Synchronization in Finite-Time of Delayed Fractional-Order Fully Complex-Valued Dynamical Networks via Non-Separation Method
<p>(<b>a</b>) Phase trajectories of the real parts of the system (<a href="#FD29-entropy-24-01460" class="html-disp-formula">29</a>). (<b>b</b>) Phase trajectories of the imaginary parts of the system (<a href="#FD29-entropy-24-01460" class="html-disp-formula">29</a>).</p> "> Figure 2
<p>(<b>a</b>) Real part synchronization errors’ trajectories for system (<a href="#FD28-entropy-24-01460" class="html-disp-formula">28</a>) without the controller. (<b>b</b>) Imaginary part synchronization errors’ trajectories for system (<a href="#FD28-entropy-24-01460" class="html-disp-formula">28</a>) without the controller.</p> "> Figure 3
<p>(<b>a</b>) Real part synchronization errors’ trajectories for system (<a href="#FD28-entropy-24-01460" class="html-disp-formula">28</a>) under the controller (<a href="#FD6-entropy-24-01460" class="html-disp-formula">6</a>). (<b>b</b>) Imaginary part synchronization errors’ trajectories for system (<a href="#FD28-entropy-24-01460" class="html-disp-formula">28</a>) under the controller (<a href="#FD6-entropy-24-01460" class="html-disp-formula">6</a>).</p> "> Figure 4
<p>The relationship among the ST <math display="inline"><semantics> <msub> <mi>T</mi> <mn>1</mn> </msub> </semantics></math>, parameter <math display="inline"><semantics> <mi>α</mi> </semantics></math>, and parameter <math display="inline"><semantics> <mi>γ</mi> </semantics></math>.</p> "> Figure 5
<p>The relationship between the ST <math display="inline"><semantics> <msub> <mi>T</mi> <mn>1</mn> </msub> </semantics></math> and parameter <math display="inline"><semantics> <mi>β</mi> </semantics></math>.</p> "> Figure 6
<p>(<b>a</b>) Real part synchronization errors’ trajectories for system (<a href="#FD28-entropy-24-01460" class="html-disp-formula">28</a>) under the controller (<a href="#FD16-entropy-24-01460" class="html-disp-formula">16</a>). (<b>b</b>) Imaginary part synchronization errors’ trajectories for system (<a href="#FD28-entropy-24-01460" class="html-disp-formula">28</a>) under the controller (<a href="#FD16-entropy-24-01460" class="html-disp-formula">16</a>).</p> "> Figure 7
<p>The relationship among the ST <math display="inline"><semantics> <msub> <mi>T</mi> <mn>2</mn> </msub> </semantics></math>, parameter <math display="inline"><semantics> <mi>α</mi> </semantics></math>, and parameter <math display="inline"><semantics> <mi>γ</mi> </semantics></math>.</p> "> Figure 8
<p>The relationship between the ST <math display="inline"><semantics> <msub> <mi>T</mi> <mn>2</mn> </msub> </semantics></math> and parameter <math display="inline"><semantics> <mi>β</mi> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Preliminaries and Model Description
- (1)
- (2)
- (3)
- (4)
3. Main Results
4. Numerical Simulations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, M.; Lu, B.; Li, Z.; Jiang, H.; Hu, C. Fixed-time synchronization control of delayed dynamical complex networks. Entropy 2021, 23, 1610. [Google Scholar] [CrossRef]
- Liu, D.; Ye, D. Observer-based synchronization control for complex networks against asynchronous attacks. Inf. Sci. 2021, 546, 753–768. [Google Scholar] [CrossRef]
- Feng, J.W.; Xie, J.M.; Wang, J.Y.; Zhao, Y. Secure synchronization of stochastic complex networks subject to deception attack with nonidentical nodes and internal disturbance. Inf. Sci. 2021, 547, 514–525. [Google Scholar] [CrossRef]
- Chen, T.; Peng, S.; Zhang, Z.H. Finite-time synchronization of Markovian jumping complex networks with non-identical nodes and Impulsive Effects. Entropy 2019, 21, 779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhat, S.P.; Bernstein, D.S. Finite-time stability of homogeneous system. In Proceeding of the American Control Conference, Albuquerque, NM, USA, 6 June 1997; pp. 2513–2514. [Google Scholar]
- Feng, J.W.; Li, N.; Zhao, Y.; Xu, C.; Wang, J.Y. Finite-time synchronization analysis for general complex dynamical networks with hybrid couplings and time-varying delays. Nonlinear Dyn. 2017, 88, 2723–2733. [Google Scholar] [CrossRef]
- Qiu, S.H.; Huang, Y.L.; Ren, S.Y. Finite-time synchronization of multi-weighted complex dynamical networks with and without coupling delay. Neurocomputing 2018, 275, 1250–1260. [Google Scholar] [CrossRef]
- Al-Mahbashi, G.; Noorani, M.S.M. Finite-time lag synchronization of uncertain complex dynamical networks with disturbances via sliding mode control. IEEE Access 2019, 7, 7082–7092. [Google Scholar] [CrossRef]
- Luo, Y.P.; Ling, Z.M.; Yao, Y.J. Finite time synchronization for reactive diffusion complex networks via boundary control. IEEE Access 2019, 7, 68628–68635. [Google Scholar] [CrossRef]
- Han, M.; Zhang, M.; Qiu, T.; Xu, M. UCFTS: A unilateral coupling finite-time synchronization scheme for complex networks. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Ma, N.; Liu, Z.; Chen, L.; Xu, F. Finite-time H∞ fault-tolerant synchronization control for complex dynamical networks with actuator faults. IEEE Access 2019, 7, 128925–128935. [Google Scholar] [CrossRef]
- Wang, J.L.; Qin, Z.; Wu, H.N.; Huang, T.W. Finite-time synchronization and H∞ synchronization of multiweighted complex networks with adaptive state couplings. IEEE Trans. Cybern. 2020, 50, 600–612. [Google Scholar] [CrossRef]
- Cheng, L.; Tang, F.C.; Shi, X.L.; Chen, X.Y.; Qiu, J.L. Finite-time and fixed-time synchronization of delayed memristive neural networks via adaptive aperiodically intermittent adjustment strategy. IEEE Trans. Neural Netw. Learn. Syst. 2022, 1–15, early access. [Google Scholar] [CrossRef] [PubMed]
- Luo, T.J.; Wang, Q.; Jia, Q.L.; Xu, Y. Asymptotic and finite-time synchronization of fractional-order multiplex networks with time delays by adaptive and impulsive control. Neurocomputing 2022, 493, 445–461. [Google Scholar] [CrossRef]
- Li, H.L.; Cao, J.D.; Jiang, H.J.; Alsaedi, A. Finite-time synchronization and parameter identification of uncertain fractional-order complex networks. Physica A 2019, 533, 122027. [Google Scholar] [CrossRef]
- Peng, X.; Wu, H.Q.; Cao, J.D. Global nonfragile synchronization in finite time for fractional-order discontinuous neural networks with nonlinear growth activations. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 2123–2137. [Google Scholar] [CrossRef]
- Sweetha, C.; Sakthivel, R.; Almakhles, D.J.; Priyanka, S. Non-fragile fault-tolerant control design for fractional-order nonlinear systems with distributed delays and fractional parametric uncertainties. IEEE Access 2022, 10, 19997–20007. [Google Scholar] [CrossRef]
- Shen, Z.; Yang, F.; Chen, J.; Zhang, J.X.; Hu, A.H.; Hu, M.F. Adaptive event-triggered synchronization of uncertain fractional order neural networks with double deception attacks and time-varying delay. Entropy 2022, 23, 1291. [Google Scholar] [CrossRef] [PubMed]
- Li, H.L.; Cao, J.D.; Jiang, H.J.; Alsaedi, A. Finite-time synchronization of fractional-order complex networks via hybrid feedback control. Neurocomputing 2018, 320, 69–75. [Google Scholar] [CrossRef]
- Li, H.L.; Cao, J.D.; Jiang, H.J.; Alsaedi, A. Graph theory-based finite-time synchronization of fractional-order complex dynamical networks. J. Frankl. Inst. 2018, 355, 5771–5789. [Google Scholar] [CrossRef]
- Lu, J.Y.; Guo, Y.P.; Ji, Y.D.; Fan, S.S. Finite-time synchronization for different dimensional fractional-order complex dynamical networks. Chaos Solitons Fract. 2020, 130, 109433. [Google Scholar] [CrossRef]
- Zhang, L.Z.; Zhong, J.; Lu, J.Q. Intermittent control for finite-time synchronization of fractional-order complex networks. Neural Netw. 2021, 144, 11–22. [Google Scholar] [CrossRef]
- Adall, T.; Schreier, P.J.; Scharf, L.L. Complex-valued signal processing: The proper way to deal with impropriety. IEEE Trans. Signal Process. 2011, 59, 5101–5125. [Google Scholar] [CrossRef]
- Wang, P.; Jian, J.G. Impulsive stabilization and synchronization of fractional-order complex-valued neural networks. Neural Process. Lett. 2019, 50, 2201–2218. [Google Scholar]
- Jian, J.; Wang, P. Lagrange α-exponential stability and α-exponential convergence for fractional-order complex-valued neural networks. Neural Netw. 2017, 91, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Li, X.F.; Fang, J.A.; Li, H.Y. Master-slave exponential synchronization of delayed complex-valued memristor-based neural networks via impulsive control. Neural Netw. 2017, 93, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Kaslik, E.; Radulescu, I.R. Dynamics of complex-valued fractional-order neural networks. Neural Netw. 2017, 89, 39–49. [Google Scholar] [CrossRef] [Green Version]
- Velmurugan, G.; Rakkiyappan, R.; Vembarasan, V.; Cao, J.D.; Alsaedi, A. Dissipativity and stability analysis of fractional-order complex-valued neural networks with time delay. Neural Netw. 2017, 86, 42–53. [Google Scholar] [CrossRef]
- Wang, L.M.; Song, Q.K.; Liu, Y.R.; Zhao, Z.J.; Alsaadi, F.E. Global asymptotic stability of impulsive fractional-order complex-valued neural networks with time delay. Neurocomputing 2017, 243, 49–59. [Google Scholar] [CrossRef]
- Wang, L.M.; Song, Q.K.; Liu, Y.R.; Zhao, Z.J.; Alsaadi, F.E. Finite-time stability analysis of fractional-order complex-valued memristor-based neural networks with both leakage and time-varying delays. Neurocomputing 2017, 245, 86–101. [Google Scholar] [CrossRef]
- Zhang, L.; Song, Q.K.; Zhao, Z.J. Stability analysis of fractional-order complex-valued neural networks with both leakage and discrete delays. Appl. Math. Comput. 2017, 298, 296–309. [Google Scholar] [CrossRef]
- Ali, M.S.; Narayanan, G.; Orman, Z.; Shekher, V.; Arik, S. Finite time stability analysis of fractional-order complex-valued memristive neural networks with proportional delays. Neural Process. Lett. 2020, 51, 407–426. [Google Scholar]
- Hou, T.Q.; Yu, J.; Hu, C.; Jiang, H.J. Finite-time synchronization of fractional-order complex-variable dynamic networks. IEEE Trans. Syst. Man Cybern. Syst. 2021, 51, 4297–4307. [Google Scholar] [CrossRef]
- Xu, Y.; Li, W.X. Finite-time synchronization of fractional-order complex-valued coupled systems. Physica A 2020, 549, 123903. [Google Scholar] [CrossRef]
- Zheng, B.B.; Hu, C.; Yu, J.; Jiang, H.J. Finite-time synchronization of fully complex-valued neural networks with fractional-order. Neurocomputing 2020, 373, 70–80. [Google Scholar] [CrossRef]
- Xiong, K.L.; Yu, J.; Hu, C.; Jiang, H.J. Synchronization in finite/fixed time of fully complex-valued dynamical networks via non-separation approach. J. Frankl. Inst. 2020, 357, 473–493. [Google Scholar] [CrossRef]
- Ramesh, N.R.; Balasubramaniam, P. Master-slave synchronization of a new fractal-fractional order quaternion-valued neural networks with time-varying delays. Chaos Solitons Fract. 2022, 162, 112478. [Google Scholar]
- Wu, X.; Zhang, Y.C.; Ai, Q.M.; Wang, Y.N. Finite-time pinning synchronization control for T-S fuzzy discrete complex networks with time-varying delays via adaptive event-triggered approach. Entropy 2022, 24, 733. [Google Scholar] [CrossRef]
- Syed Ali, M.; Narayanan, G.; Saroha, S.; Priya, B.; Kumar, T.G. Finite-time stability analysis of fractional-order memristive fuzzy cellular neural networks with time delay and leakage term. Math. Comput. Simul. 2021, 185, 468–485. [Google Scholar] [CrossRef]
- Gan, Q.T.; Xiao, F.; Sheng, H. Fixed-time outer synchronization of hybrid-coupled delayed complex networks via periodically semi-intermittent control. J. Frankl. Inst. 2019, 356, 6656–6677. [Google Scholar] [CrossRef]
- Xiong, K.L.; Yu, J.; Hu, C.; Wen, S.P.; Jiang, H.J. Finite-time synchronization of fully complex-valued networks with or without time-varying delays via intermittent control. Neurocomputing 2020, 413, 173–184. [Google Scholar] [CrossRef]
- Feng, L.; Yu, J.; Hu, C.; Yang, C.D.; Jiang, H.J. Nonseparation method-based finite/fixed-time synchronization of fully complex-valued discontinuous neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2021, 51, 3212–3223. [Google Scholar] [CrossRef]
- Hui, M.; Yao, N.; Lu, H.H.-C.; Yao, R.; Bai, L. Adaptive synchronization of fractional-order complex-valued neural networks with time-varying delays. IEEE Access. 2022, 10, 45677–45688. [Google Scholar] [CrossRef]
- Long, C.Q.; Zhang, G.D.; Zeng, Z.G.; Hu, J.H. Finite-time stabilization of complex-valued neural networks with proportional delays and inertial terms: A non-separation approach. Neural Netw. 2022, 148, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.C.; Hu, C.; Yu, J.; Jiang, H.J. Fixed-time synchronization of discontinuous competitive neural networks with time-varying delays. Neural Netw. 2022, 153, 192–203. [Google Scholar] [CrossRef]
- Ren, Y.; Jiang, H.J.; Li, J.R.; Lu, B.L. Finite-time synchronization of stochastic complex networks with random coupling delay via quantized aperiodically intermittent control. Neurocomputing 2021, 420, 337–348. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: New York, NY, USA, 2006. [Google Scholar]
- Xia, W.G.; Cao, J.D. Pinning synchronization of delayed dynamical networks via periodically intermittent control. Chaos 2009, 19, 013120. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Zhuang, S.X.; Liu, S.J.; Xiao, J. Decentralized adaptive coupling synchronization of fractional-order complex-variable dynamical networks. Neurocomputing 2016, 186, 119–126. [Google Scholar] [CrossRef]
- Khalil, H.K.; Grizzle, J.W. Nonlinear Systems; Prentice-Hall: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
Ref. | Fractional Order | Number Field | Non-Separation Method | Internal Delays | Coupling Delays | Types of Synchronization |
---|---|---|---|---|---|---|
[32] | ✔ | CV | ✕ | ✕ | ✕ | FNTS |
[33] | ✔ | CV | ✔ | ✕ | ✕ | FNTS |
[35] | ✔ | fully CV | ✔ | ✕ | ✕ | FNTS |
[36] | ✕ | fully CV | ✔ | ✕ | ✕ | FNTS/FXTS |
[41] | ✕ | fully CV | ✔ | ✔ | ✕ | FNTS |
[42] | ✕ | fully CV | ✔ | ✔ | ✕ | FNTS/FXTS |
[43] | ✔ | CV | ✔ | ✔ | ✕ | ADS |
[44] | ✕ | CV | ✔ | ✕ | ✕ | FNTS |
[45] | ✕ | RV | ✕ | ✔ | ✕ | FXTS |
[46] | ✕ | RV | ✕ | ✔ | ✔ | FNTS |
This paper | ✔ | fully CV | ✔ | ✔ | ✔ | FNTS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, Q.; Yang, Q.; Yang, J.; Gan, Q.; Li, R. Synchronization in Finite-Time of Delayed Fractional-Order Fully Complex-Valued Dynamical Networks via Non-Separation Method. Entropy 2022, 24, 1460. https://doi.org/10.3390/e24101460
Kang Q, Yang Q, Yang J, Gan Q, Li R. Synchronization in Finite-Time of Delayed Fractional-Order Fully Complex-Valued Dynamical Networks via Non-Separation Method. Entropy. 2022; 24(10):1460. https://doi.org/10.3390/e24101460
Chicago/Turabian StyleKang, Qiaokun, Qingxi Yang, Jing Yang, Qintao Gan, and Ruihong Li. 2022. "Synchronization in Finite-Time of Delayed Fractional-Order Fully Complex-Valued Dynamical Networks via Non-Separation Method" Entropy 24, no. 10: 1460. https://doi.org/10.3390/e24101460
APA StyleKang, Q., Yang, Q., Yang, J., Gan, Q., & Li, R. (2022). Synchronization in Finite-Time of Delayed Fractional-Order Fully Complex-Valued Dynamical Networks via Non-Separation Method. Entropy, 24(10), 1460. https://doi.org/10.3390/e24101460