Analysis of TDMP Algorithm of LDPC Codes Based on Density Evolution and Gaussian Approximation
<p>The message passing scheme of the Turbo Decoding Message Passing (TDMP) algorithm.</p> "> Figure 2
<p>Bit error rate (BER) performance comparison at six code rates of density evolution (DE); (<b>a</b>) Belief propagation (BP) algorithm; (<b>b</b>) TDMP algorithm.</p> "> Figure 3
<p>The relationship between BER and iterations.</p> "> Figure 4
<p>Iterations needed for reaching the expected BER under different signal–noise ratios (SNRs).</p> "> Figure 5
<p>The relationship of SNR and iterations: (<b>a</b>) The 802.16 standard; (<b>b</b>) the DTMB standard.</p> "> Figure 6
<p>The relationship of BER and iterations: (<b>a</b>) the 802.16 standard; (<b>b</b>) the DTMB standard.</p> "> Figure 7
<p>BER performance comparison at six code rates of Gaussian Approximation: (<b>a</b>) BP algorithm; (<b>b</b>) TDMP algorithm.</p> "> Figure 8
<p>The relationship between BER and iterations.</p> "> Figure 9
<p>Iterations needed for reaching to the expected BER under different SNRs.</p> "> Figure 10
<p>The relationship of SNR and iterations: (<b>a</b>) the 802.16 standard; (<b>b</b>) the DTMB standard.</p> "> Figure 11
<p>The relationship of BER and iterations: (<b>a</b>) the 802.16 standard; (<b>b</b>) DTMB standard.</p> "> Figure 12
<p>The relationship between BER and iterations.</p> "> Figure 13
<p>Iterations needed for decoding correctly under different SNRs.</p> "> Figure 14
<p>The normalized factor calculated under different iteration times.</p> "> Figure 15
<p>The relationship between different iteration times and BER.</p> "> Figure 16
<p>The relationship between BER and SNR.</p> "> Figure 17
<p>The relationship between the average number of iterations and SNR.</p> ">
Abstract
:1. Introduction
2. The Density Evolution and Gaussian Approximation of the BP Algorithm
2.1. The Density Evolution of the BP Algorithm
2.2. The Gaussian Approximation of the BP Algorithm
3. The Analysis of Density Evolution and Gaussian Approximation of the TDMP Algorithm
3.1. The Decoding Procedure of the TDMP Algorithm
3.2. The Analysis of Density Evolution of the TDMP Algorithm
3.3. The Analysis of Gaussian Approximation of TDMP Algorithm
4. Calculation of TDMP Normalization Factor Based on Density Evolution
4.1. The Initialization
4.2. Normalization Factor Calculation
5. Simulation Results
5.1. The Simulation Results of Density Evolution of the BP Algorithm and the TDMP Algorithm
5.2. The Simulation Results of the Gaussian Approximation of the BP Algorithm and the TDMP Algorithm
5.3. The Actual Algorithm Simulation of the BP Algorithm and the TDMP Algorithm
5.4. The Simulation Results of TDMP Normalization Factor
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gallager, R.G. Low-density parity-check codes. IRE Trans. Inf. Theory 1962, IT-8, 21–28. [Google Scholar] [CrossRef]
- MacKay, D.J.C.; Neal, R.M. Near Shannon limit performance of low-density parity-check codes. IEEE Electron. Lett. 1996, 32, 1645–1646. [Google Scholar] [CrossRef]
- Mackay, D.J.C.; Wilson, S.T.; Davey, M.C. Comparison of constructions of irregular Gallager codes. IEEE Trans. Commun. 1999, 47, 1449–1454. [Google Scholar] [CrossRef]
- Richardson, T.J.; Shokrollahi, M.A.; Urbanke, R.L. Design of capacity-approaching irregular low-density parity-check codes. IEEE Trans. Inf. Theory 2001, 47, 619–637. [Google Scholar] [CrossRef]
- Kulkarni, V.; Sankar, K.J. Design of structured irregular LDPC codes from structured regular LDPC codes. In Proceedings of the 2015 Third International Conference on Computer, Communication, Control and Information Technology (C3IT), Hooghly, India, 7–8 February 2015. [Google Scholar]
- Huang, S.; Skoglund, M. On Linear Coding Over Finite Rings and Applications to Computing. Entropy 2017, 9, 233. [Google Scholar] [CrossRef]
- Mu, L.; Liang, C.; Liu, Z.; Pan, D. Construction of regular rate-compatible LDPC convolutional codes. China Commun. 2016, 13, 97–102. [Google Scholar] [CrossRef]
- Mackay, D.J.C. Good Error-Correcting Codes Based on Very Sparse Matrices. IEEE Trans. Inf. Theory 1999, 45, 399–431. [Google Scholar] [CrossRef]
- Jayasooriya, S.; Johnson, S.J.; Ong, L.; Berretta, R. Optimization of graph based on codes for belief propagation decoding. In Proceedings of the 2014 IEEE Information Theory Workshop (ITW 2014), Hobart, TAS, Australia, 2–5 November 2014. [Google Scholar]
- Han, G.; Guan, Y.L.; Huang, X. Check node reliability-based scheduling for BP decoding of non-binary LDPC codes. IEEE Trans. Commun. 2013, 61, 877–885. [Google Scholar] [CrossRef]
- Richardson, T.J.; Urbanke, R.L. The Capacity of Low-density Parity-check Codes Under Message-passing Decoding. IEEE Trans. Inf. Theory 2001, 47, 599–618. [Google Scholar] [CrossRef]
- Richiardson, T.; Urbanke, R. Multi-edge type LDPC codes. In Proceedings of the Workshop Honoring Pof. Bob McEliece 60th Birthday, Pasadena, CA, USA, 2002; pp. 24–25. [Google Scholar]
- Lentmaier, M.; Sridharan, A.; Costello, D.J.; Zigangirov, K.S. Iterative Decoding Threshold Analysis for LDPC Convolutional Codes. IEEE Trans. Inf. Theory 2010, 56, 5274–5289. [Google Scholar] [CrossRef]
- Liu, H.; Chen, Z.; Qian, L. The three primary colors of mobile systems. IEEE Commun. Mag. 2016, 54, 15–21. [Google Scholar] [CrossRef]
- Hao, Y.; Xiao, K.; Chen, Z.; Xia, B. Density Evolution Analysis of LDPC-coded SCMA Systems. Proceeding of the 2017 9th International Conference on Wireless Communications and Signal Processing, Nanjing, China, 11–13 October 2017. [Google Scholar]
- Chung, S.Y.; Richardson, T.J.; Urbanke, R.L. Analysis of Sum-Product Decoding of Low-Density Parity-Check Codes Using a Gaussian Approximation. IEEE Trans. Inf. Theory 2001, 47, 657–670. [Google Scholar] [CrossRef]
- Zhang, G.; Xu, Y.; He, D.; Sun, J.; Zhang, W. Performance Analysis of LDPC-BICM System Based on Gaussian Approximation. IEEE T. Broadcast. 2019, 65, 166–171. [Google Scholar] [CrossRef]
- Vatta, F.; Soranzo, A.; Babich, F. More Accurate Analysis of Sum-Product Decoding of LDPC codes Using a Gaussian Approximation. IEEE Commun. Lett. 2019, 23, 230–233. [Google Scholar] [CrossRef]
- Mansour, M.M.; Shanbhag, N.R. High-Throughput LDPC Decoder. IEEE Trans. Very Large Scale Integr. Syst. 2003, 11, 976–984. [Google Scholar] [CrossRef]
- Mansour, M.M. A Turbo-Decoding Message-Passing Algorithm for Sparse Parity-Check Matrix Codes. IEEE Tran. Signal. Process. 2006, 54, 4376–4392. [Google Scholar] [CrossRef]
- Jayasooriya, S.; Shirvanimoghaddam, M.; Ong, L.; Lechner, G.; Johnson, S.J. A New Density Evolution Approximation for LDPC and Multi-Edge Type LDPC Codes. IEEE Trans. Commun. 2016, 64, 4044–4056. [Google Scholar]
- Mamani, H.; Saeedi, H. Generalized EXIT chars for irregular LDPC codes. In Proceedings of the 2011 International Symposium on Artificial Intelligence and Signal Processing (AISP), Tehran, Iran, 15–16 June 2011. [Google Scholar]
- Cheng, S.; Xiong, Z. Channel symmetry in Slepian-Wolf code design based on LDPC codes with application to the quadratic Gaussian Wyner-Ziv problem. In Proceedings of the Information Theory Workshop, San Antonio, TX, USA, 24–29 October 2004; pp. 129–134. [Google Scholar]
- Wang, X.; Cao, W.; Li, J.; Shan, L.; Cao, H.; Li, J.; Qian, F. Improved min-sum algorithm based on density evolution for low-density parity check codes. IET Commun. 2017, 11, 1582–1586. [Google Scholar] [CrossRef]
- Chen, J.; Marc, P.C. Near Optimum Universal Belief Propagation Based Decoding of Low-Density Parity Check Codes. IEEE Trans. Commun. 2002, 50, 406–414. [Google Scholar] [CrossRef]
- Sun, Y.; Cavallaro, J.R. A Flexible LDPC/Turbo Decoder Architecture. J. Signal Process. Syst. 2011, 64, 1–16. [Google Scholar] [CrossRef]
- Zeineddine, H.; Mansour, M.M. A Reconfigurable TDMP Decoder for Raptor Codes. J. Signal Process. Syst. 2012, 69, 293–304. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, X.; Zhao, L.; Lee, C. Design of a High-Throughput QC-LDPC Decoder with TDMP Scheduling. IEEE T. CIRCUITS-II 2015, 62, 56–60. [Google Scholar] [CrossRef]
- Lao, L.; Li, L.; Zhu, M.; Zhang, H. The Improved Turbo-decoding Message-passing Algorithm and Corresponding Decoder for LDPC Based on LTE. In Proceedings of the IEEE International Conference on Signal Processing, Communications and Computing, Guilin, China, 5–8 August 2014; pp. 890–894. [Google Scholar]
- Wang, X.; Cao, W.; Shan, L.; Hong, B.; Li, J. Analysis of TDMP algorithm of LDPC coded based on GA. J. China Univ. Metrol. 2017, 28, 76–80. [Google Scholar]
- Papaharalabos, S.; Mathiopoulos, P.T. Simplified sum-product algorithm for decoding LDPC codes with optimal performance. Electron. Lett. 2009, 45, 116–117. [Google Scholar] [CrossRef]
- Huang, S.; Zeng, X.; Chen, Y. A Flexible LDPC Decoder Architecture Supporting TPMP and TDMP Decoding Algorithms. IEICE Trans. Inf. Syst. 2012, E95D, 403–412. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Q.; Chen, Y.; Zeng, X. A High-Throughput QC-LDPC Decoder for Near-Earth Application. In Proceedings of the 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP), Shanghai, China, 19–21 November 2018. [Google Scholar]
Iteration SNR (dB) | 0 dB | 1 dB | 2 dB | 3 dB | 4 dB | |
---|---|---|---|---|---|---|
DE | BP | 20 | 20 | 13 | 5 | 3 |
TDMP | 10 | 10 | 7 | 3 | 1 | |
GA | BP | 20 | 20 | 9 | 4 | 2 |
TDMP | 10 | 10 | 7 | 2 | 1 | |
Actual | BP | 20 | 20 | 18 | 6 | 4 |
TDMP | 10 | 10 | 8 | 3 | 2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Chang, H.; Li, J.; Cao, W.; Shan, L. Analysis of TDMP Algorithm of LDPC Codes Based on Density Evolution and Gaussian Approximation. Entropy 2019, 21, 457. https://doi.org/10.3390/e21050457
Wang X, Chang H, Li J, Cao W, Shan L. Analysis of TDMP Algorithm of LDPC Codes Based on Density Evolution and Gaussian Approximation. Entropy. 2019; 21(5):457. https://doi.org/10.3390/e21050457
Chicago/Turabian StyleWang, Xiumin, Hong Chang, Jun Li, Weilin Cao, and Liang Shan. 2019. "Analysis of TDMP Algorithm of LDPC Codes Based on Density Evolution and Gaussian Approximation" Entropy 21, no. 5: 457. https://doi.org/10.3390/e21050457
APA StyleWang, X., Chang, H., Li, J., Cao, W., & Shan, L. (2019). Analysis of TDMP Algorithm of LDPC Codes Based on Density Evolution and Gaussian Approximation. Entropy, 21(5), 457. https://doi.org/10.3390/e21050457