Entropy–Based Diversification Approach for Bio–Computing Methods
<p>Example of history of changes from a solution vector along to iterations.</p> "> Figure 2
<p>Probabilities and Shannon entropy values.</p> "> Figure 3
<p>Schema of the experimental phase applied to this work.</p> "> Figure 4
<p>Convergence charts of PSO vs. Shannon PSO.</p> "> Figure 5
<p>Distribution charts of PSO vs. Shannon PSO.</p> "> Figure 6
<p>Convergence charts of BAT vs. Shannon BAT.</p> "> Figure 7
<p>Distribution charts of BAT vs. Shannon BAT.</p> "> Figure 8
<p>Convergence charts of BH vs. Shannon BH.</p> "> Figure 9
<p>Distribution charts of BH vs. Shannon BH.</p> ">
Abstract
:1. Introduction
2. Related Work
3. Preliminaries
3.1. Shannon Entropy
3.2. Stagnation Problem
4. Developed Solution
4.1. Bio–Inspired Methods
4.1.1. Particle Swarm Optimization
4.1.2. Black Hole Algorithm
4.1.3. Bat Optimization
4.1.4. Common Behavior
4.2. Solving Stagnation
4.2.1. Stagnation Detecting
Algorithm 1: Common work scheme used to implement the population–based algorithms |
Algorithm 2: Shannon entropy module |
4.2.2. Stagnation Escaping
5. Experimental Setup
6. Discussion
7. Statistical Analysis
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Talbi, E.G. Metaheuristics: From Design to Implementation; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Reeves, C.R. Genetic Algorithms. In Handbook of Metaheuristics; Springer: Boston, MA, USA, 2010; pp. 109–139. [Google Scholar] [CrossRef]
- Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [Google Scholar] [CrossRef]
- Yang, X.S. Nature-Inspired Metaheuristic Algorithms: Second Edition; Luniver Press: Frome, UK, 2010. [Google Scholar]
- Mirjalili, S.; Mirjalili, S.M.; Yang, X.S. Binary bat algorithm. Neural Comput. Appl. 2014, 25, 663–681. [Google Scholar] [CrossRef]
- Hatamlou, A. Black hole: A new heuristic optimization approach for data clustering. Inf. Sci. 2013, 222, 175–184. [Google Scholar] [CrossRef]
- Van Laarhoven, P.J.; Aarts, E.H. Simulated annealing. In Simulated Annealing: Theory and Applications; Springer: Dordrecht, The Netherlands, 1987; pp. 7–15. [Google Scholar]
- Dokeroglu, T.; Sevinc, E.; Kucukyilmaz, T.; Cosar, A. A survey on new generation metaheuristic algorithms. Comput. Ind. Eng. 2019, 137, 106040. [Google Scholar] [CrossRef]
- Kar, A.K. Bio inspired computing—A review of algorithms and scope of applications. Expert Syst. Appl. 2016, 59, 20–32. [Google Scholar] [CrossRef]
- Glover, F.; Samorani, M. Intensification, Diversification and Learning in metaheuristic optimization. J. Heuristics 2019, 25, 517–520. [Google Scholar] [CrossRef]
- Cuevas, E.; Echavarría, A.; Ramírez-Ortegón, M.A. An optimization algorithm inspired by the States of Matter that improves the balance between exploration and exploitation. Appl. Intell. 2013, 40, 256–272. [Google Scholar] [CrossRef]
- Krause, J.; Cordeiro, J.; Parpinelli, R.S.; Lopes, H.S. A Survey of Swarm Algorithms Applied to Discrete Optimization Problems. In Swarm Intelligence and Bio-Inspired Computation; Elsevier: Amsterdam, The Netherlands, 2013; pp. 169–191. [Google Scholar] [CrossRef]
- Nanda, S.J.; Panda, G. A survey on nature inspired metaheuristic algorithms for partitional clustering. Swarm Evol. Comput. 2014, 16, 1–18. [Google Scholar] [CrossRef]
- Révész, P. Random Walk in Random and Non-Random Environments; World Scientific: Singapore, 2005. [Google Scholar]
- Weiss, G.H.; Rubin, R.J. Random walks: Theory and selected applications. Adv. Chem. Phys. 1983, 52, 363–505. [Google Scholar]
- Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine Learning, 1st ed.; Addison-Wesley Longman Publishing Co., Inc.: Boston, MA, USA, 1989; ISBN 0201157675. [Google Scholar]
- Lipowski, A.; Lipowska, D. Roulette-wheel selection via stochastic acceptance. Phys. Stat. Mech. Appl. 2012, 391, 2193–2196. [Google Scholar] [CrossRef]
- Blickle, T.; Thiele, L. A comparison of selection schemes used in evolutionary algorithms. Evol. Comput. 1996, 4, 361–394. [Google Scholar] [CrossRef]
- Glover, F. Tabu search—Part I. Orsa J. Comput. 1989, 1, 190–206. [Google Scholar] [CrossRef]
- Glover, F. Tabu search—Part II. Orsa J. Comput. 1990, 2, 4–32. [Google Scholar] [CrossRef]
- Rényi, A. On measures of entropy and information. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics; The Regents of the University of California: Oakland, CA, USA, 1961. [Google Scholar]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Rao, M.; Chen, Y.; Vemuri, B.C.; Wang, F. Cumulative residual entropy: A new measure of information. IEEE Trans. Inf. Theory 2004, 50, 1220–1228. [Google Scholar] [CrossRef]
- Naderi, E.; Narimani, H.; Pourakbari-Kasmaei, M.; Cerna, F.V.; Marzband, M.; Lehtonen, M. State-of-the-Art of Optimal Active and Reactive Power Flow: A Comprehensive Review from Various Standpoints. Processes 2021, 9, 1319. [Google Scholar] [CrossRef]
- Naderi, E.; Azizivahed, A.; Asrari, A. A step toward cleaner energy production: A water saving-based optimization approach for economic dispatch in modern power systems. Electr. Power Syst. Res. 2022, 204, 107689. [Google Scholar] [CrossRef]
- Garey, M.R.; Johnson, D.S. Computers and Intractability: A Guide to the Theory of NP-Completeness; W. H. Freeman & Co.: New York, NY, USA, 1979. [Google Scholar]
- Liu, J.; Wu, C.; Cao, J.; Wang, X.; Teo, K.L. A Binary differential search algorithm for the 0–1 multidimensional knapsack problem. Appl. Math. Model. 2016, 40, 9788–9805. [Google Scholar] [CrossRef]
- Cacchiani, V.; Iori, M.; Locatelli, A.; Martello, S. Knapsack problems—An overview of recent advances. Part II: Multiple, multidimensional, and quadratic knapsack problems. Comput. Oper. Res. 2022, 143, 105693. [Google Scholar] [CrossRef]
- Rezoug, A.; el den, M.B.; Boughaci, D. Application of Supervised Machine Learning Methods on the Multidimensional Knapsack Problem. Neural Process. Lett. 2021, 54, 871–890. [Google Scholar] [CrossRef]
- Beasley, J.E. Multidimensional Knapsack Problems. In Encyclopedia of Optimization; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1607–1611. [Google Scholar] [CrossRef]
- Mavrovouniotis, M.; Li, C.; Yang, S. A survey of swarm intelligence for dynamic optimization: Algorithms and applications. Swarm Evol. Comput. 2017, 33, 1–17. [Google Scholar] [CrossRef]
- Gendreau, M.; Potvin, J.Y. (Eds.) Handbook of Metaheuristics; Springer: New York, NY, USA, 2010. [Google Scholar]
- Panos, M.; Pardalos, M.G.R. Handbook of Applied Optimization; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Voß, S.; Dreo, J.; Siarry, P.; Taillard, E. Metaheuristics for Hard Optimization. Math. Methods Oper. Res. 2007, 66, 557–558. [Google Scholar] [CrossRef]
- Voß, S.; Martello, S.; Osman, I.H.; Roucairol, C. (Eds.) Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization; Springer: New York, NY, USA, 1998. [Google Scholar]
- Vaessens, R.; Aarts, E.; Lenstra, J. A local search template. Comput. Oper. Res. 1998, 25, 969–979. [Google Scholar] [CrossRef]
- El-Henawy, I.; Ahmed, N. Meta-Heuristics Algorithms: A Survey. Int. J. Comput. Appl. 2018, 179, 45–54. [Google Scholar] [CrossRef]
- Baghel, M.; Agrawal, S.; Silakari, S. Survey of Metaheuristic Algorithms for Combinatorial Optimization. Int. J. Comput. Appl. 2012, 58, 21–31. [Google Scholar] [CrossRef]
- Hussain, K.; Salleh, M.N.M.; Cheng, S.; Shi, Y. Metaheuristic research: A comprehensive survey. Artif. Intell. Rev. 2018, 52, 2191–2233. [Google Scholar] [CrossRef]
- Calvet, L.; de Armas, J.; Masip, D.; Juan, A.A. Learnheuristics: Hybridizing metaheuristics with machine learning for optimization with dynamic inputs. Open Math. 2017, 15, 261–280. [Google Scholar] [CrossRef]
- Pires, E.; Machado, J.; Oliveira, P. Dynamic shannon performance in a multiobjective particle swarm optimization. Entropy 2019, 21, 827. [Google Scholar] [CrossRef] [Green Version]
- Pires, E.J.S.; Machado, J.A.T.; de Moura Oliveira, P.B. Entropy diversity in multi-objective particle swarm optimization. Entropy 2013, 15, 5475–5491. [Google Scholar] [CrossRef]
- Weerasuriya, A.; Zhang, X.; Wang, J.; Lu, B.; Tse, K.; Liu, C.H. Performance evaluation of population-based metaheuristic algorithms and decision-making for multi-objective optimization of building design. Build. Environ. 2021, 198, 107855. [Google Scholar] [CrossRef]
- Guo, W.; Zhu, L.; Wang, L.; Wu, Q.; Kong, F. An Entropy-Assisted Particle Swarm Optimizer for Large-Scale Optimization Problem. Mathematics 2019, 7, 414. [Google Scholar] [CrossRef]
- Jamal, R.; Men, B.; Khan, N.H.; Raja, M.A.Z.; Muhammad, Y. Application of Shannon Entropy Implementation Into a Novel Fractional Particle Swarm Optimization Gravitational Search Algorithm (FPSOGSA) for Optimal Reactive Power Dispatch Problem. IEEE Access 2021, 9, 2715–2733. [Google Scholar] [CrossRef]
- Vargas, M.; Fuertes, G.; Alfaro, M.; Gatica, G.; Gutierrez, S.; Peralta, M. The Effect of Entropy on the Performance of Modified Genetic Algorithm Using Earthquake and Wind Time Series. Complexity 2018, 2018, 4392036. [Google Scholar] [CrossRef]
- Muhammad, Y.; Khan, R.; Raja, M.A.Z.; Ullah, F.; Chaudhary, N.I.; He, Y. Design of Fractional Swarm Intelligent Computing With Entropy Evolution for Optimal Power Flow Problems. IEEE Access 2020, 8, 111401–111419. [Google Scholar] [CrossRef]
- Zhang, H.; Xie, J.; Ge, J.; Lu, W.; Zong, B. An Entropy-based PSO for DAR task scheduling problem. Appl. Soft Comput. 2018, 73, 862–873. [Google Scholar] [CrossRef]
- Chen, J.; You, X.M.; Liu, S.; Li, J. Entropy-Based Dynamic Heterogeneous Ant Colony Optimization. IEEE Access 2019, 7, 56317–56328. [Google Scholar] [CrossRef]
- Mercurio, P.J.; Wu, Y.; Xie, H. An Entropy-Based Approach to Portfolio Optimization. Entropy 2020, 22, 332. [Google Scholar] [CrossRef]
- Khan, M.W.; Muhammad, Y.; Raja, M.A.Z.; Ullah, F.; Chaudhary, N.I.; He, Y. A New Fractional Particle Swarm Optimization with Entropy Diversity Based Velocity for Reactive Power Planning. Entropy 2020, 22, 1112. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, J. Exploration-exploitation tradeoffs in metaheuristics: Survey and analysis. In Proceedings of the 33rd Chinese Control Conference, Nanjing, China, 28–30 July 2014; pp. 8633–8638. [Google Scholar]
- Binitha, S.; Sathya, S.S. A survey of bio inspired optimization algorithms. Int. J. Soft Comput. Eng. 2012, 2, 137–151. [Google Scholar]
- Montero, M. Random Walks with Invariant Loop Probabilities: Stereographic Random Walks. Entropy 2021, 23, 729. [Google Scholar] [CrossRef]
- Villarroel, J.; Montero, M.; Vega, J.A. A Semi-Deterministic Random Walk with Resetting. Entropy 2021, 23, 825. [Google Scholar] [CrossRef] [PubMed]
- Beasley, J. OR-Library. 1990. Available online: http://people.brunel.ac.uk/~mastjjb/jeb/info.html (accessed on 6 September 2022).
- Khuri, S.; Bäck, T.; Heitkötter, J. The zero/one multiple knapsack problem and genetic algorithms. In Proceedings of the 1994 ACM Symposium on Applied Computing, Phoenix, AZ, USA, 6–8 March 1994; pp. 188–193. [Google Scholar]
- Dammeyer, F.; Voß, S. Dynamic tabu list management using the reverse elimination method. Ann. Oper. Res. 1993, 41, 29–46. [Google Scholar] [CrossRef]
- Drexl, A. A simulated annealing approach to the multiconstraint zero-one knapsack problem. Computing 1988, 40, 1–8. [Google Scholar] [CrossRef]
- Crawford, B.; Soto, R.; Astorga, G.; García, J.; Castro, C.; Paredes, F. Putting Continuous Metaheuristics to Work in Binary Search Spaces. Complexity 2017, 2017, 8404231. [Google Scholar] [CrossRef]
- Fagerland, M.W.; Sandvik, L. The Wilcoxon-Mann-Whitney test under scrutiny. Stat. Med. 2009, 28, 1487–1497. [Google Scholar] [CrossRef]
Instance | Name | Best Known | Knapsacks | Objects |
---|---|---|---|---|
MKP01 | - | 6120 | 10 | 20 |
MKP02 | - | 12400 | 10 | 28 |
MKP03 | - | 10618 | 5 | 39 |
MKP04 | - | 16537 | 5 | 50 |
MKP05 | SENTO2 [57,58,59] | 8722 | 30 | 60 |
MKP06 | WEING5 [57,58,59] | 98796 | 2 | 28 |
MKP07 | WEING6 [57,58,59] | 130623 | 20 | 28 |
MKP08 | WEING7 [57,58,59] | 1095445 | 2 | 105 |
MKP09 | WEISH03 [58,59] | 4115 | 5 | 30 |
MKP10 | WEISH07 [58,59] | 5567 | 5 | 40 |
MKP11 | WEISH08 [58,59] | 5605 | 5 | 40 |
MKP12 | WEISH17 [58,59] | 8633 | 5 | 60 |
MKP13 | PB1 [58,59] | 3090 | 4 | 27 |
MKP14 | PB5 [58,59] | 2139 | 10 | 20 |
MKP15 | HP1 [58,59] | 3418 | 4 | 28 |
MKP16 | HP2 [58,59] | 3186 | 4 | 34 |
MKP17 | - | unknown | 5 | 100 |
MKP18 | - | unknown | 5 | 100 |
MKP19 | - | unknown | 5 | 100 |
MKP20 | - | unknown | 5 | 100 |
ID | (a) Number of Best Reached | (b) Minimum Solving Time | (c) Maximum Solving Time | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PSO | S–PSO | BA | S–BAT | BH | S–BH | PSO | S–PSO | BA | S–BAT | BH | S–BH | PSO | S–PSO | BA | S–BAT | BH | S–BH | |
MKP01 | 30 | 30 | 0 | 25 | 4 | 4 | 62 | 93 | 35 | 60 | 121 | 209 | 82 | 128 | 93 | 104 | 149 | 251 |
MKP02 | 20 | 28 | 1 | 9 | 0 | 0 | 64 | 99 | 30 | 46 | 251 | 82 | 78 | 127 | 100 | 79 | 95 | 104 |
MKP03 | 1 | 3 | 0 | 0 | 0 | 0 | 81 | 128 | 36 | 81 | 107 | 114 | 96 | 178 | 82 | 2821 | 131 | 137 |
MKP04 | 0 | 0 | 0 | 0 | 0 | 0 | 127 | 188 | 53 | 128 | 157 | 187 | 141 | 237 | 133 | 276 | 205 | 225 |
MKP05 | 0 | 0 | 0 | 0 | 0 | 0 | 412 | 421 | 8520 | 7503 | 13,827 | 13,649 | 517 | 535 | 162,779 | 60,468 | 18,624 | 17,446 |
MKP06 | 23 | 26 | 0 | 4 | 0 | 0 | 143 | 154 | 495 | 1099 | 2490 | 2536 | 180 | 203 | 1694 | 4872 | 2918 | 2772 |
MKP07 | 18 | 15 | 0 | 4 | 0 | 0 | 81 | 90 | 53 | 123 | 244 | 255 | 114 | 113 | 155 | 243 | 321 | 314 |
MKP08 | 0 | 0 | 0 | 0 | 0 | 0 | 120 | 159 | 57 | 109 | 110 | 150 | 148 | 199 | 120 | 174 | 145 | 191 |
MKP09 | 25 | 25 | 0 | 17 | 1 | 1 | 342 | 513 | 15,036 | 69,286 | 74,270 | 66,888 | 484 | 660 | 75,748 | 297,611 | 86,125 | 76,488 |
MKP10 | 23 | 23 | 2 | 16 | 0 | 0 | 559 | 456 | 12,909 | 32,863 | 41,213 | 38,791 | 456 | 696 | 323,688 | 213,580 | 53,025 | 47,676 |
MKP11 | 13 | 18 | 1 | 7 | 0 | 0 | 271 | 408 | 4639 | 6238 | 15,006 | 13,445 | 309 | 504 | 42,215 | 32,245 | 21,913 | 15,735 |
MKP12 | 0 | 0 | 0 | 7 | 0 | 0 | 304 | 216 | 240,867 | 821 | 2836 | 304 | 216 | 393 | 14,146,516 | 1955 | 3476 | 393 |
MKP13 | 1 | 4 | 1 | 4 | 0 | 4 | 51 | 89 | 35 | 99 | 82 | 89 | 76 | 131 | 101 | 142 | 100 | 131 |
MKP14 | 8 | 8 | 1 | 6 | 8 | 8 | 110 | 154 | 106 | 667 | 500 | 122 | 148 | 153 | 303 | 306 | 612 | 153 |
MKP15 | 6 | 7 | 0 | 1 | 0 | 3 | 52 | 90 | 54 | 49 | 77 | 87 | 75 | 133 | 177 | 123 | 110 | 162 |
MKP16 | 8 | 10 | 0 | 2 | 0 | 10 | 114 | 180 | 184 | 401 | 660 | 180 | 144 | 238 | 487 | 1322 | 795 | 238 |
MKP17 | 0 | 0 | 0 | 0 | 0 | 0 | 131 | 159 | 97 | 954,304 | 122 | 177 | 167 | 198 | 191 | 78,392,197 | 158 | 226 |
MKP18 | 0 | 0 | 0 | 0 | 0 | 0 | 132 | 165 | 98 | 177 | 123 | 129 | 188 | 202 | 233 | 415 | 150 | 206 |
MKP19 | 0 | 0 | 0 | 0 | 0 | 0 | 130 | 164 | 111 | 141 | 125 | 180 | 166 | 196 | 305 | 318 | 154 | 282 |
MKP20 | 0 | 0 | 0 | 0 | 0 | 0 | 112 | 155 | 105 | 167 | 127 | 184 | 174 | 203 | 467 | 541 | 161 | 214 |
ID | Native PSO | Shannon PSO | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MKP01 | 6120 | 6120 | 0.00 | 6120 | 0.00 | 6120 | 0.00 | 0.00 | 6120 | 0.00 | 6120 | 0.00 | 6120 | 0.00 | 0.00 |
MKP02 | 12,400 | 12,240 | 0.00 | 12,400 | 0.00 | 12,396.45 | 0.00 | 4.86 | 12,240 | 0.00 | 12,400 | 0.00 | 12,399.03 | 0.00 | 3.01 |
MKP03 | 10,618 | 10,618 | 0.00 | 10,572 | 0.00 | 10,562.70 | 0.00 | 31.92 | 10,618 | 0.00 | 10,561 | 0.00 | 10,565.51 | 0.00 | 31.29 |
MKP04 | 16,537 | 16,516 | 0.13 | 16,408 | 0.00 | 16,407.2 | 0.00 | 55.97 | 16,517 | 0.12 | 16,403 | 0.00 | 16,410.58 | 0.00 | 47.90 |
MKP05 | 8722 | 8674 | 0.55 | 8612 | 0.01 | 8609.90 | 0.01 | 27.63 | 8705 | 0.19 | 8608 | 0.01 | 8607.45 | 0.01 | 34.73 |
MKP06 | 98,796 | 98,796 | 0.00 | 98,796 | 0.00 | 97,473.16 | 0.01 | 1735.06 | 98,796 | 0.00 | 98,796 | 0.00 | 97,998.61 | 0.00 | 1503.18 |
MKP07 | 130,623 | 130,623 | 0.00 | 130,623 | 0.00 | 130,459.45 | 0.00 | 273.16 | 130,623 | 0.00 | 130,233 | 0.00 | 130,360.41 | 0.00 | 345.60 |
MKP08 | 1,095,445 | 1,074,459 | 1.92 | 1,063,435 | 0.02 | 1,063,110.38 | 0.02 | 5623.42 | 1,080,226 | 1.39 | 1,060,724 | 0.03 | 1061215.71 | 0.03 | 6497.72 |
MKP09 | 4115 | 4115 | 0.00 | 4115 | 0.00 | 4104.83 | 0.00 | 23.55 | 4115 | 0.00 | 4115 | 0.00 | 4105.74 | 0.00 | 21.94 |
MKP10 | 5567 | 5567 | 0.00 | 5567 | 0.00 | 5561.70 | 0.00 | 9.30 | 5567 | 0.00 | 5567 | 0.00 | 5561.67 | 0.00 | 9.34 |
MKP11 | 5605 | 5605 | 0.00 | 5603 | 0.00 | 5600.64 | 0.00 | 5.68 | 5605 | 0.00 | 5605 | 0.00 | 5601.45 | 0.00 | 5.43 |
MKP12 | 8633 | 8592 | 0.47 | 8523 | 0.01 | 8513.03 | 0.01 | 42.43 | 8595 | 0.44 | 8508 | 0.01 | 8507.32 | 0.01 | 42.17 |
MKP13 | 3090 | 3090 | 0.00 | 3060 | 0.00 | 3055.51 | 0.01 | 13.00 | 3090 | 0.00 | 3076 | 0.00 | 3063.06 | 0.00 | 22.04 |
MKP14 | 2139 | 2139 | 0.00 | 2122 | 0.00 | 2118.03 | 0.00 | 20.81 | 2139 | 0.00 | 2122 | 0.00 | 2118.70 | 0.00 | 17.56 |
MKP15 | 3418 | 3418 | 0.00 | 3388 | 0.00 | 3385.41 | 0.00 | 27.38 | 3418 | 0.00 | 3404 | 0.00 | 3382 | 0.01 | 26.40 |
MKP16 | 3186 | 3186 | 0.00 | 3173 | 0.00 | 3154.83 | 0.00 | 22.95 | 3186 | 0.00 | 3173 | 0.00 | 3165.03 | 0.00 | 25.08 |
MKP17 | unknown | 57,415 | - | 57,261 | - | 56,711.51 | - | 288.09 | 57,821 | - | 57,165 | - | 57,167.87 | - | 276.97 |
MKP18 | unknown | 60,421 | - | 59,544 | - | 59,505.48 | - | 342.39 | 60,423 | - | 59,743 | - | 59,766.22 | - | 268.25 |
MKP19 | unknown | 58,481 | - | 57,477 | - | 57,442.41 | - | 290.47 | 58,550 | - | 57,982 | - | 57,991.45 | - | 262.92 |
MKP20 | unknown | 58,880 | - | 58,325 | - | 58,321.22 | - | 338.59 | 59,021 | - | 58,363 | - | 58,336.61 | - | 318.37 |
ID | Native BAT | Shannon BAT | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MKP01 | 6120 | 6110 | 0.16 | 6010 | 0.01 | 5904.04 | 0.03 | 0.00 | 6120 | 0.00 | 6100 | 0.00 | 6017.61 | 0.01 | 0.00 |
MKP02 | 12,400 | 12,240 | 0.00 | 11,930 | 0.03 | 11,984.35 | 0.03 | 183.74 | 12,240 | 0.00 | 12,370 | 0.00 | 12,253.87 | 0.01 | 177.02 |
MKP03 | 10618 | 10,520 | 0.92 | 10,359 | 0.02 | 10,359.96 | 0.02 | 4.79 | 10,604 | 0.13 | 10,481 | 0.01 | 10,462.77 | 0.01 | 4.50 |
MKP04 | 16,537 | 16357 | 1.09 | 16,088 | 0.02 | 15,836.74 | 0.04 | 22.34 | 16,511 | 0.16 | 16,382 | 0.00 | 16,302.12 | 0.01 | 27.41 |
MKP05 | 8722 | 8568 | 1.77 | 8410 | 0.03 | 8405.77 | 0.03 | 42.56 | 8711 | 0.13 | 8663 | 0.00 | 8657.03 | 0.00 | 41.11 |
MKP06 | 98,796 | 94,348 | 4.50 | 91,618 | 0.07 | 89,691.32 | 0.09 | 196.63 | 98,796 | 0.00 | 94,738 | 0.04 | 95,067.19 | 0.03 | 35.85 |
MKP07 | 130,623 | 124,530 | 4.66 | 120,399 | 0.07 | 11,9467.67 | 0.08 | 4368.55 | 130,623 | 0.00 | 125,360 | 0.04 | 125,990.06 | 0.03 | 3655.85 |
MKP08 | 1,095,445 | 1,088,227 | 0.66 | 1,066,018 | 0.02 | 106,5867.29 | 0.02 | 4676.20 | 1,095,206 | 0.02 | 1,090,905 | 0.00 | 1,090,574.74 | 0.00 | 109.14 |
MKP09 | 4115 | 4080 | 0.85 | 4013 | 0.02 | 3983.96 | 0.03 | 56.62 | 4115 | 0.00 | 4115 | 0.00 | 4084.16 | 0.00 | 43.97 |
MKP10 | 5567 | 5567 | 0.00 | 5412 | 0.02 | 5398 | 0.03 | 1358.46 | 5567 | 0.00 | 5567 | 0.00 | 5545.80 | 0.00 | 224.29 |
MKP11 | 5605 | 5605 | 0.00 | 5452 | 0.02 | 5425.70 | 0.03 | 63.94 | 5605 | 0.00 | 5592 | 0.00 | 5557.51 | 0.00 | 20.02 |
MKP12 | 8633 | 8633 | 0.00 | 8410 | 0.02 | 8404.83 | 0.02 | 86.32 | 8633 | 0.00 | 8619 | 0.00 | 8612.48 | 0.00 | 41.79 |
MKP13 | 3090 | 3090 | 0.00 | 3008 | 0.02 | 3006 | 0.02 | 52.02 | 3090 | 0.00 | 3076 | 0.00 | 3063.06 | 0.00 | 52.16 |
MKP14 | 2139 | 2139 | 0.00 | 2079 | 0.02 | 2075.96 | 0.02 | 49.58 | 2139 | 0.00 | 2085 | 0.02 | 2097.74 | 0.01 | 56.23 |
MKP15 | 3418 | 3388 | 0.88 | 3316 | 0.02 | 3314.12 | 0.03 | 83.68 | 3418 | 0.00 | 3335 | 0.02 | 3330.09 | 0.02 | 92.92 |
MKP16 | 3186 | 3119 | 2.10 | 3073 | 0.02 | 3066.38 | 0.03 | 11210.30 | 3186 | 0.00 | 3094 | 0.02 | 3101.03 | 0.02 | 2991.02 |
MKP17 | unknown | 58,192 | - | 56,908 | - | 56,948.19 | - | 101.16 | 42,406 | - | 58,821 | - | 58,749.51 | - | 55.13 |
MKP18 | unknown | 60,502 | - | 59,380 | - | 59,374.67 | - | 92.26 | 60,423 | - | 61,098 | - | 61,041.671 | - | 56.33 |
MKP19 | unknown | 58,639 | - | 58,025 | - | 57,967.83 | - | 82.14 | 60,018 | - | 59,484 | - | 59,468.61 | - | 13.03 |
MKP20 | unknown | 59,402 | - | 58,089 | - | 58,048.77 | - | 40.61 | 60,654 | - | 60,151 | - | 60,105.80 | - | 13.47 |
ID | Native BH | Shannon BH | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MKP01 | 6120 | 6110 | 0.00 | 6090 | 0.00 | 6083.22 | 0.00 | 30.48 | 6120 | 0.00 | 6090 | 0.00 | 6083.22 | 0.00 | 31.82 |
MKP02 | 12,400 | 12,240 | 1.29 | 12,100 | 0.02 | 12,084.03 | 0.02 | 98.62 | 12,360 | 0.32 | 12,100 | 0.02 | 12,091.77 | 0.02 | 118.87 |
MKP03 | 10,618 | 10,584 | 0.32 | 10,374 | 0.02 | 10,385.54 | 0.02 | 57.29 | 10,532 | 0.81 | 10,388 | 0.02 | 10,394.45 | 0.02 | 52.43 |
MKP04 | 16,537 | 16,234 | 1.83 | 16,017 | 0.03 | 16,046.80 | 0.02 | 97.87 | 16,252 | 1.72 | 16,028 | 0.03 | 16,038.03 | 0.03 | 84.18 |
MKP05 | 8722 | 8293 | 4.92 | 8124 | 0.06 | 8128.12 | 0.06 | 76.63 | 8417 | 3.50 | 8123 | 0.06 | 8140.32 | 0.06 | 113.49 |
MKP06 | 98,796 | 94,348 | 4.50 | 92,942 | 0.05 | 92,906.19 | 0.05 | 644.72 | 98,346 | 0.46 | 92,777 | 0.06 | 92,927.83 | 0.05 | 1330.35 |
MKP07 | 130,623 | 127,943 | 2.05 | 123,910 | 0.05 | 124,179.48 | 0.04 | 1937.12 | 127,953 | 2.04 | 124,462 | 0.04 | 124,476.41 | 0.04 | 2036.33 |
MKP08 | 1,095,445 | 998,864 | 8.82 | 1,006,919 | 0.08 | 1,007,945.67 | 0.07 | 12,822.05 | 999,278 | 8.78 | 1,001,572 | 0.08 | 1,004,224.58 | 0.08 | 10,919.46 |
MKP09 | 4115 | 4115 | 0.00 | 4024 | 0.02 | 4014.70 | 0.02 | 63.56 | 4115 | 0.00 | 4024 | 0.02 | 4030.93 | 0.02 | 50.38 |
MKP10 | 5567 | 5381 | 3.34 | 5214 | 0.06 | 5227.35 | 0.06 | 61.07 | 5407 | 2.87 | 5233 | 0.05 | 5251.25 | 0.05 | 81.32 |
MKP11 | 5605 | 5494 | 1.98 | 5308 | 0.05 | 5317.06 | 0.05 | 76.91 | 5450 | 2.77 | 5282 | 0.05 | 5301.03 | 0.05 | 62.07 |
MKP12 | 8633 | 8170 | 5.36 | 7902 | 0.08 | 7891.19 | 0.08 | 129.37 | 8595 | 0.44 | 8508 | 0.01 | 8507.32 | 0.01 | 42.17 |
MKP13 | 3090 | 3059 | 1.00 | 3026 | 0.02 | 3024.16 | 0.02 | 19.43 | 3090 | 0.00 | 3076 | 0.00 | 3063.06 | 0.00 | 22.04 |
MKP14 | 2139 | 2139 | 0.00 | 2122 | 0.00 | 2115.48 | 0.01 | 19.06 | 2139 | 0.00 | 2122 | 0.00 | 2118.70 | 0.00 | 17.56 |
MKP15 | 3418 | 3388 | 0.88 | 3356 | 0.01 | 3351.22 | 0.01 | 20.72 | 3418 | 0.00 | 3388 | 0.00 | 3382 | 0.01 | 23.39 |
MKP16 | 3186 | 3114 | 2.26 | 3070 | 0.03 | 3071.96 | 0.03 | 20.53 | 3186 | 0.00 | 3173 | 0.00 | 3165.03 | 0.00 | 25.08 |
MKP17 | unknown | 56,455 | - | 55,719 | - | 55,784.29 | - | 303.38 | 56,633 | - | 55,784 | - | 55,865.22 | - | 340.99 |
MKP18 | unknown | 58,921 | - | 58,149 | - | 58,132.38 | - | 264.85 | 59,097 | - | 58,102 | - | 58,192.51 | - | 342.95 |
MKP19 | unknown | 57,653 | - | 56,699 | - | 56,681.19 | - | 341.39 | 57,859 | - | 56,740 | - | 56,859 | - | 370.84 |
MKP20 | unknown | 57,337 | - | 56,861 | - | 56,859.54 | - | 280.80 | 57,597 | - | 56,948 | - | 56,908.64 | - | 345.66 |
ID | Native Methods | Shannon Strategy | ||||
---|---|---|---|---|---|---|
PSO | BAT | BH | S–PSO | S–BAT | S–BH | |
MKP01 | ∼0 | – | 0.00367 | – | – | – |
MKP02 | – | 0.04057 | – | ∼0 | ∼0 | ∼0 |
MKP03 | ∼0 | – | 0.00291 | – | ∼0 | – |
MKP04 | ∼0 | ∼0 | ∼0 | 0.00065 | – | ∼0 |
MKP05 | – | – | ∼0 | 0.00982 | – | – |
MKP06 | ∼0 | 0.00083 | ∼0 | ∼0 | 0.00072 | ∼0 |
MKP07 | ∼0 | 0.00065 | ∼0 | ∼0 | 0.0026 | ∼0 |
MKP08 | ∼0 | – | ∼0 | 0.0002 | – | – |
MKP09 | – | 0.0005 | – | 0.0082 | ∼0 | ∼0 |
MKP10 | ∼0 | – | ∼0 | 0.00712 | 0.00033 | – |
MKP11 | ∼0 | 0.00629 | – | ∼0 | 0.00037 | ∼0 |
MKP12 | – | – | ∼0 | – | 0.00001 | – |
MKP13 | 0.00036 | 0.0034 | – | 0.00036 | 0.00126 | 0.00126 |
MKP14 | 0.00011 | ∼0 | 0.00086 | 0.00011 | 0.00266 | 0.00015 |
MKP15 | 0.01802 | – | 0.00917 | 0.01802 | – | 0.00257 |
MKP16 | 0.00002 | ∼0 | 0.0054 | 0.00002 | ∼0 | 0.00002 |
MKP17 | – | ∼0 | ∼0 | 0.0006 | 0.03037 | – |
MKP18 | ∼0 | ∼0 | – | 0.00054 | 0.00076 | ∼0 |
MKP19 | ∼0 | 0.00658 | ∼0 | 0.06661 | 0.0012 | ∼0 |
MKP20 | ∼0 | 0.0054 | ∼0 | 0.0004 | ∼0 | – |
ID | PSO vs. S–PSO | BAT vs. S–BAT | BH vs. S–BH |
---|---|---|---|
MKP01 | – | 2.9581384 | – |
MKP02 | 0.00014 | 3.9834857 | – |
MKP03 | – | 6.1540486 | – |
MKP04 | – | 2.9163915 | – |
MKP05 | – | 6.6611161 | – |
MKP06 | 0.00573 | 1.5107026 | – |
MKP07 | – | 9.5509242 | – |
MKP08 | – | 1.4444445 | – |
MKP09 | – | 4.7065594 | – |
MKP10 | – | 3.1609970 | – |
MKP11 | – | 4.9246126 | – |
MKP12 | – | 1.1318991 | 6.6650018 |
MKP13 | 0.00908663513 | 5.1131699 | 4.8034849 |
MKP14 | – | 0.0037256 | – |
MKP15 | – | 0.0208799 | 1.5990313 |
MKP16 | – | 0.0049714 | 5.8935079 |
MKP17 | 2.6426213 | 6.6571193 | – |
MKP18 | 1.4444445 | 1.0824563 | – |
MKP19 | 2.9162619 | 6.6688876 | – |
MKP20 | 1.0321732 | 7.3535622 | – |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olivares, R.; Soto, R.; Crawford, B.; Riquelme, F.; Munoz, R.; Ríos, V.; Cabrera, R.; Castro, C. Entropy–Based Diversification Approach for Bio–Computing Methods. Entropy 2022, 24, 1293. https://doi.org/10.3390/e24091293
Olivares R, Soto R, Crawford B, Riquelme F, Munoz R, Ríos V, Cabrera R, Castro C. Entropy–Based Diversification Approach for Bio–Computing Methods. Entropy. 2022; 24(9):1293. https://doi.org/10.3390/e24091293
Chicago/Turabian StyleOlivares, Rodrigo, Ricardo Soto, Broderick Crawford, Fabián Riquelme, Roberto Munoz, Víctor Ríos, Rodrigo Cabrera, and Carlos Castro. 2022. "Entropy–Based Diversification Approach for Bio–Computing Methods" Entropy 24, no. 9: 1293. https://doi.org/10.3390/e24091293
APA StyleOlivares, R., Soto, R., Crawford, B., Riquelme, F., Munoz, R., Ríos, V., Cabrera, R., & Castro, C. (2022). Entropy–Based Diversification Approach for Bio–Computing Methods. Entropy, 24(9), 1293. https://doi.org/10.3390/e24091293