Entanglement Witness for the Weak Equivalence Principle
<p>Configuration where the two neutral and massive spatial superpositions are in free-fall with the splitting <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>x</mi> </mrow> </semantics></math> and separated by a distance <span class="html-italic">d</span>. The two spin states (up and down) are embedded in the nano-crystals. The splitting between the two massive spin states is created by an external inhomogeneous magnetic field, similar to the Stern–Gerlach protocol. After the one-loop interference is completed, the spin correlations are computed to witness the entanglement between the two systems induced by the mutual quantum-natured gravitational interaction.</p> "> Figure 2
<p>Plot of relative entanglement entropy <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mi>s</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>|</mo> <mrow> <mo>(</mo> <mi>S</mi> <mo>−</mo> <msub> <mi>S</mi> <mi>ξ</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>/</mo> <mrow> <mo>(</mo> <mi>S</mi> <mo>+</mo> <msub> <mi>S</mi> <mi>ξ</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>|</mo> </mrow> </mrow> </semantics></math> with respect to the time evolution <span class="html-italic">t</span>. <math display="inline"><semantics> <mrow> <msub> <mi>S</mi> <mi>ξ</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> is the entanglement entropy with the EEWEP violation given by <math display="inline"><semantics> <mrow> <mi>ξ</mi> <mo>=</mo> <msub> <mi>m</mi> <mi mathvariant="normal">g</mi> </msub> <mo>/</mo> <msub> <mi>m</mi> <mi mathvariant="normal">i</mi> </msub> <mo>−</mo> <mn>1</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>=</mo> <msub> <mi>S</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>ref</mi> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math> is the entanglement entropy without the EEWEP violation computed at the reference time <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mi>ref</mi> </msub> <mo>=</mo> <mn>0.5</mn> <mspace width="3.33333pt"/> <mi mathvariant="normal">s</mi> </mrow> </semantics></math>. Different colours exhibit different values of the EEWEP violation <math display="inline"><semantics> <mi>ξ</mi> </semantics></math>. Testing the EEWEP down to <math display="inline"><semantics> <mrow> <mi>ξ</mi> <mo>∼</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </mrow> </semantics></math> is within experimental possibilities and can be accomplished by measuring the relative entanglement entropy <math display="inline"><semantics> <msub> <mi>η</mi> <mi>s</mi> </msub> </semantics></math> with accuracy <math display="inline"><semantics> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </semantics></math>. Testing the EEWEP to one part in <math display="inline"><semantics> <msup> <mn>10</mn> <mn>2</mn> </msup> </semantics></math> would probe a hitherto unexplored quantum notion of free-fall distinct from any classical test of WEP. The inner embedded plot shows again the relative entropy with respect to time. As an illustration of the scaling of the experimental requirements, we consider the more ambitious value <math display="inline"><semantics> <mrow> <mi>ξ</mi> <mo>∼</mo> </mrow> </semantics></math>10<math display="inline"><semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>15</mn> </mrow> </msup> </semantics></math>. We would require <math display="inline"><semantics> <mrow> <mo>∼</mo> <mi>fs</mi> </mrow> </semantics></math> resolutions, achievable with atomic clocks, and a scheme for determining the relative entanglement entropy with accuracy <math display="inline"><semantics> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>15</mn> </mrow> </msup> </semantics></math>, the latter being beyond current experimental possibilities.</p> ">
Abstract
:1. Introduction
2. QGEM Scheme
3. Entanglement Entropy
4. EEWEP
5. Discussion
Author Contributions
Funding
Conflicts of Interest
Abbreviations
WEP | Weak equivalence principle |
EEWEP | Entanglement entropy weak equivalence principle |
QGEM | Quantum-gravity-induced entanglement of masses |
LLI | Local Lorenz invariance |
LPI | Local Position invariance |
EEP | Einstein equivalence principle |
COW | Collela-Overhauser-Werner |
References
- Will, C.M. The confrontation between general relativity and experiment. Living Rev. Relativ. 2014, 17, 1–117. [Google Scholar] [CrossRef] [Green Version]
- Dicke, R.H. Experimental relativity. Relativ. Groups Topol. Relativ. Topol. 1964, 165–313. [Google Scholar]
- Touboul, P.; Métris, G.; Rodrigues, M.; André, Y.; Baghi, Q.; Bergé, J.; Boulanger, D.; Bremer, S.; Chhun, R.; Visser, P.; et al. Space test of the Equivalence Principle: First results of the MICROSCOPE mission. Class. Quant. Grav. 2019, 36, 225006. [Google Scholar] [CrossRef] [Green Version]
- Prestage, J.D.; Bollinger, J.J.; Itano, W.M.; Wineland, D.J. Limits for spatial anisotropy by use of nuclear-spin-polarized Be+ 9 ions. Phys. Rev. Lett. 1985, 54, 2387. [Google Scholar] [CrossRef] [PubMed]
- Lamoreaux, S.K.; Jacobs, J.P.; Heckel, B.R.; Raab, F.J.; Fortson, E.N. New Limits on Spatial Anisotropy from Optically Pumped Hg 201 and Hg 199. Phys. Rev. Lett. 1987, 58, 746. [Google Scholar] [CrossRef]
- Chupp, T.E.; Hoare, R.J.; Loveman, R.A.; Oteiza, E.R.; Richardson, J.M.; Wagshul, M.E.; Thompson, A.K. Results of a new test of local Lorentz invariance: A search for mass anisotropy in Ne 21. Phys. Rev. Lett. 1989, 631541. [Google Scholar]
- Steven, P.; Crane, S.; Hanssen, J.L.; Swanson, T.B.; Ekstrom, C.R. Tests of local position invariance using continuously running atomic clocks. Phys. Rev. A 2013, 87, 010102. [Google Scholar]
- Giulini, D. Equivalence principle, quantum mechanics, and atom-interferometric tests. In Quantum Field Theory and Gravity; Springer: Basel, Switzerland, 2012; pp. 345–370. [Google Scholar]
- Colella, H.; Overhauser, A.W.; Werner, S.A. Observation of Gravitationally Induced Quantum Interference. Phys. Rev. Lett. 1975, 34, 23. [Google Scholar] [CrossRef]
- Aharonov, Y.; Carmi, G. Quantum aspects of the equivalence principle. Found. Phys. 1973, 3, 493–498. [Google Scholar] [CrossRef]
- Hohensee, M.A.; Estey, B.; Hamilton, P.; Zeilinger, A.; Müller, H. Force-free gravitational redshift: Proposed gravitational Aharonov-Bohm experiment. Phys. Rev. Lett. 2012, 108, 230404. [Google Scholar] [CrossRef] [Green Version]
- Overstreet, C.; Asenbaum, P.; Curti, J.; Kim, M.; Kasevich, M.A. Observation of a gravitational Aharonov-Bohm effect. Science 2022, 375, 226–229. [Google Scholar] [CrossRef]
- Lämmerzahl, C. On the equivalence principle in quantum theory. Gen. Relativ. Gravit. 1996, 28, 1043–1070. [Google Scholar] [CrossRef] [Green Version]
- Viola, L.; Onofrio, R. Testing the equivalence principle through freely falling quantum objects. Phys. Rev. D 1997, 55, 455. [Google Scholar] [CrossRef] [Green Version]
- Seveso, L.; Peri, V.; Paris, M.G.A. Does universality of free-fall apply to the motion of quantum probes? J. Phys. 2017, 880, 012067. [Google Scholar] [CrossRef] [Green Version]
- Seveso, L.; Peri, V.; Paris, M.G.A. Can quantum probes satisfy the weak equivalence principle? Ann. Phys. 2017, 380, 213. [Google Scholar] [CrossRef] [Green Version]
- Seveso, L.; Peri, V.; Paris, M.G.A. Quantum limits to mass sensing in a gravitational field. J. Phys. A 2017, 50, 235301. [Google Scholar] [CrossRef]
- Rosi, G.; D’Amico, G.; Cacciapuoti, L.; Sorrentino, F.; Prevedelli, M.; Zych, M.; Brukner, C.; Tino, G. Quantum test of the equivalence principle for atoms in coherent superposition of internal energy states. Nat. Commun. 2017, 8, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anastopoulos, C.; Hu, B.L. Equivalence principle for quantum systems: Dephasing and phase shift of free-falling particles. Class. Quant. Grav. 2018, 35, 035011. [Google Scholar] [CrossRef] [Green Version]
- Dimopoulos, S.; Graham, P.W.; Hogan, J.M.; Kasevich, M.A. Testing general relativity with atom interferometry. Phys. Rev. Lett. 2007, 98, 111102. [Google Scholar] [CrossRef] [Green Version]
- Roura, A. Circumventing Heisenberg’s Uncertainty Principle in Atom Interferometry Tests of the Equivalence Principle. Phys. Rev. Lett. 2017, 118, 160401. [Google Scholar] [CrossRef] [Green Version]
- Asenbaum, P.; Overstreet, C.; Kim, M.; Curti, J.; Kasevich, M.A. Atom-Interferometric Test of the Equivalence Principle at the 10-12 Level. Phys. Rev. Lett. 2020, 125, 191101. [Google Scholar] [CrossRef] [PubMed]
- Overstreet, C.; Asenbaum, P.; Kovachy, T.; Notermans, R.; Hogan, J.M.; Kasevich, M.A. Effective inertial frame in an atom interferometric test of the equivalence principle. Phys. Rev. Lett. 2018, 120, 183604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penrose, R. On gravity’s role in quantum state reduction. Gen. Rel. Grav. 1996, 28, 581. [Google Scholar] [CrossRef] [Green Version]
- Penrose, R. Quantum computation, entanglement and state reduction. Philos. Trans. R. Soc. Lond. A 1998, 356, 1927. [Google Scholar] [CrossRef]
- Hardy, L. Implementation of the Quantum Equivalence Principle. In Progress and Visions in Quantum Theory in view of Gravity: Bridging Foundations of Physics and Mathematics; Springer International Publishing: Cham, Switzerland, 2020; pp. 189–220. [Google Scholar]
- Giacomini, F.; Brukner, Č. Einstein’s Equivalence principle for superpositions of gravitational fields. arXiv 2012, arXiv:2012.13754. [Google Scholar]
- Giacomini, F.; Castro-Ruiz, E.; Brukner, Č. Quantum mechanics and the covariance of physical laws in quantum reference frames. Nat. Commun. 2019, 10, 494. [Google Scholar] [CrossRef] [Green Version]
- Zych, M.; Brukner, Č. Quantum formulation of the Einstein Equivalence Principle. Nat. Phys. 2018, 14, 10271031. [Google Scholar] [CrossRef] [Green Version]
- Marletto, C.; Vedral, V. On the Testability of the Equivalence Principle as a Gauge Principle Detecting the Gravitational t3 Phase. Front. Phys. 2020, 8, 176. [Google Scholar] [CrossRef]
- Pipa, F.; Paunković, N.; Vojinović, M. Entanglement-induced deviation from the geodesic motion in quantum gravity. JCAP 2019, 9, 57. [Google Scholar] [CrossRef] [Green Version]
- Paunkovic, N.; Vojinovic, M. Equivalence Principle in Classical and Quantum Gravity. Universe 2022, 8, 598. [Google Scholar] [CrossRef]
- Bose, S.; Mazumdar, A.; Morley, G.W.; Ulbricht, H.; Toroš, M.; Paternostro, M.; Geraci, A.; Barker, P.; Kim, M.S.; Milburn, G. Spin Entanglement Witness for Quantum Gravity. Phys. Rev. Lett. 2017, 119, 240401. [Google Scholar] [CrossRef] [Green Version]
- Marshman, R.J.; Mazumdar, A.; Bose, S. Locality and entanglement in table-top testing of the quantum nature of linearized gravity. Phys. Rev. A 2020, 101, 052110. [Google Scholar] [CrossRef]
- Bose, S.; Mazumdar, A.; Schut, M.; Toroš, M. Mechanism for the quantum natured gravitons to entangle masses. Phys. Rev. D 2022, 105, 106028. [Google Scholar] [CrossRef]
- Marletto, C.; Vedral, V. Gravitationally induced entanglement between two massive particles is sufficient evidence of quantum effects in gravity. Phys. Rev. Lett. 2017, 119, 240402. [Google Scholar] [CrossRef] [Green Version]
- Kiefer, C. Quantum Gravity; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Gupta, S.N. Quantization of Einstein’s Gravitational Field: Linear Approximation. Proc. Phys. Soc. A 1952, 65, 161. [Google Scholar] [CrossRef]
- Gupta, S.N. Gravitation and electromagnetism. Phys. Rev. 1954, 96, 1683. [Google Scholar] [CrossRef]
- Donoghue, J.F. General relativity as an effective field theory: The leading quantum corrections. Phys. Rev. D 1994, 50, 3874–3888. [Google Scholar] [CrossRef] [Green Version]
- Danielson, D.L.; Satishchandran, G.; Wald, R.M. Left Gravitationally mediated entanglement: Newtonian field versus gravitons. Phys. Rev. D 2022, 105, 086001. [Google Scholar] [CrossRef]
- Christodoulou, M.; Di Biagio, A.; Aspelmeyer, M.; Brukner, Č.; Rovelli, C.; Howl, R. Locally mediated entanglement through gravity from first principles. arXiv 2022, arXiv:2202.03368. [Google Scholar]
- Bennett, C.H.; DiVincenzo, D.P.; Smolin, J.A.; Wootters, W.K. Mixed-state entanglement and quantum error correction. Phys. Rev. A 1996, 54, 3824. [Google Scholar] [CrossRef] [Green Version]
- Marshman, R.J.; Mazumdar, A.; Folman, R.; Bose, S. Constructing nano-object quantum superpositions with a Stern-Gerlach interferometer. Phys. Rev. Res. 2022, 4, 023087. [Google Scholar] [CrossRef]
- Zhou, R.; Marshman, R.J.; Bose, S.; Mazumdar, A. Catapulting towards massive and large spatial quantum superposition. Phys. Rev. Res. 2022, 4, 043157. [Google Scholar] [CrossRef]
- Sakurai, J.J.; Commins, E.D. Modern Quantum Mechanics; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Rauch, H.; Werner, S.A. Neutron Interferometry: Lessons in Experimental Quantum Mechanics, Wave-Particle Duality, and Entanglement; Oxford University Press: New York, NY, USA, 2015; Volume 12. [Google Scholar]
- Boulder Atomic Clock Optical Network (BACON) Collaboration. Frequency ratio measurements at 18-digit accuracy using an optical clock network. Nature 2021, 591, 564–569. [Google Scholar] [CrossRef]
- Mourou, G.; Stancampiano, C.V.; Blumenthal, D. Picosecond microwave pulse generation. Appl. Phys. Lett. 1981, 38, 2. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Cox, J.A.; Chen, J.; Kärtner, F.X. Drift-free femtosecond timing synchronization of remote optical and microwave sources. Nat. Photon. 2008, 2, 733. [Google Scholar] [CrossRef]
- Tarallo, M.G.; Mazzoni, T.; Poli, N.; Sutyrin, D.V.; Zhang, X.; Tino, G.M. Test of Einstein Equivalence Principle for 0-spin and half-integer-spin atoms: Search for spin-gravity coupling effects. Phys. Rev. Lett. 2014, 113, 023005. [Google Scholar] [CrossRef] [Green Version]
- Schlippert, D.; Hartwig, J.; Albers, H.; Richardson, L.L.; Schubert, C.; Roura, A.; Schleich, W.P.; Ertmer, W.; Rasel, E.M. Quantum Test of the Universality of Free Fall. Phys. Rev. Lett. 2014, 112, 203002. [Google Scholar] [CrossRef] [Green Version]
- Fray, S.; Alvarez Diez, C.; Hansch, T.W.; Weitz, M. Atomic interferometer with amplitude gratings of light and its applications to atom based tests of the equivalence principl. Phys. Rev. Lett. 2004, 93, 240404. [Google Scholar] [CrossRef] [Green Version]
- Van de Kamp, T.W.; Marshman, R.J.; Bose, S.; Mazumdar, A. Quantum Gravity Witness via Entanglement of Masses: Casimir Screening. Phys. Rev. A 2020, 102, 062807. [Google Scholar] [CrossRef]
- Bose, S.; Mazumdar, A.; Toroš, M. Gravitons in a box. Phys. Rev. D 2021, 104, 066019. [Google Scholar] [CrossRef]
- Bose, S.; Mazumdar, A.; Toroš, M. Infrared scaling for a graviton condensate. Nucl. Phys. B 2022, 977, 115730. [Google Scholar] [CrossRef]
- Toroš, M.; Mazumdar, A.; Bose, S. Loss of coherence of matter-wave interferometer from fluctuating graviton bath. arXiv 2020, arXiv:2008.08609. [Google Scholar]
- De Sabbata, V.; Gasperini, M. Introduction to Gravitation; World Scientific Publishing Company: Singapore, 1986. [Google Scholar]
- Delic, U.; Reisenbauer, M.; Dare, K.; Grass, D.; Vuletić, V.; Kiesel, N.; Aspelmeyer, M. Cooling of a levitated nanoparticle to the motional quantum ground state. Science 2020, 367, 892. [Google Scholar] [CrossRef] [Green Version]
- Magrini, L.; Rosenzweig, P.; Bach, C.; Deutschmann-Olek, A.; Hofer, S.G.; Hong, S.; Kiesel, N.; Kugi, A.; Aspelmeyer, M. Real-time optimal quantum control of mechanical motion at room temperature. Nature 2021, 595, 373–377. [Google Scholar] [CrossRef]
- Tebbenjohanns, F.; Mattana, M.L.; Rossi, M.; Frimmer, M.; Novotny, L. Quantum control of a nanoparticle optically levitated in cryogenic free space. Nature 2021, 595, 378–382. [Google Scholar] [CrossRef]
- Scala, M.; Kim, M.S.; Morley, G.W.; Barker, P.F.; Bose, S. Matter-Wave Interferometry of a Levitated Thermal Nano-Oscillator Induced and Probed by a Spin. Phys. Rev. Lett. 2013, 111, 180403. [Google Scholar] [CrossRef] [Green Version]
- Wan, C.; Scala, M.; Morley, G.W.; Rahman, A.A.; Ulbricht, H.; Bateman, J.; Barker, P.F.; Bose, S.; Kim, M.S. Free Nano-Object Ramsey Interferometry for Large Quantum Superpositions. Phys. Rev. Lett. 2016, 117, 143003. [Google Scholar] [CrossRef] [Green Version]
- Margalit, Y.; Dobkowski, O.; Zhou, Z.; Amit, O.; Japha, Y.; Moukouri, S.; Rohrlich, D.; Mazumdar, A.; Bose, S.; Henkel, C.; et al. Realization of a complete Stern-Gerlach interferometer: Towards a test of quantum gravity. Sci. Adv. 2021, 7, 22. [Google Scholar] [CrossRef]
- Machluf, S.; Japha, Y.; Folman, R. Coherent Stern–Gerlach momentum splitting on an atom chip. Nat. Commun. 2013, 4, 2424. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Margalit, Y.; Moukouri, S.; Meir, Y.; Folman, R. An experimental test of the geodesic rule proposition for the noncyclic geometric phase. Sci. Adv. 2020, 6, eaay8345. [Google Scholar] [CrossRef] [Green Version]
- Margalit, Y.; Zhou, Z.; Machluf, S.; Japha, Y.; Moukouri, S.; Folman, R. Analysis of a high-stability Stern–Gerlach spatial fringe interferometer. New J. Phys. 2019, 21, 073040. [Google Scholar] [CrossRef]
- Pedernales, J.S.; Morley, G.W.; Plenio, M.B. Motional Dynamical Decoupling for Interferometry with Macroscopic Particles. Phys. Rev. Lett. 2020, 125, 023602. [Google Scholar] [CrossRef] [PubMed]
- Romero-Isart, O. Quantum superposition of massive objects and collapse models. Phys. Rev. A 2011, 84, 052121. [Google Scholar] [CrossRef] [Green Version]
- Tilly, J.; Marshman, R.J.; Mazumdar, A.; Bose, S. Qudits for witnessing quantum-gravity-induced entanglement of masses under decoherence. Phys. Rev. A 2021, 104, 052416. [Google Scholar] [CrossRef]
- Schut, M.; Tilly, J.; Marshman, R.J.; Bose, S.; Mazumdar, A. Improving resilience of the Quantum Gravity Induced Entanglement of Masses (QGEM) to decoherence using 3 superpositions. Phys. Rev. A 2022, 105, 032411. [Google Scholar] [CrossRef]
- Gunnink, F.; Mazumdar, A.; Schut, M.; Toroš, M. Gravitational decoherence by the apparatus in the quantum-gravity induced entanglement of masses. arXiv 2022, arXiv:2210.16919. [Google Scholar]
- Torrieri, G. The equivalence principle and inertial-gravitational decoherence. arXiv 2023, arXiv:2210.08586. [Google Scholar]
- Toroš, M.; Van De Kamp, T.W.; Marshman, R.J.; Kim, M.S.; Mazumdar, A.; Bose, S. Relative acceleration noise mitigation for nanocrystal matter-wave interferometry: Applications to entangling masses via quantum gravity. Phys. Rev. Res. 2021, 3, 023178. [Google Scholar] [CrossRef]
- Damour, T. Theoretical Aspects of the Equivalence Principle. Class. Quant. Grav. 2012, 29, 184001. [Google Scholar] [CrossRef]
- Brans, C.H.; Dicke, R.H. Mach’s Principle and a Relativistic Theory of Gravitation. Phys. Rev. 1961, 124, 925. [Google Scholar] [CrossRef]
- Mende, P.F. String theory at short distance and the principle of equivalence. arXiv 1992, arXiv:hep-th/9210001. [Google Scholar]
- Damour, T.; Piazza, F.; Veneziano, G. Runaway dilaton and equivalence principle violations. Phys. Rev. Lett. 2002, 89, 081601. [Google Scholar] [CrossRef] [Green Version]
- Van Nieuwenhuizen, P. On ghost-free tensor lagrangians and linearized gravitation. Nucl. Phys. 1973, B60, 478. [Google Scholar] [CrossRef]
- Biswas, T.; Koivisto, T.; Mazumdar, A. Nonlocal theories of gravity: The flat space propagator. arXiv 2013, arXiv:1302.0532. [Google Scholar]
- Biswas, T.; Gerwick, E.; Koivisto, T.; Mazumdar, A. Towards singularity and ghost free theories of gravity. Phys. Rev. Lett. 2012, 108, 031101. [Google Scholar] [CrossRef] [Green Version]
- Biswas, T.; Mazumdar, A.; Siegel, W. Bouncing universes in string-inspired gravity. JCAP 2006, 3, 9. [Google Scholar] [CrossRef]
- Tomboulis, E.T. Superrenormalizable gauge and gravitational theories. arXiv 1997, arXiv:hep-th/9702146. [Google Scholar]
- Modesto, L. Super-renormalizable Quantum Gravity. Phys. Rev. D 2012, 86, 044005. [Google Scholar] [CrossRef] [Green Version]
- Edholm, J.; Koshelev, A.S.; Mazumdar, A. Behavior of the Newtonian potential for ghost-free gravity and singularity-free gravity. Phys. Rev. D 2016, 94, 104033. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bose, S.; Mazumdar, A.; Schut, M.; Toroš, M. Entanglement Witness for the Weak Equivalence Principle. Entropy 2023, 25, 448. https://doi.org/10.3390/e25030448
Bose S, Mazumdar A, Schut M, Toroš M. Entanglement Witness for the Weak Equivalence Principle. Entropy. 2023; 25(3):448. https://doi.org/10.3390/e25030448
Chicago/Turabian StyleBose, Sougato, Anupam Mazumdar, Martine Schut, and Marko Toroš. 2023. "Entanglement Witness for the Weak Equivalence Principle" Entropy 25, no. 3: 448. https://doi.org/10.3390/e25030448
APA StyleBose, S., Mazumdar, A., Schut, M., & Toroš, M. (2023). Entanglement Witness for the Weak Equivalence Principle. Entropy, 25(3), 448. https://doi.org/10.3390/e25030448