Polar Coding for Confidential Broadcasting
<p>Channel model: CI-WTBC.</p> "> Figure 2
<p>Graphical representation of the sets in (10)–(19). The indices inside the soft and dark gray area form <math display="inline"><semantics> <msup> <mi mathvariant="script">G</mi> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msup> </semantics></math> and <math display="inline"><semantics> <msup> <mi mathvariant="script">C</mi> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msup> </semantics></math> respectively. The indices that form <math display="inline"><semantics> <mpadded height="0pt" depth="0pt"> <msubsup> <mi mathvariant="script">H</mi> <mi>V</mi> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> <mo>∩</mo> <msup> <mrow> <mo stretchy="false">(</mo> <msubsup> <mi mathvariant="script">L</mi> <mrow> <mrow> <mi>V</mi> <mo stretchy="false">|</mo> </mrow> <msub> <mi>Y</mi> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msub> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> <mo stretchy="false">)</mo> </mrow> <mi mathvariant="normal">C</mi> </msup> </mpadded> </semantics></math> are those inside the red curve, while those inside the blue curve form <math display="inline"><semantics> <mpadded height="0pt" depth="0pt"> <msubsup> <mi mathvariant="script">H</mi> <mi>V</mi> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> <mo>∩</mo> <msup> <mrow> <mo stretchy="false">(</mo> <msubsup> <mi mathvariant="script">L</mi> <mrow> <mrow> <mi>V</mi> <mo stretchy="false">|</mo> </mrow> <msub> <mi>Y</mi> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </msub> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> <mo stretchy="false">)</mo> </mrow> <mi mathvariant="normal">C</mi> </msup> </mpadded> </semantics></math>.</p> "> Figure 3
<p>For Case A, graphical representation of the encoding that leads to the construction of <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>A</mi> <mo stretchy="false">˜</mo> </mover> <mrow> <mn>1</mn> <mo>:</mo> <mi>L</mi> </mrow> </msub> <mrow> <mo stretchy="false">[</mo> <msubsup> <mi mathvariant="script">H</mi> <mi>V</mi> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> <mo stretchy="false">]</mo> </mrow> </mrow> </semantics></math> when <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>. Consider the Block 2: <math display="inline"><semantics> <msubsup> <mi mathvariant="script">R</mi> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </semantics></math>, <math display="inline"><semantics> <msubsup> <mi mathvariant="script">R</mi> <mn>2</mn> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </semantics></math>, <math display="inline"><semantics> <msubsup> <mi mathvariant="script">R</mi> <mrow> <mn>1</mn> <mo>,</mo> <mn>2</mn> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </semantics></math>, <math display="inline"><semantics> <msubsup> <mi mathvariant="script">R</mi> <mi mathvariant="normal">S</mi> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </semantics></math> and <math display="inline"><semantics> <msubsup> <mi mathvariant="script">R</mi> <mo>Λ</mo> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </semantics></math> are those areas filled with yellow squares, blue circles, blue and yellow diamonds, pink crosses, and gray pentagons, respectively, and the set <math display="inline"><semantics> <msup> <mi mathvariant="script">I</mi> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msup> </semantics></math> is the green filled area. At Block <math display="inline"><semantics> <mrow> <mi>i</mi> <mo>∈</mo> <mo stretchy="false">[</mo> <mn>1</mn> <mo>,</mo> <mi>L</mi> <mo stretchy="false">]</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <msub> <mi>W</mi> <mi>i</mi> </msub> </semantics></math> is represented by symbols of the same color (e.g., red symbols at Block 2), and <math display="inline"><semantics> <msubsup> <mo>Θ</mo> <mi>i</mi> <mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </semantics></math>, <math display="inline"><semantics> <msubsup> <mo>Ψ</mo> <mi>i</mi> <mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </semantics></math> and <math display="inline"><semantics> <msubsup> <mo>Γ</mo> <mi>i</mi> <mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </semantics></math> are represented by squares, circles and triangles respectively. Furthermore, <math display="inline"><semantics> <msubsup> <mover accent="true"> <mo>Θ</mo> <mo stretchy="false">¯</mo> </mover> <mi>i</mi> <mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </semantics></math> and <math display="inline"><semantics> <msubsup> <mover accent="true"> <mo>Γ</mo> <mo stretchy="false">¯</mo> </mover> <mi>i</mi> <mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </semantics></math> are denoted by squares and triangles, respectively, with a line through them. At Block <math display="inline"><semantics> <mrow> <mi>i</mi> <mo>∈</mo> <mo stretchy="false">[</mo> <mn>2</mn> <mo>,</mo> <mi>L</mi> <mo>−</mo> <mn>1</mn> <mo stretchy="false">]</mo> </mrow> </semantics></math>, the diamonds denote <math display="inline"><semantics> <mrow> <msubsup> <mo>Γ</mo> <mrow> <mn>1</mn> <mo>,</mo> <mi>i</mi> <mo>−</mo> <mn>1</mn> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> <mo>⊕</mo> <msubsup> <mover accent="true"> <mo>Γ</mo> <mo stretchy="false">¯</mo> </mover> <mrow> <mn>1</mn> <mo>,</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </mrow> </semantics></math>. In Block <math display="inline"><semantics> <mrow> <mi>i</mi> <mo>∈</mo> <mo stretchy="false">[</mo> <mn>1</mn> <mo>,</mo> <mi>L</mi> <mo stretchy="false">]</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <msub> <mi>S</mi> <mi>i</mi> </msub> </semantics></math> is stored into those entries whose indices belong to the green area. For <math display="inline"><semantics> <mrow> <mi>i</mi> <mo>∈</mo> <mo stretchy="false">[</mo> <mn>1</mn> <mo>,</mo> <mi>L</mi> <mo>−</mo> <mn>1</mn> <mo stretchy="false">]</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <msubsup> <mo>Π</mo> <mi>i</mi> <mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </semantics></math> is denoted by crosses (e.g., purple crosses at Block 2), and is repeated in <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>A</mi> <mo stretchy="false">˜</mo> </mover> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mrow> <mo stretchy="false">[</mo> <msubsup> <mi mathvariant="script">R</mi> <mi mathvariant="normal">S</mi> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> <mo stretchy="false">]</mo> </mrow> </mrow> </semantics></math>. The sequence <math display="inline"><semantics> <msubsup> <mo>Λ</mo> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </semantics></math> is represented by gray pentagons and is replicated in all blocks. The sequences <math display="inline"><semantics> <msubsup> <mo>Υ</mo> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </semantics></math> and <math display="inline"><semantics> <msubsup> <mo>Υ</mo> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </semantics></math> are those entries inside the red at Block 1 and the blue curve at Block <span class="html-italic">L</span>, respectively.</p> "> Figure 4
<p>For Case B, graphical representation of the encoding that leads to the construction of <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>A</mi> <mo stretchy="false">˜</mo> </mover> <mrow> <mn>1</mn> <mo>:</mo> <mi>L</mi> </mrow> </msub> <mrow> <mo stretchy="false">[</mo> <msubsup> <mi mathvariant="script">H</mi> <mi>V</mi> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> <mo stretchy="false">]</mo> </mrow> </mrow> </semantics></math> when <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>. Consider the Block 2: the sets <math display="inline"><semantics> <msubsup> <mi mathvariant="script">R</mi> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </semantics></math>, <math display="inline"><semantics> <msubsup> <mi mathvariant="script">R</mi> <mn>1</mn> <mrow> <mo>′</mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </semantics></math>, <math display="inline"><semantics> <msubsup> <mi mathvariant="script">R</mi> <mn>2</mn> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </semantics></math>, <math display="inline"><semantics> <msubsup> <mi mathvariant="script">R</mi> <mn>2</mn> <mrow> <mo>′</mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </semantics></math>, <math display="inline"><semantics> <msubsup> <mi mathvariant="script">R</mi> <mrow> <mn>1</mn> <mo>,</mo> <mn>2</mn> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </semantics></math>, <math display="inline"><semantics> <msubsup> <mi mathvariant="script">R</mi> <mi mathvariant="normal">S</mi> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </semantics></math> and <math display="inline"><semantics> <msubsup> <mi mathvariant="script">R</mi> <mo>Λ</mo> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </semantics></math> are those areas filled with yellow squares, yellow triangles, blue circles, blue triangles, blue and yellow diamonds, pink crosses, and gray pentagons, respectively, and <math display="inline"><semantics> <msup> <mi mathvariant="script">I</mi> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msup> </semantics></math> is the green filled area with purple crosses. At Block <math display="inline"><semantics> <mrow> <mi>i</mi> <mo>∈</mo> <mo stretchy="false">[</mo> <mn>1</mn> <mo>,</mo> <mi>L</mi> <mo stretchy="false">]</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <msub> <mi>W</mi> <mi>i</mi> </msub> </semantics></math> is represented by symbols of the same color (e.g., red symbols at Block 2), and <math display="inline"><semantics> <msubsup> <mo>Θ</mo> <mi>i</mi> <mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </semantics></math>, <math display="inline"><semantics> <msubsup> <mo>Ψ</mo> <mi>i</mi> <mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </semantics></math> and <math display="inline"><semantics> <msubsup> <mo>Γ</mo> <mi>i</mi> <mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </semantics></math> are represented by squares, circles, and triangles, respectively. Furthermore, <math display="inline"><semantics> <msubsup> <mover accent="true"> <mo>Θ</mo> <mo stretchy="false">¯</mo> </mover> <mi>i</mi> <mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </semantics></math> and <math display="inline"><semantics> <msubsup> <mover accent="true"> <mo>Γ</mo> <mo stretchy="false">¯</mo> </mover> <mi>i</mi> <mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </semantics></math> are denoted by squares and triangles, respectively, with a line through them. At Block <math display="inline"><semantics> <mrow> <mi>i</mi> <mo>∈</mo> <mo stretchy="false">[</mo> <mn>2</mn> <mo>,</mo> <mi>L</mi> <mo>−</mo> <mn>1</mn> <mo stretchy="false">]</mo> </mrow> </semantics></math>, the diamonds denote <math display="inline"><semantics> <mrow> <msubsup> <mo>Γ</mo> <mrow> <mn>1</mn> <mo>,</mo> <mi>i</mi> <mo>−</mo> <mn>1</mn> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> <mo>⊕</mo> <msubsup> <mover accent="true"> <mo>Γ</mo> <mo stretchy="false">¯</mo> </mover> <mrow> <mn>1</mn> <mo>,</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </mrow> </semantics></math>. In Block <math display="inline"><semantics> <mrow> <mi>i</mi> <mo>∈</mo> <mo stretchy="false">[</mo> <mn>1</mn> <mo>,</mo> <mi>L</mi> <mo stretchy="false">]</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <msub> <mi>S</mi> <mi>i</mi> </msub> </semantics></math> is stored into those entries whose indices belong to the green area. For <math display="inline"><semantics> <mrow> <mi>i</mi> <mo>∈</mo> <mo stretchy="false">[</mo> <mn>2</mn> <mo>,</mo> <mi>L</mi> <mo>−</mo> <mn>1</mn> <mo stretchy="false">]</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mpadded height="0pt" depth="0pt"> <msubsup> <mo>Π</mo> <mi>i</mi> <mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> <mo>=</mo> <msub> <mi>S</mi> <mi>i</mi> </msub> </mpadded> </semantics></math> and, therefore, <math display="inline"><semantics> <msub> <mi>S</mi> <mi>i</mi> </msub> </semantics></math> is repeated entirely into <math display="inline"><semantics> <mpadded height="0pt" depth="0pt"> <msub> <mover accent="true"> <mi>A</mi> <mo stretchy="false">˜</mo> </mover> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mrow> <mo stretchy="false">[</mo> <msubsup> <mi mathvariant="script">R</mi> <mi mathvariant="normal">S</mi> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> <mo stretchy="false">]</mo> </mrow> </mpadded> </semantics></math>. The sequence <math display="inline"><semantics> <mpadded height="0pt" depth="0pt"> <msubsup> <mo>Λ</mo> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </mpadded> </semantics></math> from <math display="inline"><semantics> <msub> <mi>S</mi> <mn>1</mn> </msub> </semantics></math> is represented by gray pentagons and is repeated in all blocks. The sequences <math display="inline"><semantics> <msubsup> <mo>Υ</mo> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </semantics></math> and <math display="inline"><semantics> <msubsup> <mo>Υ</mo> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </semantics></math> are the entries inside the red curve at Block 1 and the blue curve at Block <span class="html-italic">L</span>, respectively.</p> "> Figure 5
<p>For Case C, graphical representation of the encoding that leads to the construction of <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>A</mi> <mo stretchy="false">˜</mo> </mover> <mrow> <mn>1</mn> <mo>:</mo> <mi>L</mi> </mrow> </msub> <mrow> <mo stretchy="false">[</mo> <msubsup> <mi mathvariant="script">H</mi> <mi>V</mi> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> <mo stretchy="false">]</mo> </mrow> </mrow> </semantics></math> when <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>. Consider the Bloc 2: <math display="inline"><semantics> <msubsup> <mi mathvariant="script">R</mi> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </semantics></math>, <math display="inline"><semantics> <msubsup> <mi mathvariant="script">R</mi> <mn>2</mn> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </semantics></math>, <math display="inline"><semantics> <msubsup> <mi mathvariant="script">R</mi> <mrow> <mn>1</mn> <mo>,</mo> <mn>2</mn> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </semantics></math> and <math display="inline"><semantics> <msubsup> <mi mathvariant="script">R</mi> <mo>Λ</mo> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </semantics></math> are those areas filled with yellow squares, blue circles, blue and yellow diamonds, and gray pentagons, respectively, and <math display="inline"><semantics> <msup> <mi mathvariant="script">I</mi> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msup> </semantics></math> is the green filled area. At Block <math display="inline"><semantics> <mrow> <mi>i</mi> <mo>∈</mo> <mo stretchy="false">[</mo> <mn>1</mn> <mo>,</mo> <mi>L</mi> <mo stretchy="false">]</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <msub> <mi>W</mi> <mi>i</mi> </msub> </semantics></math> is represented by symbols of the same color (e.g., red symbols at Block 2), and <math display="inline"><semantics> <msubsup> <mo>Θ</mo> <mi>i</mi> <mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </semantics></math>, <math display="inline"><semantics> <msubsup> <mo>Ψ</mo> <mi>i</mi> <mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </semantics></math> and <math display="inline"><semantics> <msubsup> <mo>Γ</mo> <mi>i</mi> <mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </semantics></math> are represented by squares, circles, and triangles, respectively. Furthermore, <math display="inline"><semantics> <msubsup> <mover accent="true"> <mo>Θ</mo> <mo stretchy="false">¯</mo> </mover> <mi>i</mi> <mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </semantics></math> and <math display="inline"><semantics> <msubsup> <mover accent="true"> <mo>Γ</mo> <mo stretchy="false">¯</mo> </mover> <mi>i</mi> <mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </semantics></math> are denoted by squares and triangles, respectively, with a line through them. At Block <math display="inline"><semantics> <mrow> <mi>i</mi> <mo>∈</mo> <mo stretchy="false">[</mo> <mn>2</mn> <mo>,</mo> <mi>L</mi> <mo>−</mo> <mn>1</mn> <mo stretchy="false">]</mo> </mrow> </semantics></math>, the diamonds denote <math display="inline"><semantics> <mrow> <msubsup> <mo>Γ</mo> <mrow> <mn>1</mn> <mo>,</mo> <mi>i</mi> <mo>−</mo> <mn>1</mn> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> <mo>⊕</mo> <msubsup> <mover accent="true"> <mo>Γ</mo> <mo stretchy="false">¯</mo> </mover> <mrow> <mn>1</mn> <mo>,</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </mrow> </semantics></math>. For <math display="inline"><semantics> <mrow> <mi>i</mi> <mo>∈</mo> <mo stretchy="false">[</mo> <mn>1</mn> <mo>,</mo> <mi>L</mi> <mo stretchy="false">]</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <msub> <mi>S</mi> <mi>i</mi> </msub> </semantics></math> is stored into those entries belonging to the green area. The sequence <math display="inline"><semantics> <mpadded height="0pt" depth="0pt"> <msubsup> <mo>Λ</mo> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </mpadded> </semantics></math> is represented by gray pentagons and is repeated in all blocks. The sequences <math display="inline"><semantics> <mpadded height="0pt" depth="0pt"> <msubsup> <mo>Υ</mo> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </mpadded> </semantics></math> and <math display="inline"><semantics> <mpadded height="0pt" depth="0pt"> <msubsup> <mo>Υ</mo> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </mpadded> </semantics></math> are the entries inside the red curve at Block 1 and the blue curve at Block <span class="html-italic">L</span>, respectively.</p> "> Figure 6
<p>For Case D, graphical representation of the encoding that leads to the construction of <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>A</mi> <mo stretchy="false">˜</mo> </mover> <mrow> <mn>1</mn> <mo>:</mo> <mi>L</mi> </mrow> </msub> <mfenced open="[" close="]"> <msubsup> <mi mathvariant="script">H</mi> <mi>V</mi> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </mfenced> </mrow> </semantics></math> when <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>. Consider the Block 2: <math display="inline"><semantics> <msubsup> <mi mathvariant="script">R</mi> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </semantics></math>, <math display="inline"><semantics> <msubsup> <mi mathvariant="script">R</mi> <mn>2</mn> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </semantics></math>, <math display="inline"><semantics> <msubsup> <mi mathvariant="script">R</mi> <mrow> <mn>1</mn> <mo>,</mo> <mn>2</mn> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </semantics></math>, <math display="inline"><semantics> <msubsup> <mi mathvariant="script">R</mi> <mrow> <mn>1</mn> <mo>,</mo> <mn>2</mn> </mrow> <mrow> <mo>′</mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </semantics></math> and <math display="inline"><semantics> <msubsup> <mi mathvariant="script">R</mi> <mo>Λ</mo> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </semantics></math> are those areas filled with yellow squares, blue circles, blue and yellow diamonds, yellow squares overlapped by blue circles, and gray pentagons, respectively, and the set <math display="inline"><semantics> <msup> <mi mathvariant="script">I</mi> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msup> </semantics></math> is the green filled area. At Block <math display="inline"><semantics> <mrow> <mi>i</mi> <mo>∈</mo> <mo stretchy="false">[</mo> <mn>1</mn> <mo>,</mo> <mi>L</mi> <mo stretchy="false">]</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <msub> <mi>W</mi> <mi>i</mi> </msub> </semantics></math> is represented by symbols of the same color (e.g., red symbols at Block 2), and <math display="inline"><semantics> <msubsup> <mo>Θ</mo> <mi>i</mi> <mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </semantics></math>, <math display="inline"><semantics> <msubsup> <mo>Ψ</mo> <mi>i</mi> <mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </semantics></math> and <math display="inline"><semantics> <msubsup> <mo>Γ</mo> <mi>i</mi> <mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </semantics></math> are represented by squares, circles, and triangles, respectively. Furthermore, <math display="inline"><semantics> <msubsup> <mover accent="true"> <mo>Θ</mo> <mo stretchy="false">¯</mo> </mover> <mi>i</mi> <mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </semantics></math> and <math display="inline"><semantics> <msubsup> <mover accent="true"> <mo>Γ</mo> <mo stretchy="false">¯</mo> </mover> <mi>i</mi> <mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </semantics></math> are denoted by squares and triangles, respectively, with a line through them. At Block <math display="inline"><semantics> <mrow> <mi>i</mi> <mo>∈</mo> <mo stretchy="false">[</mo> <mn>2</mn> <mo>,</mo> <mi>L</mi> <mo>−</mo> <mn>1</mn> <mo stretchy="false">]</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mpadded height="0pt" depth="0pt"> <msubsup> <mo>Γ</mo> <mrow> <mn>1</mn> <mo>,</mo> <mi>i</mi> <mo>−</mo> <mn>1</mn> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> <mo>⊕</mo> <msubsup> <mover accent="true"> <mo>Γ</mo> <mo stretchy="false">¯</mo> </mover> <mrow> <mn>1</mn> <mo>,</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </mpadded> </semantics></math> is represented by diamonds, and <math display="inline"><semantics> <mpadded height="0pt" depth="0pt"> <msubsup> <mo>Ψ</mo> <mrow> <mn>2</mn> <mo>,</mo> <mi>i</mi> <mo>−</mo> <mn>1</mn> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> <mo>⊕</mo> <msubsup> <mover accent="true"> <mo>Θ</mo> <mo stretchy="false">¯</mo> </mover> <mrow> <mn>2</mn> <mo>,</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </mpadded> </semantics></math> by squares overlapped by circles. At Block <math display="inline"><semantics> <mrow> <mi>i</mi> <mo>∈</mo> <mo stretchy="false">[</mo> <mn>1</mn> <mo>,</mo> <mi>L</mi> <mo stretchy="false">]</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <msub> <mi>S</mi> <mi>i</mi> </msub> </semantics></math> is stored into those entries that belong to the green area. Sequence <math display="inline"><semantics> <mpadded height="0pt" depth="0pt"> <msubsup> <mo>Λ</mo> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </mpadded> </semantics></math> is denoted by gray pentagons and is repeated in all blocks. Sequences <math display="inline"><semantics> <mpadded height="0pt" depth="0pt"> <msubsup> <mo>Υ</mo> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </mpadded> </semantics></math> and <math display="inline"><semantics> <mpadded height="0pt" depth="0pt"> <msubsup> <mo>Υ</mo> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </mpadded> </semantics></math> are the entries inside the red curve at Block 1 and the blue curve at Block <span class="html-italic">L</span>, respectively.</p> "> Figure 7
<p>Graphical representation (Bayesian graph) of the dependencies between random variables involved in the polar coding scheme. Independent random variables are indicated by white nodes, whereas those that are dependent are indicated by gray nodes.</p> ">
Abstract
:1. Introduction
1.1. Notation
1.2. Organization
2. Channel Model and Achievable Region
3. Review of Polar Codes
4. Polar Coding Scheme
- , and ;
- , and ;
- , and ;
- , and .
4.1. General Polar-Based Encoding
Algorithm 1 Generic encoding scheme |
Require: Private and confidential messages and ; randomization sequences ; random sequence ; and secret keys , , and . |
|
Algorithm 2 Function form_AG |
Require:i, , , , , , , |
|
4.2. Function form_AG
4.2.1. Case A
4.2.2. Case B
4.2.3. Case C
4.2.4. Case D
4.3. Channel Prefixing
Algorithm 3 Function pb_ch_pref |
Require:, , |
|
4.4. Decoding
4.4.1. Legitimate Receiver 1
Algorithm 4 Decoding at legitimate Receiver 1 |
Require:, , and , and . |
|
- In Case D, Receiver 1 gets (e.g., yellow squares with a line through them at Block 2 in Figure 6) and (yellow squares with a line through them overlapped by blue circles). Since (blue circles) has already been estimated, Receiver 1 obtains (yellow squares with a line through them).
4.4.2. Legitimate Receiver 2
Algorithm 5 Decoding at legitimate Receiver 2 |
Require:, , and , and . |
|
- In Case D, Receiver 2 obtains (e.g., red circles at Block 3 in Figure 6) and (cyan squares with a line through them overlapped by red circles). Since (cyan squares with a line through them) has already been estimated, it obtains (red circles).
5. Performance of the Polar Coding Scheme
5.1. Transmission Rates
5.1.1. Private Message Rate
5.1.2. Confidential Message Rate
5.1.3. Randomization Sequence Rate
5.1.4. Private-Shared Sequence Rate
5.1.5. Rate of the Additional Randomness
5.2. Distribution of the DMS after the Polar Encoding
5.3. Reliability Analysis
5.4. Secrecy Analysis
6. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
Abbreviations
WTBC | Wiretap broadcast channel |
CI-WTBC | Common information over the wiretap broadcast channel |
SC | Successive cancellation |
DMS | Discrete memoryless source |
References
- Wyner, A. The wire-tap channel. Bell Syst. Tech. J. 1975, 54, 1355–1387. [Google Scholar] [CrossRef]
- Csiszár, I.; Korner, J. Broadcast channels with confidential messages. IEEE Trans. Inf. Theory 1978, 24, 339–348. [Google Scholar] [CrossRef] [Green Version]
- Maurer, U.; Wolf, S. Information-theoretic key agreement: From weak to strong secrecy for free. In Advances in Cryptology—EUROCRYPT 2000; Springer: Berlin/Heidelberg, Germany, 2000; pp. 351–368. [Google Scholar]
- Arikan, E. Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels. IEEE Trans. Inf. Theory 2009, 55, 3051–3073. [Google Scholar] [CrossRef]
- Mahdavifar, H.; Vardy, A. Achieving the Secrecy Capacity of Wiretap Channels Using Polar Codes. IEEE Trans. Inf. Theory 2011, 57, 6428–6443. [Google Scholar] [CrossRef] [Green Version]
- Sasoglu, E.; Vardy, A. A new polar coding scheme for strong security on wiretap channels. In Proceedings of the 2013 IEEE International Symposium on Information Theory (ISIT), Istanbul, Turkey, 7–12 July 2013; pp. 1117–1121. [Google Scholar] [CrossRef]
- Renes, J.M.; Renner, R.; Sutter, D. Efficient one-way secret-key agreement and private channel coding via polarization. In Advances in Cryptology-ASIACRYPT; Springer: Berlin/Heidelberg, Germany, 2013; pp. 194–213. [Google Scholar]
- Wei, Y.; Ulukus, S. Polar Coding for the General Wiretap Channel With Extensions to Multiuser Scenarios. IEEE J. Sel. Areas Commun. 2016, 34, 278–291. [Google Scholar] [CrossRef]
- Gulcu, T.C.; Barg, A. Achieving Secrecy Capacity of the Wiretap Channel and Broadcast Channel with a Confidential Component. IEEE Trans. Inf. Theory 2017, 63, 1311–1324. [Google Scholar] [CrossRef]
- Chou, R.A.; Bloch, M.R. Polar Coding for the Broadcast Channel With Confidential Messages: A Random Binning Analogy. IEEE Trans. Inf. Theory 2016, 62, 2410–2429. [Google Scholar] [CrossRef] [Green Version]
- del Olmo Alos, J.; Rodríguez Fonollosa, J. Strong Secrecy on a Class of Degraded Broadcast Channels Using Polar Codes. Entropy 2018, 20, 467. [Google Scholar] [CrossRef] [Green Version]
- Chou, R.A.; Yener, A. Polar Coding for the Multiple Access Wiretap Channel via Rate-Splitting and Cooperative Jamming. IEEE Trans. Inf. Theory 2018, 64, 7903–7921. [Google Scholar] [CrossRef]
- Chia, Y.K.; El Gamal, A. Three-receiver broadcast channels with common and confidential messages. IEEE Trans. Inf. Theory 2012, 58, 2748–2765. [Google Scholar] [CrossRef]
- Hassani, S.; Urbanke, R. Universal polar codes. Proceedings of 2014 IEEE International Symposium on Information Theory (ISIT), Honolulu, HI, USA, 29 June–4 July 2014; pp. 1451–1455. [Google Scholar]
- Mondelli, M.; Hassani, S.; Sason, I.; Urbanke, R. Achieving Marton’s region for broadcast channels using polar codes. IEEE Trans. Inf. Theory 2015, 61, 783–800. [Google Scholar] [CrossRef]
- Watanabe, S.; Oohama, Y. The optimal use of rate-limited randomness in broadcast channels with confidential messages. IEEE Trans. Inf. Theory 2015, 61, 983–995. [Google Scholar] [CrossRef]
- Karzand, M.; Telatar, E. Polar codes for q-ary source coding. In Proceedings of the 2010 IEEE International Symposium on Information Theory, Austin, TX, USA, 13–18 June 2010; pp. 909–912. [Google Scholar] [CrossRef]
- Şasoğlu, E.; Telatar, E.; Arikan, E. Polarization for arbitrary discrete memoryless channels. In Proceedings of the 2009 IEEE Information Theory Workshop, Taormina, Italy, 11–16 October 2009; pp. 144–148. [Google Scholar]
- Arikan, E. Source polarization. Proceedings of 2010 the IEEE International Symposium on Information Theory, Austin, TX, USA, 13–18 June 2010; pp. 899–903. [Google Scholar]
- Tal, I.; Vardy, A. How to construct polar codes. IEEE Trans. Inf. Theory 2013, 59, 6562–6582. [Google Scholar] [CrossRef] [Green Version]
- Vangala, H.; Viterbo, E.; Hong, Y. A comparative study of polar code constructions for the AWGN channel. arXiv 2015, arXiv:1501.02473. [Google Scholar]
- Honda, J.; Yamamoto, H. Polar Coding Without Alphabet Extension for Asymmetric Models. IEEE Trans. Inf. Theory 2013, 59, 7829–7838. [Google Scholar] [CrossRef]
- Korada, S.B.; Urbanke, R.L. Polar codes are optimal for lossy source coding. IEEE Trans. Inf. Theory 2010, 56, 1751–1768. [Google Scholar] [CrossRef] [Green Version]
- Chou, R.A.; Bloch, M.R. Using deterministic decisions for low-entropy bits in the encoding and decoding of polar codes. In Proceedings of the 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, IL, USA, 29 September–2 October 2015; pp. 1380–1385. [Google Scholar] [CrossRef]
- Levin, D.A.; Peres, Y.; Wilmer, E.L. Markov Chains and Mixing Times; American Mathematical Society: Providence, RI, USA, 2009. [Google Scholar]
- Forney, G.D., Jr. On the role of MMSE estimation in approaching the information-theoretic limits of linear Gaussian channels: Shannon meets Wiener. In Proceedings of the the 41st Annual Allerton Conference on Communication, Control, and Computing, Monticello, IL, USA, 1–3 October 2003. [Google Scholar]
- Csiszar, I.; Körner, J. Information Theory: Coding Theorems for Discrete Memoryless Systems; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Pearl, J. Causality; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Chou, R.A. Explicit Codes for the Wiretap Channel with Uncertainty on the Eavesdropper’s Channel. In Proceedings of the 2018 IEEE International Symposium on Information Theory (ISIT), Vail, CO, USA, 17–22 June 2018; pp. 476–480. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
del Olmo Alòs, J.; Fonollosa, J.R. Polar Coding for Confidential Broadcasting. Entropy 2020, 22, 149. https://doi.org/10.3390/e22020149
del Olmo Alòs J, Fonollosa JR. Polar Coding for Confidential Broadcasting. Entropy. 2020; 22(2):149. https://doi.org/10.3390/e22020149
Chicago/Turabian Styledel Olmo Alòs, Jaume, and Javier Rodríguez Fonollosa. 2020. "Polar Coding for Confidential Broadcasting" Entropy 22, no. 2: 149. https://doi.org/10.3390/e22020149
APA Styledel Olmo Alòs, J., & Fonollosa, J. R. (2020). Polar Coding for Confidential Broadcasting. Entropy, 22(2), 149. https://doi.org/10.3390/e22020149