Effects of Annealing on Microstructure and Mechanical Properties of Metastable Powder Metallurgy CoCrFeNiMo0.2 High Entropy Alloy
<p>(<b>a</b>) IPF map of the P/M CoCrFeNiMo<sub>0.2</sub> high entropy alloy (HEA), (<b>b</b>) XRD patterns of the P/M CoCrFeNiMo0.2 alloy.</p> "> Figure 2
<p>SEM images of the P/M CoCrFeNiMo<sub>0.2</sub> HEAs annealed at different temperatures for 72 h. (<b>a</b>) 700 °C, (<b>b</b>) 800 °C, (<b>c</b>) 900 °C, and (<b>d</b>) 1000 °C.</p> "> Figure 3
<p>TEM image of the P/M CoCrFeNiMo<sub>0.2</sub> HEA annealed at 700 °C for 72 h.</p> "> Figure 4
<p>SEM images of the P/M CoCrFeNiMo<sub>0.2</sub> HEAs annealed at 800 °C for different times: (<b>a</b>) 2 h, (<b>b</b>) 4 h, (<b>c</b>) 8 h, (<b>d</b>) 16 h, (<b>e</b>) 48 h, and (<b>f</b>) 72 h.</p> "> Figure 5
<p>(<b>a</b>) Variation of the average size and volume fraction of σ precipitate with annealing temperatures; (<b>b</b>) Variation of the volume fraction of σ precipitate with annealing times at 800 °C.</p> "> Figure 6
<p>(<b>a</b>) Room-temperature engineering stress-strain curves for these HEAs annealed at different temperatures; (<b>b</b>) variation tendency of ultimate tensile strength and elongation of the annealed alloys with at different annealing temperatures.</p> "> Figure 7
<p>(<b>a</b>) Room-temperature engineering stress-strain curves for the HEAs annealed at 800 °C for various times; (<b>b</b>) variation tendency of ultimate tensile strength and elongation of the annealed HEAs at different annealing times.</p> "> Figure 8
<p>The morphologies of the fractured surface of the P/M CoCrFeNiMo0.2 HEAs annealed at different temperatures for 72 h. (<b>a</b>) 700 °C, (<b>b</b>) 800 °C, (<b>c</b>) 900 °C, and (<b>d</b>) 1000 °C.</p> "> Figure 9
<p>TEM bright-field images of the fractured CoCrFeNiMo0.2 HEA annealed at 700 °C for 72 h: (<b>a</b>) showing the nano twinning and (<b>b</b>) showing the interaction of dislocations with nanoscale σ precipitates.</p> ">
Abstract
:1. Introduction
2. Experimental Procedures
3. Results and Discussion
3.1. Microstructures
3.2. Mechanical Properties
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhao, Y.; Tong, Y.; Jiao, Z.; Wei, J.; Cai, J.; Han, X.; Chen, D.; Hu, A.; Kai, J. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys. Science 2018, 362, 933–937. [Google Scholar]
- Nene, S.S.; Frank, M.; Liu, K.; Mishra, R.S.; McWilliams, B.A.; Cho, K.C. Extremely high strength and work hardening ability in a metastable high entropy alloy. Sci. Rep. 2018, 8, 9920. [Google Scholar] [CrossRef]
- Nene, S.S.; Sinha, S.; Frank, M.; Liu, K.; Mishra, R.S.; McWilliams, B.A.; Cho, K.C. Unexpected strength–ductility response in an annealed, metastable, high-entropy alloy. Appl. Mater. Today 2018, 13, 198–206. [Google Scholar] [CrossRef]
- Nene, S.S.; Sinha, S.; Frank, M.; Liu, K.; Mishra, R.S.; McWilliams, B.A.; Cho, K.C. Reversed strength-ductility relationship in microstructurally flexible high entropy alloy. Scripta Mater. 2018, 154, 163–167. [Google Scholar] [CrossRef]
- Lu, Y.P.; Dong, Y.; Guo, S.; Jiang, L.; Kang, H.J.; Wang, T.M.; Wen, B.; Wang, Z.J.; Jie, J.C.; Cao, Z.Q.; et al. A Promising New Class of High-Temperature Alloys: Eutectic High-Entropy Alloys. Sci. Rep. 2014, 4, 6200. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.J.; Guo, S.; Liu, C.T. Phase Selection in High-Entropy Alloys: From Nonequilibrium to Equilibrium. JOM 2014, 66, 1966–1972. [Google Scholar] [CrossRef]
- Wang, Z.J.; Huang, Y.H.; Yang, Y.; Wang, J.C.; Liu, C.T. Atomic-size effect and solid solubility of multicomponent alloys. Scripta Mater. 2015, 94, 28–31. [Google Scholar] [CrossRef]
- Chen, S.Y.; Li, W.D.; Xie, X.; Brechtl, J.; Chen, B.L.; Li, P.Z.; Zhao, G.F.; Yang, F.Q.; Qiao, J.W.; Dahmen, K.A.; et al. Nanoscale serration and creep characteristics of Al0.5CoCrCuFeNi high-entropy alloys. J. Alloy. Comp. 2018, 752, 464–475. [Google Scholar] [CrossRef]
- Wang, Y.F.; Ma, S.G.; Chen, X.H.; Shi, J.Y.; Zhang, Y.; Qiao, J.W. Optimizing Mechanical Properties of AlCoCrFeNiTix High-Entropy Alloys by Tailoring Microstructures. Acta Metall. Sin. Eng. Lett. 2013, 26, 277–284. [Google Scholar] [CrossRef]
- Hou, J.X.; Zhang, M.; Ma, S.G.; Liaw, P.K.; Zhang, Y.; Qiao, J.W. Strengthening in Al0.25CoCrFeNi high-entropy alloys by cold rolling. Mater. Sci. Eng. Struct. Mater. Prop. Microstruct. Process. 2017, 707, 593–601. [Google Scholar] [CrossRef]
- Guo, S.; Ng, C.; Liu, C.T. Sunflower-like Solidification Microstructure in a Near-eutectic High-entropy Alloy. Mater. Res. Lett. 2013, 1, 228–232. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Ng, C.; Wang, Z.J.; Liu, C.T. Solid solutioning in equiatomic alloys: Limit set by topological instability. J. Alloy. Comp. 2014, 583, 410–413. [Google Scholar] [CrossRef]
- Sheikh, S.; Shafeie, S.; Hu, Q.; Ahlstrom, J.; Persson, C.; Vesely, J.; Zyka, J.; Klement, U.; Guo, S. Alloy design for intrinsically ductile refractory high-entropy alloys. J. Appl. Phys. 2016, 120, 164902. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Lu, Z.; He, J.; Luan, J.; Wang, Z.; Liu, B.; Liu, Y.; Chen, M.; Liu, C. Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases. Acta Mater. 2016, 116, 332–342. [Google Scholar] [CrossRef]
- Wang, Z.J.; Guo, S.; Wang, Q.; Liu, Z.Y.; Wang, J.C.; Yang, Y.; Liu, C.T. Nanoindentation characterized initial creep behavior of a high-entropy-based alloy CoFeNi. Intermetallics 2014, 53, 183–186. [Google Scholar] [CrossRef]
- Liu, W.H.; He, J.Y.; Huang, H.L.; Wang, H.; Lu, Z.P.; Liu, C.T. Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys. Intermetallics 2015, 60, 1–8. [Google Scholar] [CrossRef]
- He, J.Y.; Liu, W.H.; Wang, H.; Wu, Y.; Liu, X.J.; Nieh, T.G.; Lu, Z.P. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Mater. 2014, 62, 105–113. [Google Scholar] [CrossRef]
- Otto, F.; Yang, Y.; Bei, H.; George, E.P. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 2013, 61, 2628–2638. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.P.; Lei, Z.F.; Huang, H.L.; Liu, S.F.; Zhang, F.; Duan, D.B.; Cao, P.P.; Wu, Y.; Liu, X.J.; Wang, H. Deformation Behavior and Toughening of High-Entropy Alloys. Acta Metall. Sin. 2018, 54, 1553–1566. [Google Scholar]
- Rae, C.M.; Reed, R.C. The precipitation of topologically close-packed phases in rhenium-containing superalloys. Acta Mater. 2001, 49, 4113–4125. [Google Scholar] [CrossRef]
- Gwalani, B.; Soni, V.; Choudhuri, D.; Lee, M.; Hwang, J.; Nam, S.; Ryu, H.; Hong, S.H.; Banerjee, R. Stability of ordered L12 and B2 precipitates in face centered cubic based high entropy alloys-Al0. 3CoFeCrNi and Al0. 3CuFeCrNi2. Scripta Mater. 2016, 123, 130–134. [Google Scholar] [CrossRef]
- Ming, K.; Bi, X.; Wang, J. Precipitation strengthening of ductile Cr15Fe20Co35Ni20Mo10 alloys. Scripta Mater. 2017, 137, 88–93. [Google Scholar] [CrossRef]
- Liu, B.; Wang, J.; Liu, Y.; Fang, Q.; Wu, Y.; Chen, S.; Liu, C.T. Microstructure and mechanical properties of equimolar FeCoCrNi high entropy alloy prepared via powder extrusion. Intermetallics 2016, 75, 25–30. [Google Scholar] [CrossRef]
- Cao, Y.K.; Liu, Y.; Liu, B.; Zhang, W.D. Precipitation behavior during hot deformation of powder metallurgy Ti-Nb-Ta-Zr-Al high entropy alloys. Intermetallics 2018, 100, 95–103. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Y.; Liu, B.; Wang, Y.; Cao, Y.; Li, T.; Zhou, R. Flow behavior and microstructures of powder metallurgical crfeconimo 0.2 high entropy alloy during high temperature deformation. Mater. Sci. Eng. 2017, 689, 233–242. [Google Scholar] [CrossRef]
- Guo, W.M.; Liu, B.; Liu, Y.; Li, T.C.; Fu, A.; Fang, Q.H.; Nie, Y. Microstructures and mechanical properties of ductile NbTaTiV refractory high entropy alloy prepared by powder metallurgy. J. Alloy. Comp. 2019, 776, 428–436. [Google Scholar] [CrossRef]
- Shun, T.T.; Chang, L.Y.; Shiu, M. Age-hardening of the CoCrFeNiMo0.85 high-entropy alloy. Mater. Charact. 2013, 81, 92–96. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, X.Y.; Wang, B.L.; Liu, B.; Lv, Y.K.; Yang, W.; Xu, D.P.; Liu, Y. A review on fundamental of high entropy alloys with promising high–temperature properties. J. Alloy. Comp. 2018, 760, 15–30. [Google Scholar] [CrossRef]
- Ritchie, R.; Thompson, A. On macroscopic and microscopic analyses for crack initiation and crack growth toughness in ductile alloys. Metall. Trans. A 1985, 16, 233–248. [Google Scholar] [CrossRef] [Green Version]
Location | Chemical Composition (at.%) | ||||
---|---|---|---|---|---|
Mo L | Cr K | Fe K | Co K | Ni K | |
EDS spot 1 | 34.56 | 18.03 | 20.38 | 17.53 | 9.49 |
EDS spot 2 | 6.18 | 22.08 | 25.71 | 24.51 | 21.52 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Liu, B.; Liu, Y.; Fang, Q.; Guo, W.; Yang, H. Effects of Annealing on Microstructure and Mechanical Properties of Metastable Powder Metallurgy CoCrFeNiMo0.2 High Entropy Alloy. Entropy 2019, 21, 448. https://doi.org/10.3390/e21050448
Zhang C, Liu B, Liu Y, Fang Q, Guo W, Yang H. Effects of Annealing on Microstructure and Mechanical Properties of Metastable Powder Metallurgy CoCrFeNiMo0.2 High Entropy Alloy. Entropy. 2019; 21(5):448. https://doi.org/10.3390/e21050448
Chicago/Turabian StyleZhang, Cui, Bin Liu, Yong Liu, Qihong Fang, Wenmin Guo, and Hu Yang. 2019. "Effects of Annealing on Microstructure and Mechanical Properties of Metastable Powder Metallurgy CoCrFeNiMo0.2 High Entropy Alloy" Entropy 21, no. 5: 448. https://doi.org/10.3390/e21050448
APA StyleZhang, C., Liu, B., Liu, Y., Fang, Q., Guo, W., & Yang, H. (2019). Effects of Annealing on Microstructure and Mechanical Properties of Metastable Powder Metallurgy CoCrFeNiMo0.2 High Entropy Alloy. Entropy, 21(5), 448. https://doi.org/10.3390/e21050448