A Comparative Study of Multiscale Sample Entropy and Hierarchical Entropy and Its Application in Feature Extraction for Ship-Radiated Noise
<p>Stimulation signal.</p> "> Figure 2
<p>Hierarchical decomposition of the signal with three scales.</p> "> Figure 3
<p><math display="inline"><semantics> <mrow> <msub> <mi>S</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>S</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>’s SE results with different lengths of data.</p> "> Figure 4
<p><math display="inline"><semantics> <mrow> <msub> <mi>S</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>’s and <math display="inline"><semantics> <mrow> <msub> <mi>S</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>’s SE results with different <span class="html-italic">m</span>.</p> "> Figure 5
<p><math display="inline"><semantics> <mrow> <msub> <mi>S</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>’s and <math display="inline"><semantics> <mrow> <msub> <mi>S</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>’s SE results with different <span class="html-italic">r</span>.</p> "> Figure 6
<p>SE results for five types of ship-radiated noise with different parameters. (<b>a</b>) SE results with different data length. (<b>b</b>) SE results with different <span class="html-italic">m</span>. (<b>c</b>) SE results with different <span class="html-italic">r</span>.</p> "> Figure 7
<p>Hierarchical entropy results of <math display="inline"><semantics> <mrow> <mi>A</mi> <mi>R</mi> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>A</mi> <mi>R</mi> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>A</mi> <mi>R</mi> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </semantics></math>. (<b>a</b>) HE results for <math display="inline"><semantics> <mrow> <mi>A</mi> <mi>R</mi> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math>. (<b>b</b>) HE results for <math display="inline"><semantics> <mrow> <mi>A</mi> <mi>R</mi> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </semantics></math>. (<b>c</b>) HE results for <math display="inline"><semantics> <mrow> <mi>A</mi> <mi>R</mi> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </semantics></math>.</p> "> Figure 8
<p>The waveform of <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 9
<p>The MSE result for <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> at a scale of <math display="inline"><semantics> <mrow> <mn>1</mn> <mo>∼</mo> <mn>15</mn> </mrow> </semantics></math>.</p> "> Figure 10
<p>The waveform of <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>4</mn> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 11
<p>Hierarchical entropy results of <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>4</mn> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>. (<b>a</b>) HE results for <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>. (<b>b</b>) HE results for <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>4</mn> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>. (<b>c</b>) HE’s absolute difference.</p> "> Figure 12
<p>The flowchart of HE the feature extraction method.</p> "> Figure 13
<p>The waveform of the five types of ship-radiated noise.</p> "> Figure 14
<p>The power spectrum density analysis results of the five types of ship-radiated noise. (<b>a</b>) Ship A. (<b>b</b>) Ship B. (<b>c</b>) Ship C. (<b>d</b>) Ship D. (<b>e</b>) Ship E.</p> "> Figure 15
<p>The HE results for the five types of ship-radiated noise. (<b>a</b>) Ship A. (<b>b</b>) Ship B. (<b>c</b>) Ship C. (<b>d</b>) Ship D. (<b>e</b>) Ship E.</p> "> Figure 16
<p>MSE results of the five types of ship-radiated noise.</p> ">
Abstract
:1. Introduction
2. Basic Theory
2.1. Sample Entropy
2.2. Multiscale Sample Entropy
2.3. Hierarchical Entropy
3. Simulation Analysis of Different Signals Based on Hierarchical Entropy and Multiscale Sample Entropy
3.1. Parameter Selection for Sample Entropy
3.2. Hierarchical Entropy Analysis for the AR Process
3.3. Properties for Multiscale Sample Entropy
3.4. Properties for Hierarchical Entropy
4. Feature Extraction of Ship-Radiated Noise Based on Hierarchical Entropy
4.1. Feature Extraction Method Based on HE
- Step 1: Five types of ship-radiated noise are given in this paper; choose the appropriate hierarchical decomposition order to guarantee that the length of sub-signal is longer than 512.
- Step 2: By doing the hierarchical decomposition n times, sub-signals can be obtained, representing the lower and higher frequency components of the original signal, respectively.
- Step 3: Calculate the sample entropy for each sub-signal. Get the HE result.
- Step 4: Flatten the HE matrix into a vector. Pass the vector through an artificial neural network.
- Step 5: Get the classification results.
4.2. Feature Extraction of Ship-Radiated Noise Based on HE
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AE | Approximate entropy |
SE | Sample entropy |
MSE | Multiscale sample entropy |
HE | Hierarchical entropy |
VMD | Variational mode decomposition |
MPE | multiscale permutation entropy |
EEMD | Ensemble empirical mode decomposition |
SD | Standard deviation |
SNR | Signal-to-noise ratio |
References
- Urick, R.J. Principles of Underwater Sound for Engineers; Tata McGraw-Hill Education: New York, NY, USA, 1967. [Google Scholar]
- Rajagopal, R.; Sankaranarayanan, B.; Rao, P.R. Target classification in a passive sonar-an expert system approach. In Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, Albuquerque, NM, USA, 3–6 April 1990; pp. 2911–2914. [Google Scholar]
- Margarit, G.; Tabasco, A. Ship classification in single-pol SAR images based on fuzzy logic. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3129–3138. [Google Scholar] [CrossRef]
- Li, Y.; Wang, L.; Li, X.; Yang, X. A novel linear spectrum frequency feature extraction technique for warship radio noise based on complete ensemble empirical mode decomposition with adaptive noise, duffing chaotic oscillator, and weighted-permutation entropy. Entropy 2019, 21, 507. [Google Scholar] [CrossRef]
- Deaett, M. Signature modeling for acoustic trainer synthesis. IEEE J. Ocean. Eng. 1987, 12, 143–147. [Google Scholar] [CrossRef]
- Bao, F.; Li, C.; Wang, X.; Wang, Q.; Du, S. Ship classification using nonlinear features of radiated sound: An approach based on empirical mode decomposition. J. Acoust. Soc. Am. 2010, 128, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Hornero, R.; Álvarez, D.; Abásolo, D.; del Campo, F.; Zamarron, C. Utility of approximate entropy from overnight pulse oximetry data in the diagnosis of the obstructive sleep apnea syndrome. IEEE Trans. Biomed. Eng. 2007, 54, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Howedi, A.; Lotfi, A.; Pourabdollah, A. Exploring Entropy Measurements to Identify Multi-Occupancy in Activities of Daily Living. Entropy 2019, 21, 416. [Google Scholar] [CrossRef]
- Lake, D.E.; Richman, J.S.; Griffin, M.P.; Moorman, J.R. Sample entropy analysis of neonatal heart rate variability. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2002, 283, R789–R797. [Google Scholar] [CrossRef] [Green Version]
- Nicolaou, N.; Georgiou, J. The use of permutation entropy to characterize sleep electroencephalograms. Clin. EEG Neurosci. 2011, 42, 24–28. [Google Scholar] [CrossRef]
- Li, Y.; Chen, X.; Yu, J.; Yang, X.; Yang, H. The Data-Driven Optimization Method and Its Application in Feature Extraction of Ship-Radiated Noise with Sample Entropy. Energies 2019, 12, 359. [Google Scholar] [CrossRef]
- Pincus, S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991, 88, 2297–2301. [Google Scholar] [CrossRef]
- Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol.-Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, Y.H.; Wang, Y.H.; Liang, S.F.; Lee, K.T. Fast computation of sample entropy and approximate entropy in biomedicine. Comput. Methods Programs Biomed. 2011, 104, 382–396. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.; Goldberger, A.L.; Peng, C.K. Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett. 2002, 89, 068102. [Google Scholar] [CrossRef]
- Costa, M.; Peng, C.K.; Goldberger, A.L.; Hausdorff, J.M. Multiscale entropy analysis of human gait dynamics. Phys. A: Stat. Mech. Its Appl. 2003, 330, 53–60. [Google Scholar] [CrossRef]
- Costa, M.; Goldberger, A.L.; Peng, C.K. Multiscale entropy analysis of biological signals. Phys. Rev. E 2005, 71, 021906. [Google Scholar] [CrossRef]
- Jiang, Y.; Peng, C.K.; Xu, Y. Hierarchical entropy analysis for biological signals. J. Comput. Appl. Math. 2011, 236, 728–742. [Google Scholar] [CrossRef] [Green Version]
- Romero, R.; Monticelli, A. A hierarchical decomposition approach for transmission network expansion planning. IEEE Trans. Power Syst. 1994, 9, 373–380. [Google Scholar] [CrossRef]
- Zhu, K.; Song, X.; Xue, D. A roller bearing fault diagnosis method based on hierarchical entropy and support vector machine with particle swarm optimization algorithm. Measurement 2014, 47, 669–675. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Chen, X.; Yu, J. A novel feature extraction method for ship-radiated noise based on variational mode decomposition and multi-scale permutation entropy. Entropy 2017, 19, 342. [Google Scholar]
- Yang, H.; Zhao, K.; Li, G. A New Ship-Radiated Noise Feature Extraction Technique Based on Variational Mode Decomposition and Fluctuation-Based Dispersion Entropy. Entropy 2019, 21, 235. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Y.; Liang, H.; Yu, J. Improved Permutation Entropy for Measuring Complexity of Time Series under Noisy Condition. Complexity 2019, 2019. [Google Scholar] [CrossRef]
- Siddagangaiah, S.; Li, Y.; Guo, X.; Chen, X.; Zhang, Q.; Yang, K.; Yang, Y. A complexity-based approach for the detection of weak signals in ocean ambient noise. Entropy 2016, 18, 101. [Google Scholar] [CrossRef]
- Cato, D.H. A perspective on 30 years of progress in ambient noise: Source mechanisms and the characteristics of the sound field. AIP Conf. Proc. 2012, 1495, 242–260. [Google Scholar]
- Chen, X.; Yin, C.; He, W. Feature extraction of gearbox vibration signals based on EEMD and sample entropy. In Proceedings of the 2013 10th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Shenyang, China, 23–25 July 2013; pp. 811–815. [Google Scholar]
- Yamamoto, Y.; Hughson, R.L. Coarse-graining spectral analysis: New method for studying heart rate variability. J. Appl. Physiol. 1991, 71, 1143–1150. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, Y.; Chen, Z.; Chen, X. Feature extraction of ship-radiated noise based on permutation entropy of the intrinsic mode function with the highest energy. Entropy 2016, 18, 393. [Google Scholar] [CrossRef]
- Chanwimalueang, T.; Mandic, D. Cosine similarity entropy: Self-correlation-based complexity analysis of dynamical systems. Entropy 2017, 19, 652. [Google Scholar] [CrossRef]
- Santos-Domínguez, D.; Torres-Guijarro, S.; Cardenal-López, A.; Pena-Gimenez, A. ShipsEar: An underwater vessel noise database. Appl. Acoust. 2016, 113, 64–69. [Google Scholar] [CrossRef]
- Can, G.; Akbaş, C.E.; Cetin, A.E. Recognition of vessel acoustic signatures using non-linear teager energy based features. In Proceedings of the 2016 International Workshop on Computational Intelligence for Multimedia Understanding (IWCIM), Reggio Calabria, Italy, 27–28 October 2016; pp. 1–5. [Google Scholar]
0.5 | - | - | - | - | - | - | |
0.5 | 0.25 | 0.125 | 0.0625 | - | - | - | |
0.5 | 0.25 | 0.125 | 0.0625 | 0.0313 | 0.0156 | 0.0078 |
SE | MSE(2) | MSE(4) | HE(5,9) | HE(5,13) | |
---|---|---|---|---|---|
1.1447 | 0.2769 | 0.2419 | 0.2320 | 0.1533 | |
1.1442 | 0.2862 | 0.2460 | 0.3102 | 0.2645 | |
Absolute Difference | 0.0005 | 0.0093 | 0.0041 | 0.0782 | 0.1112 |
Ship Type | SE | MSE(2) | MSE(4) | MSE(8) | HE(3,3) | HE(4,7) | HE(5,3) | HE(5,13) |
---|---|---|---|---|---|---|---|---|
Ship A | 0.64 | 1.04 | 1.72 | 2.21 | 2.25 | 2.19 | 2.08 | 2.17 |
Ship B | 0.41 | 0.83 | 1.21 | 1.55 | 2.41 | 2.49 | 2.35 | 2.45 |
Ship C | 1.92 | 2.13 | 2.23 | 2.37 | 2.36 | 2.45 | 2.41 | 2.51 |
Ship D | 0.66 | 1.07 | 1.65 | 2.10 | 2.39 | 2.36 | 2.29 | 2.38 |
Ship E | 0.42 | 0.75 | 1.06 | 1.53 | 2.37 | 2.47 | 2.72 | 2.61 |
Type | Recognized as | Sensitivity | Specificity | ||||
---|---|---|---|---|---|---|---|
A | B | C | D | E | |||
A | 28 | 0 | 0 | 2 | 0 | 93.3% | 90% |
B | 3 | 27 | 0 | 0 | 0 | 90% | 75% |
C | 0 | 0 | 30 | 0 | 0 | 100% | 100% |
D | 9 | 0 | 0 | 21 | 0 | 70% | 96.7% |
E | 0 | 30 | 0 | 0 | 0 | 0% | 100% |
Accuracy | 70.7% |
Type | Recognized as | Sensitivity | Specificity | ||||
---|---|---|---|---|---|---|---|
A | B | C | D | E | |||
A | 21 | 0 | 0 | 9 | 0 | 70% | 96.7% |
B | 0 | 25 | 0 | 0 | 5 | 83.3% | 95.8% |
C | 0 | 0 | 30 | 0 | 0 | 100% | 100% |
D | 4 | 0 | 0 | 26 | 0 | 86.7% | 92.5% |
E | 0 | 5 | 0 | 0 | 25 | 83.3% | 95.8% |
Accuracy | 84.7% |
Type | Recognized as | Sensitivity | Specificity | ||||
---|---|---|---|---|---|---|---|
A | B | C | D | E | |||
A | 25 | 0 | 0 | 5 | 0 | 83.3% | 99.2% |
B | 0 | 27 | 0 | 0 | 3 | 90% | 100% |
C | 0 | 0 | 30 | 0 | 0 | 100% | 100% |
D | 1 | 0 | 0 | 29 | 0 | 96.7% | 95.8% |
E | 0 | 0 | 0 | 0 | 30 | 100% | 97.5% |
Accuracy | 94% |
Type | Recognized as | Sensitivity | Specificity | ||||
---|---|---|---|---|---|---|---|
A | B | C | D | E | |||
A | 27 | 0 | 0 | 3 | 0 | 90% | 98.3% |
B | 0 | 29 | 0 | 0 | 1 | 96.7% | 100% |
C | 0 | 0 | 30 | 0 | 0 | 100% | 100% |
D | 2 | 0 | 0 | 28 | 0 | 93.3% | 97.5% |
E | 0 | 0 | 0 | 0 | 30 | 100% | 99.1% |
Accuracy | 96% |
Type | Recognized as | Sensitivity | Specificity | ||||
---|---|---|---|---|---|---|---|
A | B | C | D | E | |||
A | 26 | 0 | 1 | 3 | 0 | 86.7% | 97.5% |
B | 0 | 24 | 0 | 5 | 1 | 80% | 97.5% |
C | 0 | 0 | 30 | 0 | 0 | 100% | 99.2% |
D | 3 | 2 | 0 | 25 | 0 | 83.3% | 92.5% |
E | 0 | 30 | 0 | 0 | 0 | 93.3% | 99.2% |
Accuracy | 88.7% |
Type | Recognized as | Sensitivity | Specificity | ||||
---|---|---|---|---|---|---|---|
A | B | C | D | E | |||
A | 15 | 1 | 3 | 11 | 0 | 50% | 90% |
B | 2 | 23 | 0 | 0 | 5 | 76.7% | 93.3% |
C | 2 | 0 | 28 | 0 | 0 | 93.3% | 95.8% |
D | 8 | 1 | 2 | 17 | 2 | 56.7% | 89.2% |
E | 0 | 6 | 0 | 2 | 22 | 73.3% | 94.2% |
Accuracy | 70% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Shen, X.; Li, Y. A Comparative Study of Multiscale Sample Entropy and Hierarchical Entropy and Its Application in Feature Extraction for Ship-Radiated Noise. Entropy 2019, 21, 793. https://doi.org/10.3390/e21080793
Li W, Shen X, Li Y. A Comparative Study of Multiscale Sample Entropy and Hierarchical Entropy and Its Application in Feature Extraction for Ship-Radiated Noise. Entropy. 2019; 21(8):793. https://doi.org/10.3390/e21080793
Chicago/Turabian StyleLi, Weijia, Xiaohong Shen, and Yaan Li. 2019. "A Comparative Study of Multiscale Sample Entropy and Hierarchical Entropy and Its Application in Feature Extraction for Ship-Radiated Noise" Entropy 21, no. 8: 793. https://doi.org/10.3390/e21080793