A Novel Tensor Ring Sparsity Measurement for Image Completion
<p>Illustrations of the TR decomposition.</p> "> Figure 2
<p>Illustrations of TR decomposition and its Kronecker bases representation.</p> "> Figure 3
<p>Illustration of convergence property for TRSM-TC under different choices of TR-ranks. A synthetic tensor with TR structure (size <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>7</mn> <mo>×</mo> <mn>8</mn> <mo>×</mo> <mn>7</mn> <mo>×</mo> <mn>8</mn> <mo>×</mo> <mn>7</mn> <mo>)</mo> </mrow> </semantics></math> with TR-rank <math display="inline"><semantics> <mrow> <mo>[</mo> <mn>5</mn> <mo>,</mo> <mn>5</mn> <mo>,</mo> <mn>5</mn> <mo>,</mo> <mn>5</mn> <mo>,</mo> <mn>5</mn> <mo>]</mo> </mrow> </semantics></math>, missing rate 0.8) is tested. The experiment records the change in the objective function values along the number of iterations. Each independent experiment is conducted 100 times, the average results are shown in the graphs, and the convergence curve is presented.</p> "> Figure 4
<p>The eight benchmark color images.</p> "> Figure 5
<p>Visual completion result of the house image for a missing rate of 0.9 with 5D tensorization and TR-ranks 12. Top row from left to right: the original image, its 0.9 missing case, and the ground truth error image. The second and third rows show the images recovered by TRSM-TC and their corresponding error images, respectively; the fourth and fifth rows show the images recovered by TRLRF and their corresponding error images, respectively; the sixth and seventh rows show the images recovered by TR-WOPT and their corresponding error images, respectively. (<b>a</b>) The fully recovered images. (<b>b</b>) The images recovered by the first 230,000 Kronecker bases. (<b>c</b>) The images recovered by the first 220,000 Kronecker bases. (<b>d</b>) The images recovered by the first 210,000 Kronecker bases. (<b>e</b>) The images recovered by the first 200,000 Kronecker bases. In each figure, we zoom in on the small red box located on the left and display the result in the upper right area.</p> "> Figure 6
<p>Visual completion result of the 31st band of fake and real apples and the 29th band of sponges of the 0.98 missing rate. The first and second rows represent the recovery results of fake and real apples and sponges, respectively, and from left to right are the original images, the 0.98 missing rate case of the images, and the images recovered by algorithms TRSM-TC, TR-WOPT, TRLRF, and FBCP, respectively. In each figure, we zoom in on the small red box and display the result in the larger red box.</p> "> Figure 7
<p>Visual completion results of 6 videos under a 0.98 missing rate. The columns from left to right: the original videos, the 0.98 missing cases and the videos recovered by algorithms TRSM-TC, TRLRF, TR-WOPT, and FBCP, respectively.</p> "> Figure 8
<p>Visual completion result of the 3rd frame of the container and the 24th frame of akiyo using TRSM-TC. The top row shows the original images and its 0.98 missing cases for container and akiyo. The second and third rows show the recovered results of container and akiyo under different TR-ranks.</p> "> Figure 9
<p>Ablation studies examining the effects of <math display="inline"><semantics> <mi>λ</mi> </semantics></math> and the first TR-rank. In figures focusing on the first TR-rank, the horizontal dashed line represents results achieved when the first TR-rank is set equal to the other ranks.</p> ">
Abstract
:1. Introduction
- We define a novel tensor sparsity measurement, termed tensor ring sparsity measurement (TRSM), which can be efficiently computed by the continuous product of ranks of the TR cores. Specifically, it measures the sparsity of tensors as the numbers of the Kronecker bases constructed by the TR cores for tensor representation. The graphical demonstration of the Kronecker bases representation of a tensor based on TR decomposition is shown in Figure 2.
- To improve the practicality of TRSM, the minimax concave penalty (MCP) folded-concave penalty is introduced as a nonconvex relaxation and then applied to the tensor completion problem, which has previously been applied in computer vision and pattern recognition. As a result, we formulate a new tensor completion model called tensor ring sparsity measurement tensor completion (TRSM-TC). An efficient algorithm based on the alternating direction method of multipliers (ADMM) is developed to optimize the proposed model. Experiments show that TRSM-TC achieves better performance than other algorithms in recovering a high missing rate hyperspectral images and video.
2. Preliminaries
2.1. Tensor Algebra
2.2. Tensor Ring Decomposition
3. Tensor Ring Sparsity Measurement
4. Tensor Ring Sparsity Measurement-Based Tensor Completion
Algorithm 1 Tensor Ring Sparsity Measurement Tensor Completion |
Input: , : initial TR-cores, : initial auxiliary variables, : initial Lagrangian multiplier, initial , , , , , , Output: completed tensor and TR-cores |
5. Computational Complexity
6. Experimental Results
6.1. Color Images Completion
6.2. Noisy Color Images Completion
6.3. Multispectral Images Completion
6.4. Videos Completion
6.5. Parameters Analysis
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bertalmio, M.; Sapiro, G.; Caselles, V.; Ballester, C. Image inpainting. In Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, New Orleans, LA, USA, 23–28 July 2000; pp. 417–424. [Google Scholar]
- Komodakis, N. Image completion using global optimization. In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), New York, NY, USA, 17–22 June 2006; Volume 1, pp. 442–452. [Google Scholar]
- He, W.; Yokoya, N.; Yuan, L.; Zhao, Q. Remote sensing image reconstruction using tensor ring completion and total variation. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8998–9009. [Google Scholar] [CrossRef]
- Ding, T.; Sznaier, M.; Camps, O.I. A rank minimization approach to video inpainting. In Proceedings of the 2007 IEEE 11th International Conference on Computer Vision, Rio De Janeiro, Brazil, 14–21 October 2007; pp. 1–8. [Google Scholar]
- Siahsar, M.A.N.; Gholtashi, S.; Abolghasemi, V.; Chen, Y. Simultaneous denoising and interpolation of 2D seismic data using data-driven non-negative dictionary learning. Signal Process. 2017, 141, 309–321. [Google Scholar] [CrossRef]
- Nazari Siahsar, M.A.; Gholtashi, S.; Kahoo, A.R.; Chen, W.; Chen, Y. Data-driven multitask sparse dictionary learning for noise attenuation of 3D seismic data. Geophysics 2017, 82, V385–V396. [Google Scholar] [CrossRef]
- Chen, Y.; Bai, M.; Chen, Y. Obtaining free USArray data by multi-dimensional seismic reconstruction. Nat. Commun. 2019, 10, 4434. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Xu, B.; Zhu, T.; Zhou, T.; Zhang, H.T. Anisotropic interaction rules in circular motions of pigeon flocks: An empirical study based on sparse Bayesian learning. Phys. Rev. E 2017, 96, 022411. [Google Scholar] [CrossRef] [PubMed]
- Shashua, A. On photometric issues in 3D visual recognition from a single 2D image. Int. J. Comput. Vis. 1997, 21, 99–122. [Google Scholar] [CrossRef]
- Benezeth, Y.; Jodoin, P.M.; Emile, B.; Laurent, H.; Rosenberger, C. Comparative study of background subtraction algorithms. J. Electron. Imaging 2010, 19, 033003. [Google Scholar]
- Cao, W.; Wang, Y.; Sun, J.; Meng, D.; Yang, C.; Cichocki, A.; Xu, Z. Total variation regularized tensor RPCA for background subtraction from compressive measurements. IEEE Trans. Image Process. 2016, 25, 4075–4090. [Google Scholar] [CrossRef]
- Lustig, M.; Donoho, D.L.; Santos, J.M.; Pauly, J.M. Compressed sensing MRI. IEEE Signal Process. Mag. 2008, 25, 72–82. [Google Scholar] [CrossRef]
- Uecker, M.; Hohage, T.; Block, K.T.; Frahm, J. Image reconstruction by regularized nonlinear inversion—joint estimation of coil sensitivities and image content. Magn. Reson. Med. 2008, 60, 674–682. [Google Scholar] [CrossRef]
- Wang, A.; Zhou, G.; Jin, Z.; Zhao, Q. Noisy Tensor Completion via Orientation Invariant Tubal Nuclear Norm. Pac. J. Optim. 2023, 19, 273–313. [Google Scholar]
- Wright, J.; Ganesh, A.; Rao, S.; Ma, Y. Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Matrices via Convex Optimization; Report No. UILU-ENG-09-2210, DC-243; Coordinated Science Laboratory: Urbana, IL, USA, 2009. [Google Scholar]
- Zhao, Q.; Meng, D.; Xu, Z.; Zuo, W.; Zhang, L. Robust principal component analysis with complex noise. In Proceedings of the International Conference on Machine Learning, PMLR, Beijing, China, 22–24 June 2014; pp. 55–63. [Google Scholar]
- Cai, J.F.; Candès, E.J.; Shen, Z. A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 2010, 20, 1956–1982. [Google Scholar] [CrossRef]
- Ma, S.; Goldfarb, D.; Chen, L. Fixed point and Bregman iterative methods for matrix rank minimization. Math. Program. 2011, 128, 321–353. [Google Scholar] [CrossRef]
- Recht, B. A simpler approach to matrix completion. J. Mach. Learn. Res. 2011, 12, 3413–3430. [Google Scholar]
- Candès, E.J.; Tao, T. The power of convex relaxation: Near-optimal matrix completion. IEEE Trans. Inf. Theory 2010, 56, 2053–2080. [Google Scholar] [CrossRef]
- Signoretto, M.; Van de Plas, R.; De Moor, B.; Suykens, J.A. Tensor versus matrix completion: A comparison with application to spectral data. IEEE Signal Process. Lett. 2011, 18, 403–406. [Google Scholar] [CrossRef]
- Giannakopoulos, I.I.; Guryev, G.D.; Serrallés, J.E.; Georgakis, I.P.; Daniel, L.; White, J.K.; Lattanzi, R. Compression of volume-surface integral equation matrices via Tucker decomposition for magnetic resonance applications. IEEE Trans. Antennas Propag. 2021, 70, 459–471. [Google Scholar] [CrossRef]
- Giannakopoulos, I.I.; Guryev, G.D.; Serrallés, J.E.; Georgakis, I.P.; Daniel, L.; White, J.K.; Lattanzi, R. A tensor train compression scheme for remote volume-surface integral equation interactions. In Proceedings of the 2021 International Applied Computational Electromagnetics Society Symposium (ACES), Chengdu, China, 28–31 July 2021; pp. 1–4. [Google Scholar]
- De Lathauwer, L.; De Moor, B. From matrix to tensor: Multilinear algebra and signal processing. In Proceedings of the Institute of Mathematics and Its Applications Conference Series; Citeseer: State College, PA, USA, 1998; Volume 67, pp. 1–16. [Google Scholar]
- Sidiropoulos, N.D.; Bro, R.; Giannakis, G.B. Parallel factor analysis in sensor array processing. IEEE Trans. Signal Process. 2000, 48, 2377–2388. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhou, G.; Wang, Y.; Zhang, Y.; Xie, S. A generalized graph regularized non-negative tucker decomposition framework for tensor data representation. IEEE Trans. Cybern. 2020, 52, 594–607. [Google Scholar] [CrossRef]
- Vasilescu, M.A.O.; Terzopoulos, D. Multilinear analysis of image ensembles: Tensorfaces. In Proceedings of the European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2002; pp. 447–460. [Google Scholar]
- Qiu, Y.; Zhou, G.; Zhao, Q.; Xie, S. Noisy tensor completion via low-rank tensor ring. IEEE Trans. Neural Netw. Learn. Syst. 2022, 35, 1127–1141. [Google Scholar] [CrossRef]
- Zheng, Y.B.; Huang, T.Z.; Zhao, X.L.; Zhao, Q.; Jiang, T.X. Fully-connected tensor network decomposition and its application to higher-order tensor completion. In Proceedings of the AAAI Conference on Artificial Intelligence, Online, 2–9 February 2021; Volume 35, pp. 11071–11078. [Google Scholar]
- Carroll, J.D.; Chang, J.J. Analysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart-Young” decomposition. Psychometrika 1970, 35, 283–319. [Google Scholar] [CrossRef]
- Håstad, J. Tensor rank is NP-Complete. In Proceedings of the International Colloquium on Automata, Languages, and Programming; Springer: Berlin/Heidelberg, Germany, 1989; pp. 451–460. [Google Scholar]
- Zheng, Y.B.; Huang, T.Z.; Zhao, X.L.; Jiang, T.X.; Ji, T.Y.; Ma, T.H. Tensor N-tubal rank and its convex relaxation for low-rank tensor recovery. Inf. Sci. 2020, 532, 170–189. [Google Scholar] [CrossRef]
- Tucker, L.R. Some mathematical notes on three-mode factor analysis. Psychometrika 1966, 31, 279–311. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Long, Z.; Huang, H.; Zhu, C. Low CP rank and tucker rank tensor completion for estimating missing components in image data. IEEE Trans. Circuits Syst. Video Technol. 2019, 30, 944–954. [Google Scholar] [CrossRef]
- Tong, X.; Cheng, L.; Wu, Y.C. Bayesian Tensor Tucker Completion with A Flexible Core. IEEE Trans. Signal Process. 2023, 71, 4077–4091. [Google Scholar] [CrossRef]
- Cichocki, A.; Lee, N.; Oseledets, I.; Phan, A.H.; Zhao, Q.; Mandic, D.P. Tensor networks for dimensionality reduction and large-scale optimization: Part 1 low-rank tensor decompositions. Found. Trends Mach. Learn. 2016, 9, 249–429. [Google Scholar] [CrossRef]
- Cichocki, A.; Phan, A.H.; Zhao, Q.; Lee, N.; Oseledets, I.V.; Sugiyama, M.; Mandic, D. Tensor networks for dimensionality reduction and large-scale optimizations. part 2 applications and future perspectives. arXiv 2017, arXiv:1708.09165. [Google Scholar]
- Oseledets, I.V. Tensor-train decomposition. SIAM J. Sci. Comput. 2011, 33, 2295–2317. [Google Scholar] [CrossRef]
- Oseledets, I.V. Approximation of 2d × 2d matrices using tensor decomposition. SIAM J. Matrix Anal. Appl. 2010, 31, 2130–2145. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhou, G.; Xie, S.; Zhang, L.; Cichocki, A. Tensor ring decomposition. arXiv 2016, arXiv:1606.05535. [Google Scholar]
- Bengua, J.A.; Phien, H.N.; Tuan, H.D.; Do, M.N. Efficient tensor completion for color image and video recovery: Low-rank tensor train. IEEE Trans. Image Process. 2017, 26, 2466–2479. [Google Scholar] [CrossRef]
- Yuan, L.; Li, C.; Mandic, D.; Cao, J.; Zhao, Q. Tensor ring decomposition with rank minimization on latent space: An efficient approach for tensor completion. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 9151–9158. [Google Scholar]
- Yu, J.; Zhou, G.; Li, C.; Zhao, Q.; Xie, S. Low tensor-ring rank completion by parallel matrix factorization. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 3020–3033. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Zhao, Y.; Liao, W.; Chan, J.C.W.; Kong, S.G. Enhanced sparsity prior model for low-rank tensor completion. IEEE Trans. Neural Netw. Learn. Syst. 2019, 31, 4567–4581. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Zhao, Y.; Huang, S.; Liao, W.; Chan, J.C.W.; Kong, S.G. Multilayer sparsity-based tensor decomposition for low-rank tensor completion. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 6916–6930. [Google Scholar] [CrossRef]
- Zhao, Q.; Meng, D.; Kong, X.; Xie, Q.; Cao, W.; Wang, Y.; Xu, Z. A novel sparsity measure for tensor recovery. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 271–279. [Google Scholar]
- Xie, Q.; Zhao, Q.; Meng, D.; Xu, Z. Kronecker-basis-representation based tensor sparsity and its applications to tensor recovery. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 1888–1902. [Google Scholar] [CrossRef]
- Kolda, T.G.; Bader, B.W. Tensor decompositions and applications. SIAM Rev. 2009, 51, 455–500. [Google Scholar] [CrossRef]
- Zhang, C.H. Nearly unbiased variable selection under minimax concave penalty. Ann. Stat. 2010, 38, 894–942. [Google Scholar] [CrossRef]
- Xu, Y.; Hao, R.; Yin, W.; Su, Z. Parallel matrix factorization for low-rank tensor completion. arXiv 2013, arXiv:1312.1254. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhang, L.; Cichocki, A. Bayesian CP factorization of incomplete tensors with automatic rank determination. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1751–1763. [Google Scholar] [CrossRef]
- Morup, M.; Dunlavy, D.M.; Acar, E.; Kolda, T.G. Scalable tensor factorizations with missing data. In Technical Report; Sandia National Laboratories: Albuquerque, NM, USA; Livermore, CA, USA, 2010. [Google Scholar]
- Liu, J.; Musialski, P.; Wonka, P.; Ye, J. Tensor completion for estimating missing values in visual data. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 35, 208–220. [Google Scholar] [CrossRef]
- Yuan, L.; Cao, J.; Zhao, X.; Wu, Q.; Zhao, Q. Higher-dimension tensor completion via low-rank tensor ring decomposition. In Proceedings of the 2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Honolulu, HI, USA, 12–15 November 2018; pp. 1071–1076. [Google Scholar]
- Yuan, L.; Zhao, Q.; Gui, L.; Cao, J. High-order tensor completion via gradient-based optimization under tensor train format. Signal Process. Image Commun. 2019, 73, 53–61. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Yasuma, F.; Mitsunaga, T.; Iso, D.; Nayar, S.K. Generalized assorted pixel camera: Postcapture control of resolution, dynamic range, and spectrum. IEEE Trans. Image Process. 2010, 19, 2241–2253. [Google Scholar] [CrossRef] [PubMed]
- Wald, L. Data Fusion: Definitions and Architectures: Fusion of Images of Different Spatial Resolutions; Presses des MINES: Paris, France, 2002. [Google Scholar]
- Seeling, P.; Reisslein, M. Video traffic characteristics of modern encoding standards: H. 264/AVC with SVC and MVC extensions and H. 265/HEVC. Sci. World J. 2014, 2014, 189481. [Google Scholar] [CrossRef]
- Chang, Y.; Yan, L.; Chen, B.; Zhong, S.; Tian, Y. Hyperspectral image restoration: Where does the low-rank property exist. IEEE Trans. Geosci. Remote Sens. 2020, 59, 6869–6884. [Google Scholar] [CrossRef]
Methods | mr = 0.8 | mr = 0.9 | ||||||
---|---|---|---|---|---|---|---|---|
3D | 5D | 9D | VDT | 3D | 5D | 9D | VDT | |
CP-WOPT | 0.1402 | 0.1607 | 0.2335 | 0.2403 | 0.2038 | 0.2129 | 0.2663 | 0.2849 |
FBCP | 0.1343 | 0.1551 | 0.2343 | 0.2532 | 0.1799 | 0.1984 | 0.2716 | 0.2812 |
HaLRTC | 0.1327 | 0.2801 | 0.3276 | 0.3291 | 0.1889 | 0.3309 | 0.3565 | 0.3581 |
Tmac | 0.1242 | 0.1373 | 0.1326 | 0.1463 | 0.1785 | 0.1853 | 0.1964 | 0.2002 |
TRLRF | 0.1279 | 0.1148 | 0.1299 | 0.1349 | 0.1972 | 0.1610 | 0.1646 | 0.1982 |
TR-WOPT | 0.1396 | 0.1044 | 0.1143 | 0.1278 | 0.2092 | 0.1434 | 0.1433 | 0.1695 |
TRSM-TC | 0.1343 | 0.0925 | 0.1320 | 0.1340 | 0.2179 | 0.1283 | 0.1734 | 0.1716 |
MR | CP-WOPT | FBCP | HaLRTC | Tmac | TRLRF | TR-WOPT | TRSM-TC |
---|---|---|---|---|---|---|---|
0.8 | 0.5589 | 0.6341 | 0.6726 | 0.6348 | 0.6814 | 0.6981 | 0.7627 |
0.9 | 0.4003 | 0.4469 | 0.4946 | 0.4492 | 0.493 | 0.551 | 0.6174 |
SNR | CP-WOPT | FBCP | HaLRTC | Tmac | TRLRF | TR-WOPT | TRSM-TC | |||||||
RSE | SSIM | RSE | SSIM | RSE | SSIM | RSE | SSIM | RSE | SSIM | RSE | SSIM | RSE | SSIM | |
31 | 0.143 | 0.546 | 0.137 | 0.622 | 0.136 | 0.658 | 0.128 | 0.621 | 0.117 | 0.674 | 0.108 | 0.691 | 0.098 | 0.740 |
26 | 0.147 | 0.543 | 0.138 | 0.597 | 0.141 | 0.632 | 0.136 | 0.590 | 0.121 | 0.650 | 0.112 | 0.667 | 0.103 | 0.719 |
21 | 0.156 | 0.495 | 0.147 | 0.540 | 0.153 | 0.580 | 0.158 | 0.508 | 0.133 | 0.602 | 0.123 | 0.618 | 0.114 | 0.657 |
SNR | CP-WOPT | FBCP | HaLRTC | Tmac | TRLRF | TR-WOPT | TRSM-TC | |||||||
RSE | SSIM | RSE | SSIM | RSE | SSIM | RSE | SSIM | RSE | SSIM | RSE | SSIM | RSE | SSIM | |
31 | 0.208 | 0.402 | 0.184 | 0.440 | 0.192 | 0.487 | 0.182 | 0.445 | 0.163 | 0.529 | 0.145 | 0.553 | 0.129 | 0.604 |
26 | 0.210 | 0.393 | 0.186 | 0.428 | 0.195 | 0.475 | 0.187 | 0.426 | 0.164 | 0.525 | 0.148 | 0.535 | 0.133 | 0.584 |
21 | 0.221 | 0.367 | 0.191 | 0.397 | 0.205 | 0.443 | 0.205 | 0.379 | 0.172 | 0.482 | 0.156 | 0.498 | 0.143 | 0.540 |
MR | CP-WOPT | FBCP | HaLRTC | Tmac | TRLRF | TR-WOPT | TRSM-TC | |
---|---|---|---|---|---|---|---|---|
0.95 | RSE | 0.1835 | 0.1352 | 0.3343 | 0.1764 | 0.1381 | 0.1344 | 0.1162 |
ERGAS | 164.1529 | 123.0992 | 309.2216 | 163.4394 | 128.0540 | 123.4724 | 107.6782 | |
SSIM | 0.8506 | 0.8716 | 0.7672 | 0.8251 | 0.853 | 0.8805 | 0.896 | |
0.98 | RSE | 0.6466 | 0.2374 | 0.6314 | 0.3901 | 0.2696 | 0.2308 | 0.1980 |
ERGAS | 522.4653 | 216.4430 | 591.0829 | 354.5717 | 249.1188 | 210.0180 | 182.5890 | |
SSIM | 0.4372 | 0.7461 | 0.4469 | 0.6186 | 0.6653 | 0.7700 | 0.7754 |
CP-WOPT | FBCP | HaLRTC | Tmac | TRLRF | TR-WOPT | TRSM-TC | |
---|---|---|---|---|---|---|---|
RSE | 0.1775 | 0.1165 | 0.4204 | 0.2316 | 0.1067 | 0.1082 | 0.0858 |
ERGAS | 218.6831 | 143.0337 | 515.8984 | 286.2220 | 131.8164 | 133.7670 | 107.7512 |
SSIM | 0.5941 | 0.7413 | 0.4073 | 0.5392 | 0.7493 | 0.7432 | 0.8079 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, J.; Qiu, Y.; Ma, Y.; Wang, A.; Zhao, Q. A Novel Tensor Ring Sparsity Measurement for Image Completion. Entropy 2024, 26, 105. https://doi.org/10.3390/e26020105
Zeng J, Qiu Y, Ma Y, Wang A, Zhao Q. A Novel Tensor Ring Sparsity Measurement for Image Completion. Entropy. 2024; 26(2):105. https://doi.org/10.3390/e26020105
Chicago/Turabian StyleZeng, Junhua, Yuning Qiu, Yumeng Ma, Andong Wang, and Qibin Zhao. 2024. "A Novel Tensor Ring Sparsity Measurement for Image Completion" Entropy 26, no. 2: 105. https://doi.org/10.3390/e26020105
APA StyleZeng, J., Qiu, Y., Ma, Y., Wang, A., & Zhao, Q. (2024). A Novel Tensor Ring Sparsity Measurement for Image Completion. Entropy, 26(2), 105. https://doi.org/10.3390/e26020105