Bayesian Analysis of Femtosecond Pump-Probe Photoelectron-Photoion Coincidence Spectra with Fluctuating Laser Intensities
<p>Utterly simplified sketch of a time-resolved photoionization study carried out with a pump-probe setup and a time-of-flight spectrometer. A commercial Ti:sapphire laser system delivers pulses of <math display="inline"> <semantics> <mrow> <mn>800</mn> </mrow> </semantics> </math> nm in center wavelength and <math display="inline"> <semantics> <mrow> <mn>25</mn> </mrow> </semantics> </math> fs in temporal length at a repetition rate of <math display="inline"> <semantics> <mrow> <mn>3</mn> </mrow> </semantics> </math> kHz. The delay stage is used to control the length of the optical path, and hence the time delay. The energy level diagram shows how the electron kinetic energy, given the energy of the states and the photons, identifies the state the system was in at the moment of ionization. A detailed description of the setup can be found in our previous publications [<a href="#B7-entropy-21-00093" class="html-bibr">7</a>,<a href="#B28-entropy-21-00093" class="html-bibr">28</a>].</p> "> Figure 2
<p>Pump-probe ionization scheme to investigate excited state dynamics in molecules.</p> "> Figure 3
<p>Simulation with mock data for studying the influence of <math display="inline"> <semantics> <mi>λ</mi> </semantics> </math>-fluctuations on false coincidences. The black lines are the spectra used to generate the data; the green (blue) lines including <math display="inline"> <semantics> <mrow> <mo>±</mo> <mi>σ</mi> </mrow> </semantics> </math> error bands are the reconstructed spectra (not) including <math display="inline"> <semantics> <mi>λ</mi> </semantics> </math>-fluctuations in the reconstruction. The parameters are <math display="inline"> <semantics> <mrow> <msub> <mi>ξ</mi> <mi>i</mi> </msub> <mo>=</mo> <msub> <mi>ξ</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="script">N</mi> <mi>p</mi> </msub> <mo>=</mo> <msup> <mn>10</mn> <mn>7</mn> </msup> </mrow> </semantics> </math>. For <math display="inline"> <semantics> <mrow> <msub> <munder> <mi>λ</mi> <mo>̲</mo> </munder> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> </mrow> </semantics> </math>, differences between the algorithms are negligible even at relatively high <math display="inline"> <semantics> <mi>λ</mi> </semantics> </math>-fluctuations with <math display="inline"> <semantics> <mrow> <msub> <mi>σ</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics> </math>; see spectra (<b>a</b>,<b>b</b>). When choosing <math display="inline"> <semantics> <mrow> <msub> <munder> <mi>λ</mi> <mo>̲</mo> </munder> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics> </math> (<b>c</b>,<b>d</b>), the algorithm not including <math display="inline"> <semantics> <mi>λ</mi> </semantics> </math>-fluctuations produces small deviations, e.g., underestimation of the false coincidences at the first Gaussian in the fragment spectrum.</p> "> Figure 4
<p>Simulated test spectra for studying the influence of <math display="inline"> <semantics> <mi>λ</mi> </semantics> </math>-fluctuations on the background subtraction. The parameters are <math display="inline"> <semantics> <mrow> <msub> <munder> <mi>λ</mi> <mo>̲</mo> </munder> <mn>1</mn> </msub> <mo>=</mo> <msub> <munder> <mi>λ</mi> <mo>̲</mo> </munder> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics> </math>, <math display="inline"> <semantics> <mrow> <msub> <mi>ξ</mi> <mi>i</mi> </msub> <mo>=</mo> <msub> <mi>ξ</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics> </math>, and <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="script">N</mi> <mi>p</mi> </msub> <mo>=</mo> <msup> <mn>10</mn> <mn>7</mn> </msup> </mrow> </semantics> </math>. <math display="inline"> <semantics> <msub> <mi>σ</mi> <mn>1</mn> </msub> </semantics> </math> and <math display="inline"> <semantics> <msub> <mi>σ</mi> <mn>2</mn> </msub> </semantics> </math> are different for every sub-figure. If <math display="inline"> <semantics> <mrow> <msub> <mi>σ</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>σ</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics> </math> (<b>a</b>) or <math display="inline"> <semantics> <mrow> <msub> <mi>σ</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>σ</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics> </math> (<b>b</b>), both algorithms (with (green line) and without (blue line) including <math display="inline"> <semantics> <mi>λ</mi> </semantics> </math>-fluctuations) reconstruct the spectra correctly. <math display="inline"> <semantics> <mrow> <msub> <mi>σ</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mrow> <msub> <mi>σ</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics> </math> lead to an underestimation of the background when neglecting <math display="inline"> <semantics> <mi>λ</mi> </semantics> </math>-fluctuations (<b>c</b>). Overestimation of the background happens in the case of <math display="inline"> <semantics> <mrow> <msub> <mi>σ</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mrow> <msub> <mi>σ</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics> </math> (<b>d</b>).</p> ">
Abstract
:1. Introduction
2. Experiment
3. Bayesian Data Analysis
3.1. Preliminary Considerations
3.2. The Posterior PDF
3.3. The Prior PDF
3.4. The Likelihood
3.5. Remarks on the Posterior Sampling
4. Mock Data Analysis
4.1. False Coincidences
4.2. Background Subtraction
5. Application to Experimental Data
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Appendix A. Solution of the 〈λn 〉-Integral
Appendix B. Channel-Resolved Single Coincidences
Appendix C. Transformation of the Dirac Distribution
Appendix D. The Jacobian Determinant
Appendix E. Probabilities of the Count-Pairs (Ne, Ni)
References
- Brehm, B.; von Puttkamer, E. Koinzidenzmessung von Photoionen und Photoelektronen bei Methan. Z. Naturforsch. A 1967, 22, 8–10. [Google Scholar] [CrossRef]
- Boguslavskiy, A.E.; Mikosch, J.; Gijsbertsen, A.; Spanner, M.; Patchkovskii, S.; Gador, N.; Vrakking, M.J.J.; Stolow, A. The multielectron ionization dynamics underlying attosecond strong-field spectroscopies. Science 2012, 335, 1336–1340. [Google Scholar] [CrossRef] [PubMed]
- Sándor, P.; Zhao, A.; Rozgonyi, T.; Weinacht, T. Strong field molecular ionization to multiple ionic states: Direct versus indirect pathways. J. Phys. B At. Mol. Opt. Phys. 2014, 47, 124021. [Google Scholar] [CrossRef]
- Koch, M.; Heim, P.; Thaler, B.; Kitzler, M.; Ernst, W.E. Direct observation of a photochemical activation energy: A Case study of acetone photodissociation. J. Phys. B At. Mol. Opt. Phys. 2017, 50, 125102. [Google Scholar] [CrossRef]
- Arion, T.; Hergenhahn, U. Coincidence spectroscopy: Past, present and perspectives. J. Electron Spectrosc. Relat. Phenom. 2015, 200, 222–231. [Google Scholar] [CrossRef] [Green Version]
- Continetti, R.E. Coincidence Spectroscopy. Ann. Rev. Phys. Chem. 2001, 52, 165–192. [Google Scholar] [CrossRef] [PubMed]
- Maierhofer, P.; Bainschab, M.; Thaler, B.; Heim, P.; Ernst, W.E.; Koch, M. Disentangling multichannel photodissociation dynamics in acetone by time-resolved photoelectron-photoion coincidence spectroscopy. J. Phys. Chem. A 2016, 120, 6418–6423. [Google Scholar] [CrossRef] [PubMed]
- Couch, D.E.; Kapteyn, H.C.; Murnane, M.M.; Peters, W.K. Uncovering highly-excited state mixing in acetone using ultrafast VUV pulses and coincidence imaging techniques. J. Phys. Chem. A 2017, 121, 2361–2366. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, I.; Boguslavskiy, A.E.; Mikosch, J.; Bertrand, J.B.; Wörner, H.J.; Villeneuve, D.M.; Spanner, M.; Patchkovskii, S.; Stolow, A. Excited state dynamics in SO2. I. Bound state relaxation studied by time-resolved photoelectron-photoion coincidence spectroscopy. J. Chem. Phys. 2014, 140, 204301. [Google Scholar] [CrossRef] [Green Version]
- Hertel, I.V.; Radloff, W. Ultrafast dynamics in isolated molecules and molecular clusters. Rep. Prog. Phys. 2006, 69, 1897–2003. [Google Scholar] [CrossRef]
- Stert, V.; Radloff, W.; Schulz, C.P.; Hertel, I.V. Ultrafast photoelectron spectroscopy: Femtosecond pump-probe coincidence detection of ammonia cluster ions and electrons. Eur. Phys. J. D 1999, 5, 97–106. [Google Scholar] [CrossRef]
- Stolow, A.; Bragg, A.E.; Neumark, D.M. Femtosecond time-resolved photoelectron spectroscopy. Chem. Rev. 2004, 104, 1719–1757. [Google Scholar] [CrossRef] [PubMed]
- Nugent-Glandorf, L.; Scheer, M.; Samuels, D.A.; Mulhisen, A.M.; Grant, E.R.; Yang, X.; Bierbaum, V.M.; Leone, S.R. Ultrafast time-resolved soft X-ray photoelectron spectroscopy of dissociating Br2. Phys. Rev. Lett. 2001, 87, 193002. [Google Scholar] [CrossRef]
- Gregory, P. Bayesian Logical Data Analysis for the Physical Sciences: A Comparative Approach with Mathematica® Support; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Loredo, T.J. The promise of bayesian inference for astrophysics. In Statistical Challenges in Modern Astronomy; Feigelson, E., Babu, G., Eds.; Springer: New York, NY, USA, 1992; pp. 275–297. [Google Scholar]
- Gertner, I.; Heber, O.; Zajfman, J.; Zajfman, D.; Rosner, B. Comparison between two computer codes for PIXE studies applied to trace element analysis in amniotic fluid. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 1989, 36, 74–81. [Google Scholar] [CrossRef]
- Von der Linden, W.; Dose, V.; Padayachee, J.; Prozesky, V. Signal and background separation. Phys. Rev. E 1999, 59, 6527–6534. [Google Scholar] [CrossRef] [Green Version]
- Von der Linden, W.; Dose, V.; Fischer, R. How to separate the signal from the background. In Proceedings of the MAXENT96—Maximum Entropy Conference, Berg-en-Dal, South Africa, 12–17 August 1996; p. 146. [Google Scholar]
- Prozesky, V.M.; Padayachee, J.; Fischer, R.; von der Linden, W.; Dose, V.; Ryan, C.G. The use of maximum entropy and Bayesian techniques in nuclear microprobe applications. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 1997, 130, 113–117. [Google Scholar] [CrossRef]
- Padayachee, J.; Prozesky, V.; von der Linden, W.; Nkwinika, M.S.; Dose, V. Bayesian PIXE background subtraction. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 1999, 150, 129–135. [Google Scholar] [CrossRef]
- Fischer, R.; Hanson, K.M.; Dose, V.; von der Linden, W. Background estimation in experimental spectra. Phys. Rev. E 2000, 61, 1152–1160. [Google Scholar] [CrossRef]
- Rumetshofer, M.; Heim, P.; Thaler, B.; Ernst, W.E.; Koch, M.; von der Linden, W. Analysis of femtosecond pump-probe photoelectron-photoion coincidence measurements applying Bayesian probability theory. Phys. Rev. A 2018, 97, 062503. [Google Scholar] [CrossRef] [Green Version]
- Dörner, R.; Mergel, V.; Jagutzki, O.; Spielberger, L.; Ullrich, J.; Moshammer, R.; Schmidt-Böcking, H. Cold target recoil ion momentum spectroscopy: A momentum microscope to view atomic collision dynamics. Phys. Rep. 2000, 330, 95–192. [Google Scholar] [CrossRef]
- Ullrich, J.; Moshammer, R.; Dorn, A.; Dörner, R.; Schmidt, L.P.H.; Schmidt-Böcking, H. Recoil-ion and electron momentum spectroscopy: Reaction-microscopes. Rep. Prog. Phys. 2003, 66, 1463–1545. [Google Scholar] [CrossRef]
- Frasinski, L.J.; Codling, K.; Hatherly, P.A. Covariance mapping: A correlation method applied to multiphoton multiple ionization. Science 1989, 246, 1029–1031. [Google Scholar] [CrossRef] [PubMed]
- Mikosch, J.; Patchkovskii, S. Coincidence and covariance data acquisition in photoelectron and -ion spectroscopy. I. Formal theory. J. Mod. Opt. 2013, 60, 1426–1438. [Google Scholar] [CrossRef]
- Mikosch, J.; Patchkovskii, S. Coincidence and covariance data acquisition in photoelectron and -ion spectroscopy. II. Analysis and applications. J. Mod. Opt. 2013, 60, 1439–1451. [Google Scholar] [CrossRef]
- Koch, M.; Thaler, B.; Heim, P.; Ernst, W.E. The Role of Rydberg–Valence Coupling in the Ultrafast Relaxation Dynamics of Acetone. J. Phys. Chem. A 2017, 121, 6398–6404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heim, P.; Rumetshofer, M.; Ranftl, S.; Thaler, B.; Ernst, W.E.; Koch, M.; von der Linden, W. Bayesian Analysis of Femtosecond Pump-Probe Photoelectron-Photoion Coincidence Spectra. In Proceedings of the 38th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, London, UK, 2–6 July 2018; Volume 38. [Google Scholar]
- Von der Linden, W.; Dose, V.; von Toussaint, U. Bayesian Probability Theory: Applications in the Physical Sciences; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
λ | ||||
---|---|---|---|---|
Parameters (Figure 3a,b) | ||||
Algorithm in [22] | - | |||
Algorithm with -fluctuations | ||||
Parameters (Figure 3c,d) | ||||
Algorithm in [22] | - | |||
Algorithm with -fluctuations |
λ | λ | |||||
---|---|---|---|---|---|---|
(a) | ||||||
- | - | |||||
(b) | ||||||
- | - | |||||
(c) | ||||||
- | - | |||||
(d) | ||||||
- | - | |||||
λ | λ | ||||
---|---|---|---|---|---|
- | - | ||||
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heim, P.; Rumetshofer, M.; Ranftl, S.; Thaler, B.; Ernst, W.E.; Koch, M.; von der Linden, W. Bayesian Analysis of Femtosecond Pump-Probe Photoelectron-Photoion Coincidence Spectra with Fluctuating Laser Intensities. Entropy 2019, 21, 93. https://doi.org/10.3390/e21010093
Heim P, Rumetshofer M, Ranftl S, Thaler B, Ernst WE, Koch M, von der Linden W. Bayesian Analysis of Femtosecond Pump-Probe Photoelectron-Photoion Coincidence Spectra with Fluctuating Laser Intensities. Entropy. 2019; 21(1):93. https://doi.org/10.3390/e21010093
Chicago/Turabian StyleHeim, Pascal, Michael Rumetshofer, Sascha Ranftl, Bernhard Thaler, Wolfgang E. Ernst, Markus Koch, and Wolfgang von der Linden. 2019. "Bayesian Analysis of Femtosecond Pump-Probe Photoelectron-Photoion Coincidence Spectra with Fluctuating Laser Intensities" Entropy 21, no. 1: 93. https://doi.org/10.3390/e21010093
APA StyleHeim, P., Rumetshofer, M., Ranftl, S., Thaler, B., Ernst, W. E., Koch, M., & von der Linden, W. (2019). Bayesian Analysis of Femtosecond Pump-Probe Photoelectron-Photoion Coincidence Spectra with Fluctuating Laser Intensities. Entropy, 21(1), 93. https://doi.org/10.3390/e21010093