Fluctuations, Finite-Size Effects and the Thermodynamic Limit in Computer Simulations: Revisiting the Spatial Block Analysis Method
<p>Snapshot of the simulation box for a system of particles interacting via a TSLJ potential at density <math display="inline"> <semantics> <mrow> <mi>ρ</mi> <msup> <mi>σ</mi> <mn>3</mn> </msup> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics> </math> and temperature <math display="inline"> <semantics> <mrow> <msub> <mi>k</mi> <mi mathvariant="normal">B</mi> </msub> <mi>T</mi> <mo>=</mo> <mn>1.2</mn> <mi>ϵ</mi> </mrow> </semantics> </math>. In this particular example, a box of linear size <math display="inline"> <semantics> <msub> <mi>L</mi> <mn>0</mn> </msub> </semantics> </math> has been subdivided into blocks of linear dimension <math display="inline"> <semantics> <mrow> <mi>L</mi> <mo>=</mo> <msub> <mi>L</mi> <mn>0</mn> </msub> <mo>/</mo> <mn>5</mn> </mrow> </semantics> </math> as indicated by the different color shades. The figure has been rendered with the Visual Molecular Dynamics (VMD) program [<a href="#B31-entropy-20-00222" class="html-bibr">31</a>].</p> "> Figure 2
<p>Fluctuations of the number of particles <math display="inline"> <semantics> <mrow> <msub> <mi>χ</mi> <mi>T</mi> </msub> <mrow> <mo stretchy="false">(</mo> <mi>L</mi> <mo>,</mo> <msub> <mi>L</mi> <mn>0</mn> </msub> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics> </math> as a function of <math display="inline"> <semantics> <mrow> <mi>σ</mi> <mo>/</mo> <mi>L</mi> </mrow> </semantics> </math> for systems described by a TSLJ potential with <math display="inline"> <semantics> <mrow> <msub> <mi>r</mi> <mi>c</mi> </msub> <mo>/</mo> <mi>σ</mi> <mo>=</mo> <msup> <mn>2</mn> <mrow> <mn>1</mn> <mo>/</mo> <mn>6</mn> </mrow> </msup> </mrow> </semantics> </math>. Data corresponding to system sizes <math display="inline"> <semantics> <mrow> <msub> <mi>N</mi> <mn>0</mn> </msub> <mo>=</mo> <msup> <mn>10</mn> <mn>4</mn> </msup> <mo>,</mo> <msup> <mn>10</mn> <mn>5</mn> </msup> </mrow> </semantics> </math> and <math display="inline"> <semantics> <msup> <mn>10</mn> <mn>6</mn> </msup> </semantics> </math> are presented using red squares, blue triangles and green circles, respectively. The vertical lines indicate the limit <math display="inline"> <semantics> <mrow> <mi>σ</mi> <mo>/</mo> <msub> <mi>L</mi> <mn>0</mn> </msub> </mrow> </semantics> </math> at which fluctuations become zero. The black horizontal dashed line indicates the value <math display="inline"> <semantics> <mrow> <msubsup> <mi>χ</mi> <mrow> <mi>T</mi> </mrow> <mo>∞</mo> </msubsup> <mo>=</mo> <mi>ρ</mi> <msub> <mi>k</mi> <mi mathvariant="normal">B</mi> </msub> <mi>T</mi> <msub> <mi>κ</mi> <mi>T</mi> </msub> <mo>=</mo> <mn>0.0295</mn> </mrow> </semantics> </math> with <math display="inline"> <semantics> <msub> <mi>κ</mi> <mi>T</mi> </msub> </semantics> </math> the bulk compressibility obtained with the method described in [<a href="#B6-entropy-20-00222" class="html-bibr">6</a>].</p> "> Figure 3
<p>Fluctuations of the number of particles <math display="inline"> <semantics> <mrow> <msub> <mi>χ</mi> <mi>T</mi> </msub> <mrow> <mo stretchy="false">(</mo> <mi>L</mi> <mo>,</mo> <msub> <mi>L</mi> <mn>0</mn> </msub> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics> </math> as a function of the ratio <math display="inline"> <semantics> <mrow> <mi>L</mi> <mo>/</mo> <msub> <mi>L</mi> <mn>0</mn> </msub> </mrow> </semantics> </math> for systems described by a TSLJ potential with <math display="inline"> <semantics> <mrow> <msub> <mi>r</mi> <mi>c</mi> </msub> <mo>/</mo> <mi>σ</mi> <mo>=</mo> <msup> <mn>2</mn> <mrow> <mn>1</mn> <mo>/</mo> <mn>6</mn> </mrow> </msup> </mrow> </semantics> </math>. Results corresponding to systems of <math display="inline"> <semantics> <mrow> <msub> <mi>N</mi> <mn>0</mn> </msub> <mo>=</mo> <msup> <mn>10</mn> <mn>5</mn> </msup> </mrow> </semantics> </math> particles with densities <math display="inline"> <semantics> <mrow> <mi>ρ</mi> <msup> <mi>σ</mi> <mn>3</mn> </msup> <mo>=</mo> <mn>0.1</mn> <mo>,</mo> <mspace width="0.166667em"/> <mn>0.2</mn> </mrow> </semantics> </math> and 0.3 are presented using red squares, blue triangles and green circles, respectively. The theoretical prediction presented in the text is plotted using the corresponding value for <math display="inline"> <semantics> <msubsup> <mi>χ</mi> <mrow> <mi>T</mi> </mrow> <mo>∞</mo> </msubsup> </semantics> </math>, obtained as described in [<a href="#B6-entropy-20-00222" class="html-bibr">6</a>], and solid-line curves with the same color code.</p> "> Figure 4
<p>Fluctuations of the number of particles <math display="inline"> <semantics> <mrow> <msub> <mi>χ</mi> <mi>T</mi> </msub> <mrow> <mo stretchy="false">(</mo> <mi>L</mi> <mo>,</mo> <msub> <mi>L</mi> <mn>0</mn> </msub> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics> </math> as a function of the ratio <math display="inline"> <semantics> <mrow> <mi>L</mi> <mo>/</mo> <msub> <mi>L</mi> <mn>0</mn> </msub> </mrow> </semantics> </math> for systems described by a TSLJ potential with <math display="inline"> <semantics> <mrow> <msub> <mi>r</mi> <mi>c</mi> </msub> <mo>/</mo> <mi>σ</mi> <mo>=</mo> <msup> <mn>2</mn> <mrow> <mn>1</mn> <mo>/</mo> <mn>6</mn> </mrow> </msup> </mrow> </semantics> </math>. Results corresponding to sizes <math display="inline"> <semantics> <mrow> <msub> <mi>N</mi> <mn>0</mn> </msub> <mo>=</mo> <msup> <mn>10</mn> <mn>4</mn> </msup> <mo>,</mo> <mspace width="0.166667em"/> <msup> <mn>10</mn> <mn>5</mn> </msup> </mrow> </semantics> </math> and <math display="inline"> <semantics> <msup> <mn>10</mn> <mn>6</mn> </msup> </semantics> </math>, with density <math display="inline"> <semantics> <mrow> <mi>ρ</mi> <msup> <mi>σ</mi> <mn>3</mn> </msup> <mo>=</mo> <mn>0.864</mn> </mrow> </semantics> </math>, using red squares, blue triangles and green circles, respectively. The theoretical prediction presented in the text is plotted as the black dashed curve using <math display="inline"> <semantics> <mrow> <msubsup> <mi>χ</mi> <mrow> <mi>T</mi> </mrow> <mo>∞</mo> </msubsup> <mo>=</mo> <mn>0.0295</mn> </mrow> </semantics> </math>.</p> "> Figure 5
<p>Scaled fluctuations of the number of particles <math display="inline"> <semantics> <mrow> <mi>λ</mi> <msub> <mi>χ</mi> <mi>T</mi> </msub> <mrow> <mo stretchy="false">(</mo> <mi>L</mi> <mo>,</mo> <msub> <mi>L</mi> <mn>0</mn> </msub> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics> </math>, minus <math display="inline"> <semantics> <mrow> <mi>c</mi> <mo>/</mo> <msub> <mi>L</mi> <mn>0</mn> </msub> </mrow> </semantics> </math>, versus the ratio <math display="inline"> <semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mi>L</mi> <mo>/</mo> <msub> <mi>L</mi> <mn>0</mn> </msub> </mrow> </semantics> </math> for systems described by a TSLJ potential with <math display="inline"> <semantics> <mrow> <msub> <mi>r</mi> <mi>c</mi> </msub> <mo>/</mo> <mi>σ</mi> <mo>=</mo> <msup> <mn>2</mn> <mrow> <mn>1</mn> <mo>/</mo> <mn>6</mn> </mrow> </msup> </mrow> </semantics> </math>. Results corresponding to sizes <math display="inline"> <semantics> <mrow> <msub> <mi>N</mi> <mn>0</mn> </msub> <mo>=</mo> <msup> <mn>10</mn> <mn>4</mn> </msup> <mo>,</mo> <mspace width="0.166667em"/> <msup> <mn>10</mn> <mn>5</mn> </msup> </mrow> </semantics> </math> and <math display="inline"> <semantics> <msup> <mn>10</mn> <mn>6</mn> </msup> </semantics> </math>, with density <math display="inline"> <semantics> <mrow> <mi>ρ</mi> <msup> <mi>σ</mi> <mn>3</mn> </msup> <mo>=</mo> <mn>0.864</mn> </mrow> </semantics> </math>, using red squares, blue triangles and green circles, respectively. The theoretical prediction Equation (<a href="#FD7-entropy-20-00222" class="html-disp-formula">7</a>) presented in the text is plotted as the black solid curve using <math display="inline"> <semantics> <mrow> <msubsup> <mi>χ</mi> <mrow> <mi>T</mi> </mrow> <mo>∞</mo> </msubsup> <mo>=</mo> <mn>0.0295</mn> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mrow> <mi>c</mi> <mo>=</mo> <mn>0.415</mn> <mi>σ</mi> </mrow> </semantics> </math>.</p> "> Figure 6
<p>Ratio <math display="inline"> <semantics> <mrow> <msubsup> <mi>χ</mi> <mrow> <mi>T</mi> </mrow> <mo>∞</mo> </msubsup> <mo>=</mo> <msub> <mi>κ</mi> <mi>T</mi> </msub> <mo>/</mo> <msubsup> <mi>κ</mi> <mrow> <mi>T</mi> </mrow> <mrow> <mi>I</mi> <mi>G</mi> </mrow> </msubsup> </mrow> </semantics> </math> at <math display="inline"> <semantics> <mrow> <msub> <mi>k</mi> <mi mathvariant="normal">B</mi> </msub> <mi>T</mi> <mo>=</mo> <mn>1.2</mn> <mi>ϵ</mi> </mrow> </semantics> </math> as a function of the density for systems described by a TSLJ potential with <math display="inline"> <semantics> <mrow> <msub> <mi>r</mi> <mi>c</mi> </msub> <mo>/</mo> <mi>σ</mi> <mo>=</mo> <msup> <mn>2</mn> <mrow> <mn>1</mn> <mo>/</mo> <mn>6</mn> </mrow> </msup> </mrow> </semantics> </math>, with <math display="inline"> <semantics> <mrow> <msubsup> <mi>κ</mi> <mrow> <mi>T</mi> </mrow> <mrow> <mi>I</mi> <mi>G</mi> </mrow> </msubsup> <mo>=</mo> <msup> <mrow> <mo stretchy="false">(</mo> <mi>ρ</mi> <msub> <mi>k</mi> <mi mathvariant="normal">B</mi> </msub> <mi>T</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics> </math> the isothermal compressibility of the ideal gas. The red curve is a guide to the eye.</p> "> Figure 7
<p>Excess chemical potential <math display="inline"> <semantics> <mrow> <msup> <mi>μ</mi> <mrow> <mi>e</mi> <mi>x</mi> </mrow> </msup> <mo>/</mo> <mi>ϵ</mi> </mrow> </semantics> </math> at <math display="inline"> <semantics> <mrow> <msub> <mi>k</mi> <mi mathvariant="normal">B</mi> </msub> <mi>T</mi> <mo>=</mo> <mn>1.2</mn> <mi>ϵ</mi> </mrow> </semantics> </math> as a function of the density for systems described by a TSLJ potential with <math display="inline"> <semantics> <mrow> <msub> <mi>r</mi> <mi>c</mi> </msub> <mo>/</mo> <mi>σ</mi> <mo>=</mo> <msup> <mn>2</mn> <mrow> <mn>1</mn> <mo>/</mo> <mn>6</mn> </mrow> </msup> </mrow> </semantics> </math>. Red squares indicate the data obtained with the spatially-resolved thermodynamic integration (SPARTIAN) method [<a href="#B36-entropy-20-00222" class="html-bibr">36</a>], and the blue triangles are the data points obtained with the method outlined in the text.</p> "> Figure 8
<p>Reduced fluctuations as a function of <math display="inline"> <semantics> <mi>λ</mi> </semantics> </math> for systems described by a TSLJ potential with <math display="inline"> <semantics> <mrow> <msub> <mi>r</mi> <mi>c</mi> </msub> <mo>/</mo> <mi>σ</mi> <mo>=</mo> <mn>2.5</mn> </mrow> </semantics> </math> with density <math display="inline"> <semantics> <mrow> <mi>ρ</mi> <msup> <mi>σ</mi> <mn>3</mn> </msup> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics> </math> at temperatures <math display="inline"> <semantics> <mrow> <msub> <mi>k</mi> <mi mathvariant="normal">B</mi> </msub> <mi>T</mi> <mo>=</mo> <mn>2.00</mn> <mi>ϵ</mi> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mrow> <mn>1.15</mn> <mi>ϵ</mi> </mrow> </semantics> </math>. For the latter case, it is apparent that the contribution proportional to <math display="inline"> <semantics> <msup> <mi>λ</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics> </math> is not negligible. The inset shows the full range <math display="inline"> <semantics> <mrow> <mn>0</mn> <mo><</mo> <mi>λ</mi> <mo><</mo> <mn>1</mn> </mrow> </semantics> </math>. The black curves are the result of fitting the data to Equation (<a href="#FD22-entropy-20-00222" class="html-disp-formula">22</a>).</p> "> Figure 9
<p>Bulk isothermal compressibility <math display="inline"> <semantics> <msub> <mi>κ</mi> <mi>T</mi> </msub> </semantics> </math> as a function of the density <math display="inline"> <semantics> <mi>ρ</mi> </semantics> </math> at <math display="inline"> <semantics> <mrow> <msub> <mi>k</mi> <mi mathvariant="normal">B</mi> </msub> <mi>T</mi> <mo>=</mo> <mn>1.15</mn> <mi>ϵ</mi> </mrow> </semantics> </math> (red circles) and <math display="inline"> <semantics> <mrow> <msub> <mi>k</mi> <mi mathvariant="normal">B</mi> </msub> <mi>T</mi> <mo>=</mo> <mn>2.00</mn> <mi>ϵ</mi> </mrow> </semantics> </math> (green squares) for systems described by a TSLJ potential with <math display="inline"> <semantics> <mrow> <msub> <mi>r</mi> <mi>c</mi> </msub> <mo>/</mo> <mi>σ</mi> <mo>=</mo> <mn>2.5</mn> </mrow> </semantics> </math>. The vertical black line indicates the location of the critical density <math display="inline"> <semantics> <mrow> <mi>ρ</mi> <msup> <mi>σ</mi> <mn>3</mn> </msup> <mo>=</mo> <mn>0.319</mn> </mrow> </semantics> </math> [<a href="#B38-entropy-20-00222" class="html-bibr">38</a>].</p> "> Figure 10
<p>Scaled finite-size Kirkwood–Buff integrals <math display="inline"> <semantics> <mrow> <mi>λ</mi> <msub> <mi>G</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mrow> <mo stretchy="false">(</mo> <mi>λ</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics> </math> as a function of <math display="inline"> <semantics> <mi>λ</mi> </semantics> </math> for different mole fractions: (<b>a</b>) <math display="inline"> <semantics> <mrow> <msub> <mi>x</mi> <mi>A</mi> </msub> <mo>=</mo> <mn>0.20</mn> </mrow> </semantics> </math>; (<b>b</b>) <math display="inline"> <semantics> <mrow> <msub> <mi>x</mi> <mi>A</mi> </msub> <mo>=</mo> <mn>0.30</mn> </mrow> </semantics> </math>; (<b>c</b>) <math display="inline"> <semantics> <mrow> <msub> <mi>x</mi> <mi>A</mi> </msub> <mo>=</mo> <mn>0.50</mn> </mrow> </semantics> </math> and (<b>d</b>) <math display="inline"> <semantics> <mrow> <msub> <mi>x</mi> <mi>A</mi> </msub> <mo>=</mo> <mn>0.80</mn> </mrow> </semantics> </math>, for mixtures described by a TSLJ potential with <math display="inline"> <semantics> <mrow> <msub> <mi>r</mi> <mi>c</mi> </msub> <mo>/</mo> <mi>σ</mi> <mo>=</mo> <msup> <mn>2</mn> <mrow> <mn>1</mn> <mo>/</mo> <mn>6</mn> </mrow> </msup> </mrow> </semantics> </math>. For clarity, only the cases <math display="inline"> <semantics> <msub> <mi>G</mi> <mrow> <mi>A</mi> <mi>A</mi> </mrow> </msub> </semantics> </math> (red squares) and <math display="inline"> <semantics> <msub> <mi>G</mi> <mrow> <mi>A</mi> <mi>B</mi> </mrow> </msub> </semantics> </math> (green circles) are plotted. In the asymptotic case <math display="inline"> <semantics> <mrow> <mi>λ</mi> <mo>→</mo> <mn>1</mn> </mrow> </semantics> </math>, <math display="inline"> <semantics> <mrow> <msub> <mi>G</mi> <mrow> <mi>A</mi> <mi>B</mi> </mrow> </msub> <mo>→</mo> <mn>0</mn> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mrow> <msub> <mi>G</mi> <mrow> <mi>A</mi> <mi>A</mi> </mrow> </msub> <mo>→</mo> <mn>1</mn> <mo>/</mo> <msub> <mi>ρ</mi> <mi>A</mi> </msub> </mrow> </semantics> </math>, as indicated by the horizontal green and red lines, respectively. The black curves correspond to Equation (<a href="#FD26-entropy-20-00222" class="html-disp-formula">26</a>) with <math display="inline"> <semantics> <msubsup> <mi>G</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mo>∞</mo> </msubsup> </semantics> </math> and <math display="inline"> <semantics> <msub> <mi>α</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </semantics> </math> obtained from a simple regression analysis in the interval <math display="inline"> <semantics> <mrow> <mi>λ</mi> <mo><</mo> <mn>0.3</mn> </mrow> </semantics> </math>.</p> "> Figure 11
<p>Isothermal compressibility at <math display="inline"> <semantics> <mrow> <msub> <mi>k</mi> <mi mathvariant="normal">B</mi> </msub> <mi>T</mi> <mo>=</mo> <mn>1.20</mn> <mi>ϵ</mi> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mrow> <mi>P</mi> <msup> <mi>σ</mi> <mn>3</mn> </msup> <mo>/</mo> <mi>ϵ</mi> <mo>=</mo> <mn>9.8</mn> </mrow> </semantics> </math> as a function of the mole fraction of type-<span class="html-italic">A</span> particles <math display="inline"> <semantics> <msub> <mi>x</mi> <mi>A</mi> </msub> </semantics> </math> for mixtures described by a TSLJ potential with <math display="inline"> <semantics> <mrow> <msub> <mi>r</mi> <mi>c</mi> </msub> <mo>/</mo> <mi>σ</mi> <mo>=</mo> <msup> <mn>2</mn> <mrow> <mn>1</mn> <mo>/</mo> <mn>6</mn> </mrow> </msup> </mrow> </semantics> </math>. The horizontal black lines indicate the compressibility for a pure system of type-<span class="html-italic">A</span> particles <math display="inline"> <semantics> <mrow> <msubsup> <mi>κ</mi> <mrow> <mi>T</mi> </mrow> <mi>A</mi> </msubsup> <mi>ϵ</mi> <mo>/</mo> <msup> <mi>σ</mi> <mn>3</mn> </msup> <mo>=</mo> <mn>0.012</mn> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics> </math> and for a pure system of type-<span class="html-italic">B</span> particles <math display="inline"> <semantics> <mrow> <msubsup> <mi>κ</mi> <mrow> <mi>T</mi> </mrow> <mi>B</mi> </msubsup> <mi>ϵ</mi> <mo>/</mo> <msup> <mi>σ</mi> <mn>3</mn> </msup> <mo>=</mo> <mn>0.0281</mn> <mrow> <mo stretchy="false">(</mo> <mn>8</mn> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics> </math>. The red line is a guide to the eye. The ideal case corresponds to <math display="inline"> <semantics> <mrow> <msub> <mi>κ</mi> <mi>T</mi> </msub> <mo>=</mo> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−</mo> <msub> <mi>x</mi> <mi>A</mi> </msub> <mo stretchy="false">)</mo> </mrow> <msubsup> <mi>κ</mi> <mrow> <mi>T</mi> </mrow> <mi>B</mi> </msubsup> <mo>+</mo> <msub> <mi>x</mi> <mi>A</mi> </msub> <msubsup> <mi>κ</mi> <mrow> <mi>T</mi> </mrow> <mi>A</mi> </msubsup> </mrow> </semantics> </math>.</p> "> Figure 12
<p>Excess chemical potential of type-<span class="html-italic">A</span> particles as a function of the mole fraction <math display="inline"> <semantics> <msub> <mi>x</mi> <mi>A</mi> </msub> </semantics> </math> for mixtures described by a TSLJ potential with <math display="inline"> <semantics> <mrow> <msub> <mi>r</mi> <mi>c</mi> </msub> <mo>/</mo> <mi>σ</mi> <mo>=</mo> <msup> <mn>2</mn> <mrow> <mn>1</mn> <mo>/</mo> <mn>6</mn> </mrow> </msup> </mrow> </semantics> </math> at <math display="inline"> <semantics> <mrow> <msub> <mi>k</mi> <mi mathvariant="normal">B</mi> </msub> <mi>T</mi> <mo>=</mo> <mn>1.2</mn> <mi>ϵ</mi> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mrow> <mi>P</mi> <msup> <mi>σ</mi> <mn>3</mn> </msup> <mo>/</mo> <mi>ϵ</mi> <mo>=</mo> <mn>9.8</mn> </mrow> </semantics> </math>. Data points obtained with the method in [<a href="#B36-entropy-20-00222" class="html-bibr">36</a>], in particular for <math display="inline"> <semantics> <mrow> <msub> <mi>x</mi> <mi>A</mi> </msub> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics> </math>, are used as a reference for the data points obtained with Equations (<a href="#FD30-entropy-20-00222" class="html-disp-formula">30</a>) and (<a href="#FD31-entropy-20-00222" class="html-disp-formula">31</a>).</p> ">
Abstract
:1. Introduction
2. Boundary and Ensemble Finite-Size Effects
3. Finite-Size Ornstein–Zernike Integral Equation
4. Mixtures
5. Summary and Concluding Remarks
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
SBA | Spatial block analysis |
TSLJ | Truncated and shifted Lennard–Jones |
MD | Molecular dynamics |
TL | Thermodynamic limit |
PBCs | Periodic boundary conditions |
OZ | Ornstein–Zernike |
KB | Kirkwood–Buff |
References
- Hansen, J.P.; McDonald, I.R. Theory of Simple Liquids, 3rd ed.; Academic Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Ben-Naim, A. Molecular Theory of Solutions; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Adams, D. Chemical potential of hard-sphere fluids by Monte Carlo methods. Mol. Phys. 1974, 28, 1241–1252. [Google Scholar] [CrossRef]
- Mukherji, D.; Kremer, K. Coil-Globule-Coil Transition of PNIPAm in Aqueous Methanol: Coupling All-Atom Simulations to Semi-Grand Canonical Coarse-Grained Reservoir. Macromolecules 2013, 46, 9158–9163. [Google Scholar] [CrossRef]
- Wang, H.; Hartmann, C.; Schütte, C.; Site, L.D. Grand-Canonical-like Molecular-Dynamics Simulations by Using an Adaptive-Resolution Technique. Phys. Rev. X 2013, 3, 011018. [Google Scholar] [CrossRef]
- Heidari, M.; Kremer, K.; Potestio, R.; Cortes-Huerto, R. Finite-size integral equations in the theory of liquids and the thermodynamic limit in computer simulations. Submitted.
- Galata, A.A.; Anogiannakis, S.D.; Theodorou, D.N. Thermodynamic analysis of Lennard–Jones binary mixtures using Kirkwood–Buff theory. Fluid Phase Equilibria 2017, in press. [Google Scholar] [CrossRef]
- Site, L.D.; Ciccotti, G.; Hartmann, C. Partitioning a macroscopic system into independent subsystems. J. Stat. Mech. Theory Exp. 2017, 083201. [Google Scholar] [CrossRef]
- Strom, B.A.; Simon, J.M.; Schnell, S.K.; Kjelstrup, S.; He, J.; Bedeaux, D. Size and shape effects on the thermodynamic properties of nanoscale volumes of water. Phys. Chem. Chem. Phys. 2017, 19, 9016–9027. [Google Scholar] [CrossRef] [PubMed]
- Dawass, N.; Krüger, P.; Schnell, S.K.; Bedeaux, D.; Kjelstrup, S.; Simon, J.M.; Vlugt, T.J.H. Finite-size effects of Kirkwood–Buff integrals from molecular simulations. Mol. Simul. 2018, 44, 599–612. [Google Scholar] [CrossRef]
- Milzetti, J.; Nayar, D.; van der Vegt, N.F.A. Convergence of Kirkwood–Buff Integrals of Ideal and Nonideal Aqueous Solutions Using Molecular Dynamics Simulations. J. Phys. Chem. B 2018. [Google Scholar] [CrossRef] [PubMed]
- Rogers, D.M. Extension of Kirkwood–Buff theory to the canonical ensemble. J. Chem. Phys. 2018, 148, 054102. [Google Scholar] [CrossRef] [PubMed]
- Dawass, N.; Krüger, P.; Simon, J.M.; Vlugt, T.J.H. Kirkwood–Buff integrals of finite systems: Shape effects. Mol. Phys. 2018. [Google Scholar] [CrossRef]
- Binder, K. Finite size scaling analysis of ising model block distribution functions. Z. Phys. B 1981, 43, 119–140. [Google Scholar] [CrossRef]
- Binder, K. Critical Properties from Monte Carlo Coarse Graining and Renormalization. Phys. Rev. Lett. 1981, 47, 693–696. [Google Scholar] [CrossRef]
- Rovere, M.; Hermann, D.W.; Binder, K. Block Density Distribution Function Analysis of Two-Dimensional Lennard–Jones Fluids. EPL 1988, 6, 585. [Google Scholar] [CrossRef]
- Rovere, M.; Heermann, D.W.; Binder, K. The gas-liquid transition of the two-dimensional Lennard–Jones fluid. J. Phys. Condens. Matter 1990, 2, 7009–7032. [Google Scholar] [CrossRef]
- Rovere, M.; Nielaba, P.; Binder, K. Simulation studies of gas-liquid transitions in two dimensions via a subsystem-block-density distribution analysis. Z. Phys. B 1993, 90, 215–228. [Google Scholar] [CrossRef]
- Weber, H.; Marx, D.; Binder, K. Melting transition in two dimensions: A finite-size scaling analysis of bond-orientational order in hard disks. Phys. Rev. B 1995, 51, 14636–14651. [Google Scholar] [CrossRef]
- Román, F.L.; White, J.A.; Velasco, S. Block analysis method in off-lattice fluids. EPL 1998, 42, 371. [Google Scholar] [CrossRef]
- Salacuse, J. Particle fluctuations within sub-regions of an N-particle, three-dimensional fluid: Finite-size effects and compressibility. Phys. A 2008, 387, 3073–3083. [Google Scholar] [CrossRef]
- Sengupta, S.; Nielaba, P.; Rao, M.; Binder, K. Elastic constants from microscopic strain fluctuations. Phys. Rev. E 2000, 61, 1072–1080. [Google Scholar] [CrossRef]
- Lebowitz, J.L.; Percus, J.K. Long-Range Correlations in a Closed System with Applications to Nonuniform Fluids. Phys. Rev. 1961, 122, 1675–1691. [Google Scholar] [CrossRef]
- Salacuse, J.J.; Denton, A.R.; Egelstaff, P.A. Finite-size effects in molecular dynamics simulations: Static structure factor and compressibility. I. Theoretical method. Phys. Rev. E 1996, 53, 2382–2389. [Google Scholar] [CrossRef]
- Román, F.L.; White, J.A.; Velasco, S. Fluctuations in an equilibrium hard-disk fluid: Explicit size effects. J. Chem. Phys. 1997, 107, 4635. [Google Scholar] [CrossRef]
- Villamaina, D.; Trizac, E. Thinking outside the box: Fluctuations and finite size effects. Eur. J. Phys. 2014, 35, 035011. [Google Scholar] [CrossRef]
- Rowlinson, J.S. The equation of state of dense systems. Rep. Prog. Phys. 1965, 28, 169. [Google Scholar] [CrossRef]
- Schnell, S.K.; Vlugt, T.J.; Simon, J.M.; Bedeaux, D.; Kjelstrup, S. Thermodynamics of a small system in a μT reservoir. Chem. Phys. Lett. 2011, 504, 199–201. [Google Scholar] [CrossRef]
- Lebowitz, J.L.; Percus, J.K. Thermodynamic Properties of Small Systems. Phys. Rev. 1961, 124, 1673–1681. [Google Scholar] [CrossRef]
- Hill, T.L. Thermodynamics of Small Systems; Courier Corporation: Dover, UK, 1963. [Google Scholar]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD—Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Halverson, J.D.; Brandes, T.; Lenz, O.; Arnold, A.; Bevc, S.; Starchenko, V.; Kremer, K.; Stuehn, T.; Reith, D. ESPResSo++: A modern multiscale simulation package for soft matter systems. Comput. Phys. Commun. 2013, 184, 1129–1149. [Google Scholar] [CrossRef]
- Román, F.L.; González, A.; White, J.A.; Velasco, S. Fluctuations in the number of particles of the ideal gas: A simple example of explicit finite-size effects. Am. J. Phys. 1999, 67, 1149–1151. [Google Scholar] [CrossRef]
- Román, F.L.; White, J.A.; González, A.; Velasco, S. Fluctuations in a small hard-disk system: Implicit finite size effects. J. Chem. Phys. 1999, 110, 9821. [Google Scholar] [CrossRef]
- Román, F.; White, J.; González, A.; Velasco, S. Theory and Simulation of Hard-Sphere Fluids and Related Systems; Chapter Ensemble Effects in Small Systems; Springer: Berlin/Heidelberg, Germany, 2008; pp. 343–381. [Google Scholar]
- Heidari, M.; Kremer, K.; Cortes-Huerto, R.; Potestio, R. Spatially Resolved Thermodynamic Integration: An Efficient Method to Compute Chemical Potentials of Dense Fluids. ArXiv, 2018; arXiv:cond-mat.soft/1802.08045. [Google Scholar]
- Ornstein, L.S.; Zernike, F. Accidental deviations of density and opalescence at the critical point of a single substance. Proc. Akad. Sci. (Amsterdam) 1914, 17, 793–806. [Google Scholar]
- Thol, M.; Rutkai, G.; Span, R.; Vrabec, J.; Lustig, R. Equation of State for the Lennard–Jones Truncated and Shifted Model Fluid. Int. J. Thermophys. 2015, 36, 25–43. [Google Scholar] [CrossRef]
- Kirkwood, J.G.; Buff, F.P. The Statistical Mechanical Theory of Solutions. I. J. Chem. Phys. 1951, 19, 774–777. [Google Scholar] [CrossRef]
- Pierce, V.; Kang, M.; Aburi, M.; Weerasinghe, S.; Smith, P.E. Recent Applications of Kirkwood–Buff Theory to Biological Systems. Cell Biochem. Biophys. 2008, 50, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Kjelstrup, S.; Schnell, S.K.; Vlugt, T.J.H.; Simon, J.M.; Bardow, A.; Bedeaux, D.; Trinh, T. Bridging scales with thermodynamics: From nano to macro. Adv. Nat. Sci. Nanosci. Nanotechnol. 2014, 5, 023002. [Google Scholar] [CrossRef]
- Ben-Naim, A. Theoretical aspects of self-assembly of proteins: A Kirkwood–Buff-theory approach. J. Chem. Phys. 2013, 138, 224906. [Google Scholar] [CrossRef] [PubMed]
- Mukherji, D.; Marques, C.M.; Stuehn, T.; Kremer, K. Depleted depletion drives polymer swelling in poor solvent mixtures. Nat. Commun. 2017, 8, 1374. [Google Scholar] [CrossRef] [PubMed]
- Cortes-Huerto, R.; Kremer, K.; Potestio, R. Communication: Kirkwood–Buff integrals in the thermodynamic limit from small-sized molecular dynamics simulations. J. Chem. Phys. 2016, 145, 141103. [Google Scholar] [CrossRef] [PubMed]
- Schnell, S.K.; Liu, X.; Simon, J.; Bardow, A.; Bedeaux, D.; Vlugt, T.J.H.; Kjelstrup, S. Calculating Thermodynamic Properties from Fluctuations at Small Scales. J. Phys. Chem. B 2011, 115, 10911. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, P.; van der Vegt, N.F.A. Convergence of Sampling Kirkwood–Buff Integrals of Aqueous Solutions with Molecular Dynamics Simulations. J. Chem. Theory Comput. 2013, 9, 1347–1355. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heidari, M.; Kremer, K.; Potestio, R.; Cortes-Huerto, R. Fluctuations, Finite-Size Effects and the Thermodynamic Limit in Computer Simulations: Revisiting the Spatial Block Analysis Method. Entropy 2018, 20, 222. https://doi.org/10.3390/e20040222
Heidari M, Kremer K, Potestio R, Cortes-Huerto R. Fluctuations, Finite-Size Effects and the Thermodynamic Limit in Computer Simulations: Revisiting the Spatial Block Analysis Method. Entropy. 2018; 20(4):222. https://doi.org/10.3390/e20040222
Chicago/Turabian StyleHeidari, Maziar, Kurt Kremer, Raffaello Potestio, and Robinson Cortes-Huerto. 2018. "Fluctuations, Finite-Size Effects and the Thermodynamic Limit in Computer Simulations: Revisiting the Spatial Block Analysis Method" Entropy 20, no. 4: 222. https://doi.org/10.3390/e20040222