A Comparison of Neural Networks and Center of Gravity in Muon Hit Position Estimation
<p>The simulated detector plate.</p> "> Figure 2
<p>Simulated hit locations on the simulated plate, in mm.</p> "> Figure 3
<p>Samples of signal amplitudes for hits on (0, 0) and (20, 20) mm, respectively, where brighter color indicates a larger increase in amplitude.</p> "> Figure 4
<p>End-to-end pipeline.</p> "> Figure 5
<p>Learning curves for FCN trainings with 81-sensor data. (<b>a</b>) Curve for the model for <span class="html-italic">x</span> prediction. (<b>b</b>) Curve for the model for <span class="html-italic">y</span> prediction.</p> "> Figure 6
<p>Comparison of estimations for CoG and FCN for some hit locations. (<b>a</b>) Distribution of CoG estimations for the hits on the selected locations, in mm. (<b>b</b>) Distribution of FCN estimations for the hits on the selected locations, in mm. (<b>c</b>) CoG average errors per hit location with respect to <a href="#entropy-24-01659-f006" class="html-fig">Figure 6</a>a. (<b>d</b>) FCN average errors per hit location with respect to <a href="#entropy-24-01659-f006" class="html-fig">Figure 6</a>b.</p> "> Figure 7
<p>Distribution of FCN estimations for the hits on the extended area which covers the middle part of the plate, in mm.</p> ">
Abstract
:1. Introduction
- We present a simulated dataset of muon hit positions on a detector plate.
- We present two deep-learning-based methods for the muon hit position estimation task. We compare their performances with CoG. Additionally, we investigate the proposed method’s performance in depth.
- We evaluate the effects of different SiPM configurations on performance.
2. Dataset
- The plastic scintillator is an EJ-200 with light output 10,000 photons/MeV.
- The plate surface area is 400 cm (20 cm × 20 cm), and the plate thickness is 10 mm.
- The SiPMs sizes are 6 mm × 6 mm. Spacing between SiPMs placed on the top surface is 20 mm. The spacing is chosen heuristically, considering our efforts to keep the sensor number as low as possible due to the cost.
- The detection efficiency of SiPMs is 40%.
- The reflective material used in simulations is diffusive reflection material with the surface covered with TiO paint (reflection efficiency 95%).
3. Proposed Methods
3.1. Fully Connected Network
3.2. Convolutional Neural Network
3.3. Training
4. Experimental Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morris, C.; Alexander, C.; Bacon, J.; Borozdin, K.; Clark, D.; Chartrand, R.; Espinoza, C.; Fraser, A.; Galassi, M.; Green, J.; et al. Tomographic Imaging with Cosmic Ray Muons. Sci. Glob. Secur. 2008, 16, 37–53. [Google Scholar] [CrossRef]
- Blanpied, G.; Kumar, S.; Dorroh, D.; Morgan, C.; Blanpied, I.; Sossong, M.; McKenney, S.; Nelson, B. Material discrimination using scattering and stopping of cosmic ray muons and electrons: Differentiating heavier from lighter metals as well as low-atomic weight materials. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2015, 784, 352–358. [Google Scholar] [CrossRef]
- Jonkmans, G.; Anghel, V.; Jewett, C.; Thompson, M. Nuclear waste imaging and spent fuel verification by muon tomography. Ann. Nucl. Energy 2013, 53, 267–273. [Google Scholar] [CrossRef] [Green Version]
- Riggi, S.; Antonuccio-Delogu, V.; Bandieramonte, M.; Becciani, U.; Costa, A.; La Rocca, P.; Massimino, P.; Petta, C.; Pistagna, C.; Riggi, F.; et al. Muon tomography imaging algorithms for nuclear threat detection inside large volume containers with the Muon Portal detector. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2013, 728, 59–68. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Wang, X.; Ren, N.; Hu, B.; Ding, B.; Kuang, Z.; Wu, S.; Sang, Z.; Hu, Z.; Du, J.; et al. Performance of long rectangular semi-monolithic scintillator PET detectors. Med. Phys. 2019, 46, 1608–1619. [Google Scholar] [CrossRef] [PubMed]
- Poladyan, H.; Bubon, O.; Teymurazyan, A.; Senchurov, S.; Reznik, A. Gaussian position-weighted center of gravity algorithm for multiplexed readout. Phys. Med. Biol. 2020, 65, 165003. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, P.; Casarejos, E.; Vilan, J.; Iglesias, A. Geant4-GATE simulation of a large plastic scintillator for muon radiography. In Proceedings of the 2013 3rd International Conference on Advancements in Nuclear Instrumentation, Measurement Methods and their Applications (ANIMMA), Marseille, France, 23–27 June 2013; pp. 1–5. [Google Scholar] [CrossRef]
- Yonggang, W.; Junwei, D.; Zhonghui, Z.; Yang, Y.; Lijun, Z.; Bruyndonckx, P. FPGA Based Electronics for PET Detector Modules With Neural Network Position Estimators. IEEE Trans. Nucl. Sci. 2011, 58, 34–42. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, W.; Cheng, X.; Li, D. 3D position estimation using an artificial neural network for a continuous scintillator PET detector. Phys. Med. Biol. 2013, 58, 1375–1390. [Google Scholar] [CrossRef] [PubMed]
- Peng, P.; Judenhofer, M.; Jones, A.; Cherry, S. Compton PET: A simulation study for a PET module with novel geometry and machine learning for position decoding. Biomed. Phys. Eng. Express 2018, 5, 015018. [Google Scholar] [CrossRef] [PubMed]
- Agostinelli, S.; Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.; et al. GEANT4—A simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2003, 506, 250–303. [Google Scholar] [CrossRef] [Green Version]
- Babiano, V.; Caballero, L.; Calvo, D.; Ladarescu, I.; Olleros, P.; Domingo-Pardo, C. γ-Ray position reconstruction in large monolithic LaCl3 (Ce) crystals with SiPM readout. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2019, 931, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Conde, P.; Iborra, A.; González, A.; Hernández, L.; Bellido, P.; Moliner, L.; Rigla, J.; Rodríguez-Álvarez, M.; Sánchez, F.; Seimetz, M.; et al. Determination of the interaction position of gamma photons in monolithic scintillators using neural network fitting. IEEE Trans. Nucl. Sci. 2016, 63, 30–36. [Google Scholar] [CrossRef]
- LaBella, A.; Vaska, P.; Zhao, W.; Goldan, A.H. Convolutional neural network for crystal identification and gamma ray localization in PET. IEEE Trans. Radiat. Plasma Med. Sci. 2020, 4, 461–469. [Google Scholar] [CrossRef]
- Aktas, K.; Demirel, M.; Moor, M.; Olesk, J.; Ozcinar, C.; Anbarjafari, G. Spatiotemporal based table tennis stroke-type assessment. Signal Image Video Process. 2021, 15, 1593–1600. [Google Scholar] [CrossRef]
- Kamińska, D.; Aktas, K.; Rizhinashvili, D.; Kuklyanov, D.; Sham, A.H.; Escalera, S.; Nasrollahi, K.; Moeslund, T.B.; Anbarjafari, G. Two-Stage Recognition and beyond for Compound Facial Emotion Recognition. Electronics 2021, 10, 2847. [Google Scholar] [CrossRef]
- Vecvanags, A.; Aktas, K.; Pavlovs, I.; Avots, E.; Filipovs, J.; Brauns, A.; Done, G.; Jakovels, D.; Anbarjafari, G. Ungulate Detection and Species Classification from Camera Trap Images Using RetinaNet and Faster R-CNN. Entropy 2022, 24, 353. [Google Scholar] [CrossRef] [PubMed]
- Sham, A.H.; Aktas, K.; Rizhinashvili, D.; Kuklianov, D.; Alisinanoglu, F.; Ofodile, I.; Ozcinar, C.; Anbarjafari, G. Ethical AI in facial expression analysis: Racial bias. Signal Image Video Process. 2022, 1–8. [Google Scholar] [CrossRef]
- Albawi, S.; Mohammed, T.A.; Al-Zawi, S. Understanding of a convolutional neural network. In Proceedings of the 2017 International Conference on Engineering and Technology (ICET), Antalya, Turkey, 21–23 August 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Rolfs, V.; Kerzel, M.; Wermter, S. Pruning Neural Networks with Supermasks. In Proceedings of the Uropean Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Online, 6–8 October 2021. [Google Scholar]
Method | Average Error |
---|---|
FCN | 0.72 mm |
CNN | 0.79 mm |
Number of Sensors | Average Error |
---|---|
81 (9 × 9) | 0.72 mm |
36 (6 × 6) | 0.73 mm |
25 (5 × 5) | 0.75 mm |
16 (4 × 4) | 0.84 mm |
9 (3 × 3) | 1.08 mm |
Error Interval | x Predictions | y Predictions |
---|---|---|
0–1.2 mm | 97.35 % | 97.28 % |
1.2–2 mm | 2.0 % | 2.11 % |
2–4 mm | 0.59 % | 0.53 % |
4–6 mm | 0.05 % | 0.05 % |
6 mm and higher | 0.01 % | 0.03 % |
Method | Average Error |
---|---|
FCN | 0.72 mm |
CNN | 0.79 mm |
CoG | 1.41 mm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aktas, K.; Kiisk, M.; Giammanco, A.; Anbarjafari, G.; Mägi, M. A Comparison of Neural Networks and Center of Gravity in Muon Hit Position Estimation. Entropy 2022, 24, 1659. https://doi.org/10.3390/e24111659
Aktas K, Kiisk M, Giammanco A, Anbarjafari G, Mägi M. A Comparison of Neural Networks and Center of Gravity in Muon Hit Position Estimation. Entropy. 2022; 24(11):1659. https://doi.org/10.3390/e24111659
Chicago/Turabian StyleAktas, Kadir, Madis Kiisk, Andrea Giammanco, Gholamreza Anbarjafari, and Märt Mägi. 2022. "A Comparison of Neural Networks and Center of Gravity in Muon Hit Position Estimation" Entropy 24, no. 11: 1659. https://doi.org/10.3390/e24111659