Hawking, S. Particle creation by black holes. Commun. Math. Phys. 1975, 43, 199. [Google Scholar] [CrossRef]
- Hawking, S. Breakdown of predictability in gravitational collapse. Phys. Rev. D 1976, 14, 2460. [Google Scholar] [CrossRef]
- Hawking, S. Information loss in black holes. Phys. Rev. D 2005, 72, 084013. [Google Scholar] [CrossRef] [Green Version]
- Toner, B. Monogamy of non-local quantum correlations. Proc. R. Soc. A 2009, 465, 59–69. [Google Scholar] [CrossRef] [Green Version]
- Page, D.M. Information in black hole radiation. Phys. Rev. Lett. 1993, 71, 3743–3746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallace, D. Why Black Hole information loss is paradoxical. arXiv 2017, arXiv:1710.03783. [Google Scholar]
- Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; W. H. Freeman and Company: San Francisco, CA, USA, 1973. [Google Scholar]
- Fitzsimons, J.; Jones, J.A.; Vedral, V. Quantum correlations which imply causation. Sci. Rep. 2015, 5, 18281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubin, M.H.; Klyshko, D.N.; Shih, Y.H.; Sergienko, A.V. Theory of two-photon entanglement in type-II optical parametric down-conversion. Phys. Rev. A 1994, 50, 5122. [Google Scholar] [CrossRef] [PubMed]
- Genovese, M. Research On Hidden Variable Theories: A Review Of Recent Progresses. Phys. Rep. 2005, 413, 319–396. [Google Scholar] [CrossRef] [Green Version]
- Bogdanov, Y.I.; Brida, G.; Genovese, M.; Kulik, S.P.; Moreva, E.V.; Shurupov, A.P. Statistical Estimation of the Efficiency of Quantum State Tomography Protocols. Phys. Rev. Lett. 2010, 105, 010404. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marletto, C.; Vedral, V.; Virzì, S.; Rebufello, E.; Avella, A.; Piacentini, F.; Gramegna, M.; Degiovanni, I.P.; Genovese, M. Non-Monogamy of Spatio-Temporal Correlations and the Black Hole Information Loss Paradox. Entropy 2020, 22, 228. https://doi.org/10.3390/e22020228
Marletto C, Vedral V, Virzì S, Rebufello E, Avella A, Piacentini F, Gramegna M, Degiovanni IP, Genovese M. Non-Monogamy of Spatio-Temporal Correlations and the Black Hole Information Loss Paradox. Entropy. 2020; 22(2):228. https://doi.org/10.3390/e22020228
Chicago/Turabian StyleMarletto, Chiara, Vlatko Vedral, Salvatore Virzì, Enrico Rebufello, Alessio Avella, Fabrizio Piacentini, Marco Gramegna, Ivo Pietro Degiovanni, and Marco Genovese. 2020. "Non-Monogamy of Spatio-Temporal Correlations and the Black Hole Information Loss Paradox" Entropy 22, no. 2: 228. https://doi.org/10.3390/e22020228
APA StyleMarletto, C., Vedral, V., Virzì, S., Rebufello, E., Avella, A., Piacentini, F., Gramegna, M., Degiovanni, I. P., & Genovese, M. (2020). Non-Monogamy of Spatio-Temporal Correlations and the Black Hole Information Loss Paradox. Entropy, 22(2), 228. https://doi.org/10.3390/e22020228