A New Chaotic System with a Self-Excited Attractor: Entropy Measurement, Signal Encryption, and Parameter Estimation
<p>Different projections of the chaotic attractor of system (1) with the initial conditions <math display="inline"> <semantics> <mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>1.8</mn> <mo>,</mo> <mtext> </mtext> <mo>−</mo> <mn>1.5</mn> <mo>,</mo> <mtext> </mtext> <mo>−</mo> <mn>2.5</mn> </mrow> <mo>)</mo> </mrow> </mrow> </semantics> </math>.</p> "> Figure 2
<p>(<b>A</b>) Bifurcation diagram of the system (1) with respect to parameter <math display="inline"> <semantics> <mi>g</mi> </semantics> </math>, and (<b>B</b>) Lyapunov exponents of the system (1) with respect to parameter <math display="inline"> <semantics> <mi>g</mi> </semantics> </math>.</p> "> Figure 3
<p>ApEn of the system (1) with respect to parameter <math display="inline"> <semantics> <mi>g</mi> </semantics> </math>.</p> "> Figure 4
<p>The general outlook of “Raspberry Pi 3”.</p> "> Figure 5
<p>Pins of <span class="html-italic">x</span>, <span class="html-italic">y</span> and <span class="html-italic">z</span> for chaotic system outputs from “Raspberry Pi 3”.</p> "> Figure 6
<p><span class="html-italic">x</span>, <span class="html-italic">y</span> and <span class="html-italic">z</span> outputs on the oscilloscope (first 50 bits).</p> "> Figure 7
<p>Original signal data (first 50 bits).</p> "> Figure 8
<p>Encrypted signal data (first 50 bits).</p> "> Figure 9
<p>Decrypted Signal Data (first 50 bits).</p> "> Figure 10
<p>The electronic circuit schematic of system (1).</p> "> Figure 11
<p>The experimental circuit of the chaotic circuit and the phase portraits of system (1) on the oscilloscope.</p> "> Figure 12
<p>The phase portraits of the system (1) in ORCAD-Pspice.</p> "> Figure 13
<p>The phase portraits of system (1) on the oscilloscope.</p> "> Figure 14
<p>Plot of the attractor and its GMM modeling with <math display="inline"> <semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>256</mn> </mrow> </semantics> </math> components for the chaotic system (1) with <math display="inline"> <semantics> <mrow> <mtext> </mtext> <mi>a</mi> <mo>=</mo> <mn>4</mn> <mtext> </mtext> <mo>&</mo> <mtext> </mtext> <mi>b</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math>, in the 3-D state space.</p> "> Figure 15
<p>Cost function versus parameter <span class="html-italic">a</span>, with different number GMM components (M) for the 1D parameter estimation method.</p> "> Figure 16
<p>Cost function versus parameter <span class="html-italic">b</span>, with different number of GMM components (M) for the 1D parameter estimation method.</p> "> Figure 17
<p>The contour plot of the GMM-based cost function for the introduced chaotic system (<math display="inline"> <semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>256</mn> </mrow> </semantics> </math>) along with variations in the parameters, <span class="html-italic">a</span>&<span class="html-italic">b</span>.</p> "> Figure 18
<p>The “cost surface” of the GMM-based cost function for the introduced chaotic system (<math display="inline"> <semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>256</mn> </mrow> </semantics> </math>) along with variations in the parameters, <span class="html-italic">a</span>&<span class="html-italic">b</span>.</p> "> Figure 19
<p>Comparison between the performances of the MVO and WOA optimization algorithm.</p> "> Figure 20
<p>Process of finding the best parameters using the WOA algorithm. (<b>a</b>–<b>d</b>) represent the first, 10th, 20th, and 30th iteration, respectively.</p> ">
Abstract
:1. Introduction
- A new 3D chaotic system with saddle equilibriums is proposed by a set of ordinary differential equations.
- Dynamical properties of the 3D chaotic system are then reported that exhibit its dynamics.
- The electronic circuit implementation of the 3D chaotic system is studied and used to present a random number generator (RNG), and its signal encryption is then introduced as an engineering application.
- 1D and 2D parameter estimation of the electronic circuit is done by a GMM based cost function.
- The cost function is optimized using two new efficient optimization methods called the WOA and the MVO algorithms.
- By comparing the experimental data with numerically generated time series, the best-fitting parameters are found because the circuit had (almost) the same dynamics as the 3D chaotic system.
2. A New Chaotic System and Its Analysis
3. Bifurcation and Entropy Analysis
3.1. Bifurcation Analysis
3.2. Entropy Analysis
4. Real Circuit Design of the New Chaotic System as a Mobile RNG and Its Application for Signal Encryption
4.1. Micro-Computer-Based Mobile RNG Design
Algorithm 1. Mobile RNG design algorithm pseudo code. |
1: Start |
2: Entering parameters and initial condition of the chaotic system |
3: Determination of the value of ∆h |
4: Sampling with determination ∆h value |
5: while (least 1 M. Bit data) do |
6: Solving the chaotic system with RK4 |
7: Convert float to binary number (32 bit) |
8: Select the bits (LSB-16 bit) from 32 bit binary number |
9: end while |
10: The implementation of NIST Tests for 1 M. Bit data |
11: if test results == pass then |
12: Successful results (Ready tested 1 M. Bit data) |
13: RNG applications (Cryptology, data hiding, watermarking, etc.) |
14: else (test results == false) |
15: return the previous steps and generate bits again |
16: end if |
17: End |
4.2. Signal Encryption Application Using “Raspberry Pi 3”
Algorithm 2. Chaos based encryption and decryption algorithm pseudo code. |
1: Start |
2: Getting ready to test random numbers for keys |
3: Getting signal data to be encrypted |
4: for i = 1 for all original data |
5: random number bit xor original data bit |
6: end |
7: Encrypted data |
8: for i = 1 for all encrypted data |
9: random number bit xor encrypted data bit |
10: end |
11: Decrypted data |
12: End |
4.3. Electronic Circuit Implementation of the Chaotic System in OrCAD-PSpice and on the Oscilloscope
5. Parameter Estimation of the Chaotic System
5.1. The GMM Computation as a Cost Function
5.2. Phase A
5.2.1. Initialization Step
5.2.2. Expectation Step
5.2.3. Maximization Step
5.2.4. Likelihood Computation Step
5.3. Phase B
5.4. The GMM of Chaotic Circuit
6. Optimization Algorithm
6.1. The Whale Optimization Algorithm
6.2. Multi-Verse Optimizer: A Nature-Inspired Algorithm for GlobalOptimization
6.3. Experimental Results
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Li, C.; Sprott, J.C. Variable-boostable chaotic flows. Opt.-Int. J. Light Electron Opt. 2016, 127, 10389–10398. [Google Scholar] [CrossRef]
- Li, C.; Sprott, J.C.; Akgul, A.; Iu, H.H.; Zhao, Y. A new chaotic oscillator with free control. Chaos Interdiscip. J. Nonlinear Sci. 2017, 27, 083101. [Google Scholar] [CrossRef] [PubMed]
- Jafari, M.A.; Mliki, E.; Akgul, A.; Pham, V.-T.; Kingni, S.T.; Wang, X.; Jafari, S. Chameleon: The most hidden chaotic flow. Nonlinear Dyn. 2017, 88, 1–15. [Google Scholar] [CrossRef]
- Li, C.; Sprott, J.C.; Xing, H. Hypogenetic chaotic jerk flows. Phys. Lett. A 2016, 380, 1172–1177. [Google Scholar] [CrossRef]
- Tlelo-Cuautle, E.; Carbajal-Gomez, V.; Obeso-Rodelo, P.; Rangel-Magdaleno, J.; Nuñez-Perez, J.C. FPGA realization of a chaotic communication system applied to image processing. Nonlinear Dyn. 2015, 82, 1879–1892. [Google Scholar] [CrossRef]
- De la Fraga, L.G.; Torres-Pérez, E.; Tlelo-Cuautle, E.; Mancillas-López, C. Hardware implementation of pseudo-random number generators based on chaotic maps. Nonlinear Dyn. 2017, 90, 1661–1670. [Google Scholar] [CrossRef]
- Pano-Azucena, A.D.; de Jesus Rangel-Magdaleno, J.; Tlelo-Cuautle, E.; de Jesus Quintas-Valles, A. Arduino-based chaotic secure communication system using multi-directional multi-scroll chaotic oscillators. Nonlinear Dyn. 2017, 87, 2203–2217. [Google Scholar] [CrossRef]
- Valtierra, J.L.; Tlelo-Cuautle, E.; Rodríguez-Vázquez, Á. A switched-capacitor skew-tent map implementation for random number generation. Int. J. Circuit Theory Appl. 2017, 45, 305–315. [Google Scholar] [CrossRef]
- García-Martínez, M.; Ontañón-García, L.; Campos-Cantón, E.; Čelikovský, S. Hyperchaotic encryption based on multi-scroll piecewise linear systems. Appl. Math. Comput. 2015, 270, 413–424. [Google Scholar] [CrossRef]
- Tlelo-Cuautle, E.; Rangel-Magdaleno, J.; Pano-Azucena, A.; Obeso-Rodelo, P.; Nuñez-Perez, J.C. FPGA realization of multi-scroll chaotic oscillators. Commun. Nonlinear Sci. Numer. Simul. 2015, 27, 66–80. [Google Scholar] [CrossRef]
- Danca, M.-F.; Kuznetsov, N. Hidden chaotic sets in a Hopfield neural system. Chaos Solitons Fractals 2017, 103, 144–150. [Google Scholar] [CrossRef]
- Danca, M.-F.; Kuznetsov, N.; Chen, G. Unusual dynamics and hidden attractors of the Rabinovich–Fabrikant system. Nonlinear Dyn. 2017, 88, 791–805. [Google Scholar] [CrossRef]
- Kuznetsov, N.; Leonov, G.; Yuldashev, M.; Yuldashev, R. Hidden attractors in dynamical models of phase-locked loop circuits: Limitations of simulation in MATLAB and SPICE. Commun. Nonlinear Sci. Numer. Simul. 2017, 51, 39–49. [Google Scholar]
- Leonov, G.; Kuznetsov, N.; Mokaev, T. Hidden attractor and homoclinic orbit in Lorenz-like system describing convective fluid motion in rotating cavity. Commun. Nonlinear Sci. Numer. Simul. 2015, 28, 166–174. [Google Scholar] [CrossRef]
- Leonov, G.A.; Kuznetsov, N.V.; Mokaev, T.N. Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion. Eur. Phys. J. Spec. Top. 2015, 224, 1421–1458. [Google Scholar] [CrossRef]
- Sharma, P.; Shrimali, M.; Prasad, A.; Kuznetsov, N.; Leonov, G. Control of multistability in hidden attractors. Eur. Phys. J. Spec. Top. 2015, 224, 1485–1491. [Google Scholar] [CrossRef]
- Sharma, P.R.; Shrimali, M.D.; Prasad, A.; Kuznetsov, N.; Leonov, G. Controlling Dynamics of Hidden Attractors. Int. J. Bifurc. Chaos 2015, 25, 1550061. [Google Scholar] [CrossRef]
- Leonov, G.; Kuznetsov, N.; Vagaitsev, V. Localization of hidden Chua’s attractors. Phys. Lett. A 2011, 375, 2230–2233. [Google Scholar] [CrossRef]
- Leonov, G.; Kuznetsov, N.; Vagaitsev, V. Hidden attractor in smooth Chua systems. Phys. D Nonlinear Phenom. 2012, 241, 1482–1486. [Google Scholar] [CrossRef]
- Leonov, G.A.; Kuznetsov, N.V. Hidden attractors in dynamical systems. From hidden oscillations in Hilbert–Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits. Int. J. Bifurc. Chaos 2013, 23, 1330002. [Google Scholar] [CrossRef]
- Leonov, G.; Kuznetsov, N.; Kiseleva, M.; Solovyeva, E.; Zaretskiy, A. Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor. Nonlinear Dyn. 2014, 77, 277–288. [Google Scholar] [CrossRef]
- Dudkowski, D.; Jafari, S.; Kapitaniak, T.; Kuznetsov, N.V.; Leonov, G.A.; Prasad, A. Hidden attractors in dynamical systems. Phys. Rep. 2016, 637, 1–50. [Google Scholar] [CrossRef]
- Tlelo-Cuautle, E.; de la Fraga, L.G.; Pham, V.-T.; Volos, C.; Jafari, S.; de Jesus Quintas-Valles, A. Dynamics, FPGA realization and application of a chaotic system with an infinite number of equilibrium points. Nonlinear Dyn. 2017, 89, 1–11. [Google Scholar] [CrossRef]
- Pham, V.-T.; Volos, C.; Jafari, S.; Kapitaniak, T. Coexistence of hidden chaotic attractors in a novel no-equilibrium system. Nonlinear Dyn. 2017, 87, 2001–2010. [Google Scholar] [CrossRef]
- Pham, V.-T.; Kingni, S.T.; Volos, C.; Jafari, S.; Kapitaniak, T. A simple three-dimensional fractional-order chaotic system without equilibrium: Dynamics, circuitry implementation, chaos control and synchronization. AEU Int. J. Electron. Commun. 2017, 78, 220–227. [Google Scholar] [CrossRef]
- Pham, V.-T.; Jafari, S.; Volos, C.; Gotthans, T.; Wang, X.; Hoang, D.V. A chaotic system with rounded square equilibrium and with no-equilibrium. Opt.-Int. J. Light Electron Opt. 2017, 130, 365–371. [Google Scholar] [CrossRef]
- Pham, V.-T.; Volos, C.; Gambuzza, L.V. A memristive hyperchaotic system without equilibrium. Sci. World J. 2014, 2014. [Google Scholar] [CrossRef] [PubMed]
- Jafari, S.; Sprott, J.C.; Hashemi Golpayegani, S.M.R. Elementary quadratic chaotic flows with no equilibria. Phys. Lett. A 2013, 377, 699–702. [Google Scholar] [CrossRef]
- Pham, V.-T.; Jafari, S.; Volos, C.; Wang, X.; Hashemi Golpayegani, S.M.R. Is that really hidden? The presence of complex fixed-points in chaotic flows with no equilibria. Int. J. Bifurc. Chaos 2014, 24, 1450146. [Google Scholar] [CrossRef]
- Pham, V.-T.; Volos, C.; Jafari, S.; Wang, X. Generating a novel hyperchaotic system out of equilibrium. Optoelectron. Adv. Mater.-Rapid Commun. 2014, 8, 535–539. [Google Scholar]
- Pham, V.-T.; Volos, C.; Jafari, S.; Wei, Z.; Wang, X. Constructing a novel no-equilibrium chaotic system. Int. J. Bifurc. Chaos 2014, 24, 1450073. [Google Scholar] [CrossRef]
- Tahir, F.R.; Jafari, S.; Pham, V.-T.; Volos, C.; Wang, X. A Novel No-Equilibrium Chaotic System with Multiwing Butterfly Attractors. Int. J. Bifurc. Chaos 2015, 25, 1550056. [Google Scholar] [CrossRef]
- Pham, V.-T.; Jafari, S.; Kapitaniak, T.; Volos, C.; Kingni, S.T. Generating a Chaotic System with One Stable Equilibrium. Int. J. Bifurc. Chaos 2017, 27, 1750053. [Google Scholar] [CrossRef]
- Wang, X.; Pham, V.-T.; Jafari, S.; Volos, C.; Munoz-Pacheco, J.M.; Tlelo-Cuautle, E. A new chaotic system with stable equilibrium: From theoretical model to circuit implementation. IEEE Access 2017, 5, 8851–8858. [Google Scholar] [CrossRef]
- Kingni, S.T.; Pham, V.-T.; Jafari, S.; Woafo, P. A chaotic system with an infinite number of equilibrium points located on a line and on a hyperbola and its fractional-order form. Chaos Solitons Fractals 2017, 99, 209–218. [Google Scholar] [CrossRef]
- Jafari, S.; Sprott, J.C. Simple chaotic flows with a line equilibrium. Chaos Solitons Fractals 2013, 57, 79–84. [Google Scholar] [CrossRef]
- Pham, V.-T.; Jafari, S.; Volos, C. A novel chaotic system with heart-shaped equilibrium and its circuital implementation. Opt.-Int. J. Light Electron Opt. 2017, 131, 343–349. [Google Scholar] [CrossRef]
- Pham, V.T.; Volos, C.; Kapitaniak, T.; Jafari, S.; Wang, X. Dynamics and circuit of a chaotic system with a curve of equilibrium points. Int. J. Electron. 2017, 105, 1–13. [Google Scholar] [CrossRef]
- Pham, V.-T.; Jafari, S.; Wang, X.; Ma, J. A Chaotic System with Different Shapes of Equilibria. Int. J. Bifurc. Chaos 2016, 26, 1650069. [Google Scholar] [CrossRef]
- Pham, V.-T.; Jafari, S.; Volos, C.; Giakoumis, A.; Vaidyanathan, S.; Kapitaniak, T. A chaotic system with equilibria located on the rounded square loop and its circuit implementation. IEEE Trans. Circuits Syst. II Express Br. 2016, 63, 878–882. [Google Scholar] [CrossRef]
- Pham, V.-T.; Jafari, S.; Volos, C.; Vaidyanathan, S.; Kapitaniak, T. A chaotic system with infinite equilibria located on a piecewise linear curve. Opt.-Int. J. Light Electron Opt. 2016, 127, 9111–9117. [Google Scholar] [CrossRef]
- Jafari, S.; Sprott, J.C.; Molaie, M. A simple chaotic flow with a plane of equilibria. Int. J. Bifurc. Chaos 2016, 26, 1650098. [Google Scholar] [CrossRef]
- Jafari, S.; Sprott, J.C.; Pham, V.-T.; Volos, C.; Li, C. Simple chaotic 3D flows with surfaces of equilibria. Nonlinear Dyn. 2016, 86, 1349–1358. [Google Scholar] [CrossRef]
- Rajagopal, K.; Akgul, A.; Jafari, S.; Karthikeyan, A.; Koyuncu, I. Chaotic chameleon: Dynamic analyses, circuit implementation, FPGA design and fractional-order form with basic analyses. Chaos Solitons Fractals 2017, 103, 476–487. [Google Scholar] [CrossRef]
- Rajagopal, K.; Jafari, S.; Laarem, G. Time-delayed chameleon: Analysis, synchronization and FPGA implementation. Pramana 2017, 89, 92. [Google Scholar] [CrossRef]
- Pham, V.-T.; Wang, X.; Jafari, S.; Volos, C.; Kapitaniak, T. From Wang–Chen System with Only One Stable Equilibrium to a New Chaotic System without Equilibrium. Int. J. Bifurc. Chaos 2017, 27, 1750097. [Google Scholar] [CrossRef]
- Pham, V.-T.; Volos, C.; Jafari, S.; Vaidyanathan, S.; Kapitaniak, T.; Wang, X. A chaotic system with different families of hidden attractors. Int. J. Bifurc. Chaos 2016, 26, 1650139. [Google Scholar] [CrossRef]
- Nazarimehr, F.; Saedi, B.; Jafari, S.; Sprott, J.C. Are perpetual points sufficient for locating hidden attractors? Int. J. Bifurc. Chaos 2017, 28, 1750037. [Google Scholar] [CrossRef]
- Dudkowski, D.; Prasad, A.; Kapitaniak, T. Perpetual Points: New Tool for Localization of Coexisting Attractors in Dynamical Systems. Int. J. Bifurc. Chaos 2017, 27, 1750063. [Google Scholar] [CrossRef]
- Faure, P.; Korn, H. Is there chaos in the brain? I. Concepts of nonlinear dynamics and methods of investigation. C. R. l’Acad. Sci.-Seri. III-Sci. 2001, 324, 773–793. [Google Scholar] [CrossRef]
- Korn, H.; Faure, P. Is there chaos in the brain? II. Experimental evidence and related models. C. R. Biol. 2003, 326, 787–840. [Google Scholar] [CrossRef] [PubMed]
- Molaie, M.; Falahian, R.; Gharibzadeh, S.; Jafari, S.; Sprott, J.C. Artificial neural networks: Powerful tools for modeling chaotic behavior in the nervous system. Front. Comput. Neurosci. 2014, 8. [Google Scholar] [CrossRef] [PubMed]
- Falahian, R.; Mehdizadeh Dastjerdi, M.; Molaie, M.; Jafari, S.; Gharibzadeh, S. Artificial neural network-based modeling of brain response to flicker light. Nonlinear Dyn. 2015, 81, 1951–1967. [Google Scholar] [CrossRef]
- Jafari, S.; Sprott, J.C.; Hashemi Golpayegani, S.M.R. Layla and Majnun: A complex love story. Nonlinear Dyn. 2016, 83, 615–622. [Google Scholar] [CrossRef]
- Aram, Z.; Jafari, S.; Ma, J.; Sprott, J.C.; Zendehrouh, S.; Pham, V.-T. Using chaotic artificial neural networks to model memory in the brain. Commun. Nonlinear Sci. Numer. Simul. 2017, 44, 449–459. [Google Scholar] [CrossRef]
- Hilborn, R.C. Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Jafari, S.; Hashemi Golpayegani, S.M.R.; Daliri, A. Comment on ‘Parameters identification of chaotic systems by quantum-behaved particle swarm optimization’ [Int. J. Comput. Math. 86(12) (2009), pp. 2225–2235]. Int. J. Comput. Math. 2013, 90, 903–905. [Google Scholar] [CrossRef]
- Jafari, S.; Hashemi Golpayegani, S.M.R.; Rasoulzadeh Darabad, M. Comment on “Parameter identification and synchronization of fractional-order chaotic systems” [Commun Nonlinear Sci Numer Simulat 2012; 17: 305–16]. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 811–814. [Google Scholar] [CrossRef]
- Jafari, S.; Hashemi Golpayegani, S.M.R.; Jafari, A.H.; Gharibzadeh, S. Some remarks on chaotic systems. Int. J. Gen. Syst. 2012, 41, 329–330. [Google Scholar] [CrossRef]
- He, Q.; Wang, L.; Liu, B. Parameter estimation for chaotic systems by particle swarm optimization. Chaos Solitons Fractals 2007, 34, 654–661. [Google Scholar] [CrossRef]
- Tang, Y.; Guan, X. Parameter estimation for time-delay chaotic system by particle swarm optimization. Chaos Solitons Fractals 2009, 40, 1391–1398. [Google Scholar] [CrossRef]
- Wang, L.; Xu, Y. An effective hybrid biogeography-based optimization algorithm for parameter estimation of chaotic systems. Expert Syst. Appl. 2011, 38, 15103–15109. [Google Scholar] [CrossRef]
- Weile, D.S.; Michielssen, E. Genetic algorithm optimization applied to electromagnetics: A review. IEEE Trans. Antennas Propag. 1997, 45, 343–353. [Google Scholar] [CrossRef]
- Kennedy, J. Particle swarm optimization. In Encyclopedia of the Sciences of Learning; Springer: Berlin, Germany, 2011; pp. 760–766. [Google Scholar]
- Yao, X.; Liu, Y. Fast Evolutionary Programming. Evolut. Program. 1996, 3, 451–460. [Google Scholar]
- Arı, Ç.; Aksoy, S.; Arıkan, O. Maximum likelihood estimation of Gaussian mixture models using stochastic search. Pattern Recognit. 2012, 45, 2804–2816. [Google Scholar] [CrossRef] [Green Version]
- Povinelli, R.J.; Johnson, M.T.; Lindgren, A.C.; Roberts, F.M.; Ye, J. Statistical models of reconstructed phase spaces for signal classification. IEEE Trans. Signal Process. 2006, 54, 2178–2186. [Google Scholar] [CrossRef]
- Shekofteh, Y.; Almasganj, F. Feature extraction based on speech attractors in the reconstructed phase space for automatic speech recognition systems. ETRI J. 2013, 35, 100–108. [Google Scholar] [CrossRef]
- Shekofteh, Y.; Almasganj, F.; Daliri, A. MLP-based isolated phoneme classification using likelihood features extracted from reconstructed phase space. Eng. Appl. Artif. Intell. 2015, 44, 1–9. [Google Scholar] [CrossRef]
- Lao, S.-K.; Shekofteh, Y.; Jafari, S.; Sprott, J.C. Cost function based on gaussian mixture model for parameter estimation of a chaotic circuit with a hidden attractor. Int. J. Bifurc. Chaos 2014, 24, 1450010. [Google Scholar] [CrossRef]
- Shekofteh, Y.; Jafari, S.; Sprott, J.C.; Golpayegani, S.M.R.H.; Almasganj, F. A gaussian mixture model based cost function for parameter estimation of chaotic biological systems. Commun. Nonlinear Sci. Numer. Simul. 2015, 20, 469–481. [Google Scholar] [CrossRef]
- Jafari, S.; Sprott, J.C.; Pham, V.-T.; Hashemi Golpayegani, S.M.R.; Jafari, A.H. A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints. Int. J. Bifurc. Chaos 2014, 24, 1450134. [Google Scholar] [CrossRef]
- Kuznetsov, N.; Mokaev, T.; Vasilyev, P. Numerical justification of Leonov conjecture on Lyapunov dimension of Rossler attractor. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 1027–1034. [Google Scholar] [CrossRef]
- Leonov, G.; Kuznetsov, N.; Mokaev, T. Homoclinic orbit and hidden attractor in the Lorenz-like system describing the fluid convection motion in the rotating cavity. arXiv, 2014; arXiv:1412.7667. [Google Scholar]
- Kuznetsov, N.; Leonov, G.; Mokaev, T. The Lyapunov dimension and its computation for self-excited and hidden attractors in the Glukhovsky-Dolzhansky fluid convection model. arXiv, 2015; arXiv:1509.09161v2. [Google Scholar]
- Leonov, G.; Kuznetsov, N.; Mokaev, T. The Lyapunov dimension formula of self-excited and hidden attractors in the Glukhovsky-Dolzhansky system. arXiv, 2015; arXiv:1509.09161v1. [Google Scholar]
- Kuznetsov, N. The Lyapunov dimension and its estimation via the Leonov method. Phys. Lett. A 2016, 380, 2142–2149. [Google Scholar] [CrossRef]
- Wolf, A.; Swift, J.B.; Swinney, H.L.; Vastano, J.A. Determining Lyapunov exponents from a time series. Phys. D Nonlinear Phenom. 1985, 16, 285–317. [Google Scholar] [CrossRef]
- Pincus, S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991, 88, 2297–2301. [Google Scholar] [CrossRef] [PubMed]
- Pincus, S. Approximate entropy (ApEn) as a complexity measure. Chaos Interdiscip. J. Nonlinear Sci. 1995, 5, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Chon, K.H.; Scully, C.G.; Lu, S. Approximate entropy for all signals. IEEE Eng. Med. Biol. Mag. 2009, 28. [Google Scholar] [CrossRef]
- Koyuncu, İ.; Özcerit, A.T. The design and realization of a new high speed FPGA-based chaotic true random number generator. Comput. Electr. Eng. 2016, 58, 203–214. [Google Scholar] [CrossRef]
- Akgul, A.; Moroz, I.; Pehlivan, I.; Vaidyanathan, S. A new four-scroll chaotic attractor and its engineering applications. Opt.-Int. J. Light Electron Opt. 2016, 127, 5491–5499. [Google Scholar] [CrossRef]
- Çavuşoğlu, Ü.; Akgül, A.; Kaçar, S.; Pehlivan, İ.; Zengin, A. A novel chaos-based encryption algorithm over TCP data packet for secure communication. Secur. Commun. Netw. 2016, 9, 1285–1296. [Google Scholar] [CrossRef]
- Avaroğlu, E.; Koyuncu, İ.; Özer, A.B.; Türk, M. Hybrid pseudo-random number generator for cryptographic systems. Nonlinear Dyn. 2015, 82, 239–248. [Google Scholar] [CrossRef]
- Akgul, A.; Calgan, H.; Koyuncu, I.; Pehlivan, I.; Istanbullu, A. Chaos-based engineering applications with a 3D chaotic system without equilibrium points. Nonlinear Dyn. 2016, 84, 481–495. [Google Scholar] [CrossRef]
- Rukhin, A.; Soto, J.; Nechvatal, J.; Barker, E.; Leigh, S.; Levenson, M.; Banks, D.; Heckert, A.; Dray, J.; Vo, S. Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications; NIST Special Publication; Booz-Allen and Hamilton Inc.: McLean, VA, USA, 2010. [Google Scholar]
- Trejo-Guerra, R.; Tlelo-Cuautle, E.; Jimenez-Fuentes, J.; Sánchez-López, C.; Muñoz-Pacheco, J.; Espinosa-Flores-Verdad, G.; Rocha-Pérez, J. Integrated circuit generating 3-and 5-scroll attractors. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 4328–4335. [Google Scholar] [CrossRef]
- Kantz, H.; Schreiber, T. Nonlinear Time Series Analysis; Cambridge University Press: Cambridge, UK, 2004; Volume 7. [Google Scholar]
- Bishop, C.M. Pattern recognition. Mach. Learn. 2006, 128, 1–58. [Google Scholar]
- Nakagawa, S.; Wang, L.; Ohtsuka, S. Speaker identification and verification by combining MFCC and phase information. IEEE Trans. Audio Speech Lang. Process. 2012, 20, 1085–1095. [Google Scholar] [CrossRef]
- Yang, X.-S. Engineering Optimization: An Introduction with Metaheuristic Applications; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- De la Fraga, L.G.; Tlelo-Cuautle, E. Optimizing the maximum Lyapunov exponent and phase space portraits in multi-scroll chaotic oscillators. Nonlinear Dyn. 2014, 76, 1503–1515. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Hatamlou, A. Multi-verse optimizer: A nature-inspired algorithm for global optimization. Neural Comput. Appl. 2016, 27, 495–513. [Google Scholar] [CrossRef]
- Tang, W.; Wu, Q. Biologically inspired optimization: A review. Trans. Inst. Meas. Control 2009, 31, 495–515. [Google Scholar] [CrossRef]
Statistical Tests | p-Value-x (X_16bit) | p-Value-y (Y_16bit) | p-Value-z (Z_16bit) | Result |
---|---|---|---|---|
Frequency (Monobit) Test | 0.5741 | 0.2209 | 0.9904 | Successful |
Block-Frequency Test | 0.5692 | 0.2711 | 0.4011 | Successful |
Cumulative-Sums Test | 0.6255 | 0.1218 | 0.4619 | Successful |
Runs Test | 0.7012 | 0.1846 | 0.5313 | Successful |
Longest-Run Test | 0.6207 | 0.1881 | 0.6901 | Successful |
Binary Matrix Rank Test | 0.4378 | 0.9036 | 0.9755 | Successful |
Discrete Fourier Transform Test | 0.0796 | 0.5819 | 0.6931 | Successful |
Non-Overlapping Templates Test | 0.1685 | 0.0011 | 0.0803 | Successful |
Overlapping Templates Test | 0.8824 | 0.1699 | 0.5441 | Successful |
Maurer’s Universal Statistical Test | 0.5665 | 0.3602 | 0.8932 | Successful |
Approximate Entropy Test | 0.1364 | 0.7072 | 0.6264 | Successful |
Random-Excursions Test (x = −4) | 0.9005 | 0.3467 | 0.6683 | Successful |
Random-Excursions Variant Test (x = 9) | 0.5249 | 0.9845 | 0.5880 | Successful |
Serial Test-1 | 0.1784 | 0.6299 | 0.5716 | Successful |
Serial Test-2 | 0.5467 | 0.4709 | 0.7633 | Successful |
Linear-Complexity Test | 0.7039 | 0.3601 | 0.2000 | Successful |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, G.; Shekofteh, Y.; Akgül, A.; Li, C.; Panahi, S. A New Chaotic System with a Self-Excited Attractor: Entropy Measurement, Signal Encryption, and Parameter Estimation. Entropy 2018, 20, 86. https://doi.org/10.3390/e20020086
Xu G, Shekofteh Y, Akgül A, Li C, Panahi S. A New Chaotic System with a Self-Excited Attractor: Entropy Measurement, Signal Encryption, and Parameter Estimation. Entropy. 2018; 20(2):86. https://doi.org/10.3390/e20020086
Chicago/Turabian StyleXu, Guanghui, Yasser Shekofteh, Akif Akgül, Chunbiao Li, and Shirin Panahi. 2018. "A New Chaotic System with a Self-Excited Attractor: Entropy Measurement, Signal Encryption, and Parameter Estimation" Entropy 20, no. 2: 86. https://doi.org/10.3390/e20020086
APA StyleXu, G., Shekofteh, Y., Akgül, A., Li, C., & Panahi, S. (2018). A New Chaotic System with a Self-Excited Attractor: Entropy Measurement, Signal Encryption, and Parameter Estimation. Entropy, 20(2), 86. https://doi.org/10.3390/e20020086