Hierarchical Wilson–Cowan Models and Connection Matrices
<p>The rooted tree associated with the group <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="double-struck">Z</mi> <mn>2</mn> </msub> <mo>/</mo> <msup> <mn>2</mn> <mn>3</mn> </msup> <msub> <mi mathvariant="double-struck">Z</mi> <mn>2</mn> </msub> </mrow> </semantics></math>. The elements of <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="double-struck">Z</mi> <mn>2</mn> </msub> <mo>/</mo> <msup> <mn>2</mn> <mn>3</mn> </msup> <msub> <mi mathvariant="double-struck">Z</mi> <mn>2</mn> </msub> </mrow> </semantics></math> have the form <math display="inline"><semantics> <mrow> <mi>i</mi> <mo>=</mo> <msub> <mi>i</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>i</mi> <mn>1</mn> </msub> <mn>2</mn> <mo>+</mo> <msub> <mi>i</mi> <mn>2</mn> </msub> <msup> <mn>2</mn> <mn>2</mn> </msup> </mrow> </semantics></math>,<math display="inline"><semantics> <mrow> <mspace width="0.277778em"/> <msub> <mi>i</mi> <mn>0</mn> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <msub> <mi>i</mi> <mn>1</mn> </msub> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>i</mi> <mn>2</mn> </msub> <mo>∈</mo> <mrow> <mo>{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>}</mo> </mrow> </mrow> </semantics></math>. The distance satisfies <math display="inline"><semantics> <mrow> <mo>−</mo> <msub> <mo form="prefix">log</mo> <mn>2</mn> </msub> <msub> <mfenced separators="" open="|" close="|"> <mi>i</mi> <mo>−</mo> <mi>j</mi> </mfenced> <mn>2</mn> </msub> <mo>=</mo> </mrow> </semantics></math> level of the first common ancestor of <span class="html-italic">i</span>, <span class="html-italic">j</span>.</p> "> Figure 2
<p>Heat map of function <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </semantics></math>; see (<a href="#FD18-entropy-25-00949" class="html-disp-formula">18</a>). Here, <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> <mo>=</mo> <mi>ϕ</mi> <mo>(</mo> <mn>1</mn> <mo>)</mo> <mo>=</mo> <mi>ϕ</mi> <mo>(</mo> <mn>7</mn> <mo>)</mo> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> is white; <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>(</mo> <mn>2</mn> <mo>)</mo> <mo>=</mo> <mo>−</mo> <mn>1</mn> </mrow> </semantics></math> is black; and <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> is red for <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>≠</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>7</mn> <mo>,</mo> <mn>2</mn> </mrow> </semantics></math>.</p> "> Figure 3
<p>An approximation of <math display="inline"><semantics> <mrow> <mi>E</mi> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>. We take <math display="inline"><semantics> <mrow> <mi>Q</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>. The time axis goes from 0 to 100 with a step of <math display="inline"><semantics> <mrow> <mn>0.05</mn> </mrow> </semantics></math>. The figure shows the response of the network to a brief localized stimulus (the pulse given in (<a href="#FD19-entropy-25-00949" class="html-disp-formula">19</a>)). The response is also a pulse. This result is consistent with the numerical results in [<a href="#B2-entropy-25-00949" class="html-bibr">2</a>] (Section 2.2.1, Figure 3).</p> "> Figure 4
<p>An approximation of <math display="inline"><semantics> <mrow> <mi>E</mi> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>. We take <math display="inline"><semantics> <mrow> <mi>Q</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math>. The time axis goes from 0 to 200 with a step of <math display="inline"><semantics> <mrow> <mn>0.05</mn> </mrow> </semantics></math>. The figure shows the response of the network to a maintained stimulus (see (<a href="#FD19-entropy-25-00949" class="html-disp-formula">19</a>)). The response is a pulse train. This result is consistent with the numerical results in [<a href="#B2-entropy-25-00949" class="html-bibr">2</a>] (Section 2.2.5, Figure 7).</p> "> Figure 5
<p>An approximation of <math display="inline"><semantics> <mrow> <mi>E</mi> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>. We take <math display="inline"><semantics> <mrow> <mi>Q</mi> <mo>=</mo> <mo>−</mo> <mn>30</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math>. The time axis goes from 0 to 100 with a step of <math display="inline"><semantics> <mrow> <mn>0.05</mn> </mrow> </semantics></math>. The figure shows the response of the network to a maintained stimulus (see (<a href="#FD19-entropy-25-00949" class="html-disp-formula">19</a>) and (<a href="#FD20-entropy-25-00949" class="html-disp-formula">20</a>)). The response is a pulse train in space and time. This result is consistent with the numerical results in [<a href="#B2-entropy-25-00949" class="html-bibr">2</a>] (Section 2.2.7, Figure 9).</p> "> Figure 6
<p>An approximation of <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>h</mi> <mo>˜</mo> </mover> <mi>E</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>E</mi> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>. We take <math display="inline"><semantics> <mrow> <msub> <mi>h</mi> <mi>I</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>≡</mo> <mn>0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>l</mi> <mo>=</mo> <mn>6</mn> </mrow> </semantics></math>; the kernels <math display="inline"><semantics> <msub> <mi>w</mi> <mrow> <mi>A</mi> <mi>B</mi> </mrow> </msub> </semantics></math> are as in Simulation 1, and <math display="inline"><semantics> <mrow> <msub> <mi>h</mi> <mi>E</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> is as in (<a href="#FD21-entropy-25-00949" class="html-disp-formula">21</a>). The time axis goes from 0 to 60 with a step of <math display="inline"><semantics> <mrow> <mn>0.05</mn> </mrow> </semantics></math>. The first figure is the stimuli, and the second figure is the response of the network.</p> "> Figure 7
<p>An approximation of <math display="inline"><semantics> <mrow> <msub> <mi>h</mi> <mi>E</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>E</mi> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>. We take <math display="inline"><semantics> <mrow> <msub> <mi>h</mi> <mi>I</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>≡</mo> <mn>0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>l</mi> <mo>=</mo> <mn>6</mn> </mrow> </semantics></math>; the kernels <math display="inline"><semantics> <msub> <mi>w</mi> <mrow> <mi>A</mi> <mi>B</mi> </mrow> </msub> </semantics></math> are as in Simulation 1, and <math display="inline"><semantics> <mrow> <msub> <mi>h</mi> <mi>E</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> is as in (<a href="#FD22-entropy-25-00949" class="html-disp-formula">22</a>). The time axis goes from 0 to 60 with a step of <math display="inline"><semantics> <mrow> <mn>0.05</mn> </mrow> </semantics></math>. The first figure is the stimuli, and the second figure is the response of the network.</p> "> Figure 8
<p>The left matrix is the connection matrix of the cat cortex. The right matrix corresponds to a discretization of the kernel <math display="inline"><semantics> <msub> <mi>w</mi> <mrow> <mi>E</mi> <mi>E</mi> </mrow> </msub> </semantics></math> used in Simulation 1.</p> "> Figure 9
<p>Three <span class="html-italic">p</span>-adic approximations for the connection matrix of the cat cortex. We take <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>l</mi> <mo>=</mo> <mn>6</mn> </mrow> </semantics></math>. The first approximation uses <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>; the second, <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>; and the last, <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>.</p> "> Figure 10
<p>We use <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>l</mi> <mo>=</mo> <mn>6</mn> </mrow> </semantics></math>, and the time axis goes from 0 to 150 with a step of <math display="inline"><semantics> <mrow> <mn>0.05</mn> </mrow> </semantics></math>. The left image uses <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>; the right one uses <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>; and the central one uses <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. An Abstract Version of the Wilson–Cowan Equations
2.1. Wilson–Cowan Equations on Locally Compact Abelian Topological Groups
- (i)
- The mapping is continuous, and for each and each , there exist and such that
- (ii)
- For and ,
2.2. The Cauchy Problem
3. Small-World Property and Wilson–Cowan Models
3.1. Compactness and Small-World Networks
3.2. Neuron Geometry and Discreteness
4. -Adic Wilson–Cowan Models
4.1. The p-Adic Integers
Tree-like Structures
4.2. The Haar Measure
4.3. The Bruhat–Schwartz Space in the Unit Ball
4.4. The p-Adic Version and Discrete Version of the Wilson–Cowan Models
5. Numerical Simulations
5.1. Numerical Simulation 1
5.2. Numerical Simulation 2
6. -Adic Kernels and Connection Matrices
7. Final Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Wilson, H.R.; Cowan, J.D. Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 1972, 12, 1–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, H.R.; Cowan, J.D.A. Mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 1973, 13, 55–80. [Google Scholar] [CrossRef] [PubMed]
- Stephen, C.; Peter, B.G.; Roland, P.; James, W. (Eds.) Neural Fields: Theory and Applications; Springer: Heidelberg, Germany, 2014. [Google Scholar]
- Thierry, C.; Alain, H. An Introduction to Semilinear Evolution Equations; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- Milan, M. Applied Functional Analysis and Partial Differential Equations; World Scientific Publishing Co., Inc.: River Edge, NJ, USA, 1998. [Google Scholar]
- Sporns, O.; Tononi, G.; Edelman, G.M. Theoretical neuroanatomy: Relating anatomical and functional connectivity in graphs and cortical connection matrices. Cereb. Cortex 2000, 10, 127–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scannell, J.W.; Burns, G.A.; Hilgetag, C.C.; O’Neil, M.A.; Young, M.P. The connectional organization of the cortico-thalamic system of the cat. Cereb. Cortex 1999, 9, 277–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sporns, O. Small-world connectivity, motif composition, and complexity of fractal neuronal connections. Biosystems 2006, 85, 55–64. [Google Scholar] [CrossRef]
- Sporns, O.; Honey, C.J. Small worlds inside big brains. Proc. Natl. Acad. Sci. USA 2006, 103, 19219–19220. [Google Scholar] [CrossRef] [Green Version]
- Hilgetag, C.C.; Goulas, A. Is the brain really a small-world network? Brain Struct. Funct. 2016, 221, 2361–2366. [Google Scholar] [CrossRef] [Green Version]
- Muldoon, S.F.; Bridgeford, E.W.; Bassett, D.S. Small-World Propensity and Weighted Brain Networks. Sci. Rep. 2016, 6, 22057. [Google Scholar] [CrossRef] [Green Version]
- Bassett, D.S.; Bullmore, E.T. Small-World Brain Networks Revisited. Neuroscientist 2017, 23, 499–516. [Google Scholar] [CrossRef] [Green Version]
- Akiki, T.J.; Abdallah, C.G. Determining the Hierarchical Architecture of the Human Brain Using Subject-Level Clustering of Functional Networks. Sci. Rep. 2019, 9, 19290. [Google Scholar] [CrossRef] [Green Version]
- Scannell, J.W.; Blakemore, C.; Young, M.P. Analysis of connectivity in the cat cerebral cortex. J. Neurosci. 1995, 15, 1463–1483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fornito, A.; Zalesky, A.; Bullmore, E. Connectivity Matrices and Brain Graphs. In Fundamentals of Brain Network Analysis; Academic Press: Cambridge, MA, USA, 2016; pp. 89–113. [Google Scholar]
- Sporns, O. Networks of the Brain; Penguin Random House LLC.: New York, NY, USA, 2016. [Google Scholar]
- Swanson, L.W.; Hahn, J.D.; Sporns, O. Organizing principles for the cerebral cortex network of commissural and association connections. Proc. Natl. Acad. Sci. USA 2017, 114, E9692–E9701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demirtaş, M.; Burt, J.B.; Helmer, M.; Ji, J.L.; Adkinson, B.D.; Glasser, M.F.; Van Essen, D.C.; Sotiropoulos, S.N.; Anticevic, A.; Murray, J.D. Hierarchical Heterogeneity across Human Cortex Shapes Large-Scale Neural Dynamics. Neuron 2019, 101, 1181–1194. [Google Scholar] [CrossRef] [Green Version]
- Škoch, A.; Rehák Bučkovxax, B.; Mareš, J.; Tintěra, J.; Sanda, P.; Jajcay, L.; Horxaxxcxek, J.; Španiel, F.; Hlinka, J. Human brain structural connectivity matrices-ready for modeling. Sci. Data 2022, 9, 486. [Google Scholar] [CrossRef]
- Avetisov, V.A.; Bikulov, A.K.; Osipov, V.A. p-Adic description of characteristic relaxation in complex systems. J. Phys. A 2003, 36, 4239–4246. [Google Scholar] [CrossRef] [Green Version]
- Avetisov, V.A.; Bikulov, A.H.; Kozyrev, S.V.; Osipov, V.A. p-Adic models of ultrametric diffusion constrained by hierarchical energy landscapes. J. Phys. A 2002, 35, 177–189. [Google Scholar] [CrossRef] [Green Version]
- Parisi, G.; Sourlas, N. p-Adic numbers and replica symmetry breaking. Eur. Phys. J. B 2000, 14, 535–542. [Google Scholar] [CrossRef]
- Khrennikov, A.; Kozyrev, S.; Zúñiga-Galindo, W.A. Ultrametric Equations and Its Applications: Encyclopedia of Mathematics and Its Applications 168; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Zúñiga-Galindo, W.A. Eigen’s paradox and the quasispecies model in a non-Archimedean framework. Phys. A Stat. Mech. Its Appl. 2022, 602, 127648. [Google Scholar] [CrossRef]
- Zúñiga-Galindo, W.A. Ultrametric diffusion, rugged energy landscapes, and transition networks. Phys. A Stat. Mech. Its Appl. 2022, 597, 127221. [Google Scholar] [CrossRef]
- Zúñiga-Galindo, W.A. Reaction-diffusion equations on complex networks and Turing patterns, via p-adic analysis. J. Math. Anal. Appl. 2020, 491, 124239. [Google Scholar] [CrossRef]
- Zambrano-Luna, B.A.; Zuniga-Galindo, W.A. p-Adic cellular neural networks. J. Nonlinear Math. Phys. 2023, 30, 34–70. [Google Scholar] [CrossRef]
- Zambrano-Luna, B.A.; Zúñiga-Galindo, W.A. p-Adic cellular neural networks: Applications to image processing. Phys. D Nonlinear Phenom. 2023, 446, 133668. [Google Scholar] [CrossRef]
- Vladimirov, V.S.; Volovich, I.V.; Zelenov, E.I. p-Adic Analysis and Mathematical Physics; World Scientific: Singapore, 1994. [Google Scholar]
- Albeverio, S.; Khrennikov, A.; Shelkovich, V.M. Theory ofp-Adicdistributions: Linear and Nonlinear Models; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Kochubei, A.N. Pseudo-Differential Equations and Stochastics over Non-Archimedean Fields; Marcel Dekker: New York, NY, USA, 2001. [Google Scholar]
- Taibleson, M.H. Fourier Analysis on Local Fields; Princeton University Press: Princeton, NJ, USA, 1975. [Google Scholar]
- Bocardo-Gaspar, M.; García-Compeán, H.; Zúñiga-Galindo, W.A. Regularization of p-adic string amplitudes, and multivariate local zeta functions. Lett. Math. Phys. 2019, 109, 1167–1204. [Google Scholar] [CrossRef] [Green Version]
- Koblitz, N. p-Adic Numbers, p-Adic Analysis, and Zeta-Functions. Graduate Texts in Mathematics No. 58; Springer: New York, NY, USA, 1984. [Google Scholar]
- Chistyakov, D.V. Fractal geometry of images of continuous embeddings of p-adic numbers and solenoids into Euclidean spaces. Theor. Math. Phys. 1996, 109, 1495–1507. [Google Scholar] [CrossRef]
- Halmos, P. Measure Theory; D. Van Nostrand Company Inc.: New York, NY, USA, 1950. [Google Scholar]
- Zúñiga-Galindo, W.A. Non-Archimedean Reaction-Ultradiffusion Equations and Complex Hierarchic Systems. Nonlinearity 2018, 31, 2590–2616. [Google Scholar] [CrossRef] [Green Version]
- Monna, A.F. Sur une transformation simple des nombres p-adiques en nombres réels. Indag. Math. 1952, 14, 1–9. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zúñiga-Galindo, W.A.; Zambrano-Luna, B.A. Hierarchical Wilson–Cowan Models and Connection Matrices. Entropy 2023, 25, 949. https://doi.org/10.3390/e25060949
Zúñiga-Galindo WA, Zambrano-Luna BA. Hierarchical Wilson–Cowan Models and Connection Matrices. Entropy. 2023; 25(6):949. https://doi.org/10.3390/e25060949
Chicago/Turabian StyleZúñiga-Galindo, W. A., and B. A. Zambrano-Luna. 2023. "Hierarchical Wilson–Cowan Models and Connection Matrices" Entropy 25, no. 6: 949. https://doi.org/10.3390/e25060949
APA StyleZúñiga-Galindo, W. A., & Zambrano-Luna, B. A. (2023). Hierarchical Wilson–Cowan Models and Connection Matrices. Entropy, 25(6), 949. https://doi.org/10.3390/e25060949