Delay Minimization in RIS-Assisted URLLC Systems under Reliability Constraints
<p>Architecture of our proposed reconfigurable intelligent surface (RIS)-aided ultra-reliable and low-latency communication (URLLC) system with a control center (CC), several IoT devices, and an RIS. An obstacle exists on the path between the CC and the IoT devices, and the RIS provides a reflection path to improve the channel quality.</p> "> Figure 2
<p>Total blocklength versus the decoding error probability (DEP) under various schemes. <span class="html-italic">M</span> = 20, <span class="html-italic">D</span> = 256 bits, <span class="html-italic">N</span> = 20, <span class="html-italic">K</span> = 10.</p> "> Figure 3
<p>Total blocklength versus the packet length <span class="html-italic">D</span> under various schemes. <span class="html-italic">M</span> = 20, <span class="html-italic">N</span> = 20, DEP = <math display="inline"><semantics> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>7</mn> </mrow> </msup> </semantics></math>, <span class="html-italic">K</span> = 10.</p> "> Figure 4
<p>Total blocklength versus the number <span class="html-italic">M</span> of reflecting elements under various schemes. <span class="html-italic">D</span> = 256 bits, <span class="html-italic">N</span> = 20, <span class="html-italic">K</span> = 10, DEP = <math display="inline"><semantics> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>7</mn> </mrow> </msup> </semantics></math>.</p> "> Figure 5
<p>The average blocklength versus the number of device <span class="html-italic">K</span> under various schemes. <span class="html-italic">M</span> = 20, <span class="html-italic">D</span> = 256 bits, <span class="html-italic">N</span> = 20, DEP = <math display="inline"><semantics> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>7</mn> </mrow> </msup> </semantics></math>.</p> "> Figure 6
<p>The average blocklength versus the number of CC antennas <span class="html-italic">N</span> under different numbers of IoT devices. <span class="html-italic">D</span> = 256 bits, <span class="html-italic">M</span> = 20, DEP = <math display="inline"><semantics> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>7</mn> </mrow> </msup> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. System Model and Problem Formulation
System Model
3. Proposed Algorithm
3.1. ADMM-Problem Reformulation
3.2. Block Update
3.2.1. Update
3.2.2. Update
3.2.3. Update
3.2.4. Update
3.2.5. Update
Algorithm 1: The Proposed ADMM Algorithm. |
Initialization:, , , , iteration index t = 0. while the stopping criterion is not met do 1: Update the blocklength by solving () 2: Update the receiving beamforming according to (21) 3: Update the variables according to (28) 4: Update the RIS phase shift by solving () 5: Update by solving () 6: Update dual variables by (32) 7: Update iteration index t = t+1 end Output: , and . |
3.3. Conventional SDR Method
3.4. Convergence and Time Complexity Analysis
4. Numerical Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Proof of Proposition 2
References
- Ren, H.; Wang, K.; Pan, C. Intelligent reflecting surface-aided URLLC in a factory automation scenario. IEEE Trans. Commun. 2021, 70, 707–723. [Google Scholar] [CrossRef]
- Burmeister, F.; Schwarzenberg, N.; Traßl, A.; Jacob, R.; Fettweis, G.P. Data-Driven Channel Modeling for Industrial URLLC-Motivated PHY Investigations. In Proceedings of the WCNC, Austin, TX, USA, 10–13 April 2022; pp. 2411–2416. [Google Scholar]
- Chen, K.; Wang, Y.; Zhao, J.; Wang, X.; Fei, Z. URLLC-oriented joint power control and resource allocation in UAV-assisted networks. IEEE Internet Things J. 2021, 8, 10103–10116. [Google Scholar] [CrossRef]
- Cai, Y.; Jiang, X.; Liu, M.; Zhao, N.; Chen, Y.; Wang, X. Resource allocation for URLLC-oriented two-way UAV relaying. IEEE Trans. Veh. Technol. 2022, 71, 3344–3349. [Google Scholar] [CrossRef]
- Polyanskiy, Y.; Poor, H.V.; Verdú, S. Channel coding rate in the finite blocklength regime. IEEE Trans. Inf. Theory 2010, 56, 2307–2359. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, R. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network. IEEE Commun. Mag. 2019, 58, 106–112. [Google Scholar] [CrossRef]
- Özdogan, Ö.; Björnson, E.; Larsson, E.G. Intelligent reflecting surfaces: Physics, propagation, and pathloss modeling. IEEE Wirel. Commun. Lett. 2019, 9, 581–585. [Google Scholar] [CrossRef]
- Tao, Q.; Zhang, S.; Zhong, C.; Zhang, R. Intelligent reflecting surface aided multicasting with random passive beamforming. IEEE Wirel. Commun. Lett. 2020, 10, 92–96. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhong, C.; Zhang, Z.; Lu, W. Sum rate optimization for two way communications with intelligent reflecting surface. IEEE Commun. Lett. 2020, 24, 1090–1094. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, R. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming. IEEE Trans. Wirel. Commun. 2019, 18, 5394–5409. [Google Scholar] [CrossRef]
- Xie, H.; Xu, J.; Liu, Y.F.; Liu, L.; Ng, D.W.K. User grouping and reflective beamforming for IRS-aided URLLC. IEEE Wirel. Commun. Lett. 2021, 10, 2533–2537. [Google Scholar] [CrossRef]
- Hashemi, R.; Ali, S.; Mahmood, N.H.; Latva-Aho, M. Joint sum rate and blocklength optimization in RIS-aided short packet URLLC systems. IEEE Commun. Lett. 2022, 26, 1838–1842. [Google Scholar] [CrossRef]
- Cheng, J.; Shen, C.; Chen, Z.; Pappas, N. Robust Beamforming Design for IRS-Aided URLLC in D2D Networks. IEEE Trans. Commun. 2022, 70, 6035–6049. [Google Scholar] [CrossRef]
- Segura-Garcia, J.; Navarro-Ruiz, J.M.; Perez-Solano, J.J.; Montoya-Belmonte, J.; Fellici-Castell, S.; Cobos, M.; Torres-Aranda, A. Spatio-Temporal Analysis of Urban Acoustic Environments with Binaural Psycho-Acoustical Considerations for IoT-Based Applications. Sensors 2018, 18, 690. [Google Scholar] [CrossRef] [PubMed]
- Segura-Garcia, J.; Calero, J.M.A.; Pastor-Aparicio, A.; Marco-Alaez, R.; Felici-Castell, S.; Wang, Q. 5G IoT System for Real-Time Psycho-Acoustic Soundscape Monitoring in Smart Cities With Dynamic Computational Offloading to the Edge. IEEE Internet Things J. 2021, 8, 12467–12475. [Google Scholar] [CrossRef]
- Navarro-Camba, E.; Felici-Castell, S.; Segura-García, J.; García-Pineda, M.; Pérez-Solano, J. Feasibility of a Stochastic Collaborative Beamforming for Long Range Communications in Wireless Sensor Networks. Electronics 2018, 7, 417. [Google Scholar] [CrossRef]
- Wei, L.; Huang, C.; Alexandropoulos, G.C.; Yuen, C.; Zhang, Z.; Debbah, M. Channel estimation for RIS-empowered multi-user MISO wireless communications. IEEE Trans. Commun. 2021, 69, 4144–4157. [Google Scholar] [CrossRef]
- Chi, C.Y.; Li, W.C.; Lin, C.H. Convex Optimization for Signal Processing and Communications: From Fundamentals to Applications; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Sun, X.; Yan, S.; Yang, N.; Ding, Z.; Shen, C.; Zhong, Z. Short-packet downlink transmission with non-orthogonal multiple access. IEEE Trans. Wirel. Commun. 2018, 17, 4550–4564. [Google Scholar] [CrossRef]
- Luo, Z.Q.; Ma, W.K.; So, A.M.C.; Ye, Y.; Zhang, S. Semidefinite relaxation of quadratic optimization problems. IEEE Signal Process. Mag. 2010, 27, 20–34. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, X.; Zhao, Y.; Zhao, W.; Wu, H.; Liu, Z. Delay Minimization in RIS-Assisted URLLC Systems under Reliability Constraints. Entropy 2023, 25, 857. https://doi.org/10.3390/e25060857
Song X, Zhao Y, Zhao W, Wu H, Liu Z. Delay Minimization in RIS-Assisted URLLC Systems under Reliability Constraints. Entropy. 2023; 25(6):857. https://doi.org/10.3390/e25060857
Chicago/Turabian StyleSong, Xiaoyang, Yingxin Zhao, Wannan Zhao, Hong Wu, and Zhiyang Liu. 2023. "Delay Minimization in RIS-Assisted URLLC Systems under Reliability Constraints" Entropy 25, no. 6: 857. https://doi.org/10.3390/e25060857
APA StyleSong, X., Zhao, Y., Zhao, W., Wu, H., & Liu, Z. (2023). Delay Minimization in RIS-Assisted URLLC Systems under Reliability Constraints. Entropy, 25(6), 857. https://doi.org/10.3390/e25060857