Tumor Biochemical Heterogeneity and Cancer Radiochemotherapy: Network Breakdown Zone-Model
<p>Erdős–Rényi network with <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>200</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mo><</mo> <mi>k</mi> <mo>></mo> <mspace width="3.33333pt"/> <mo>=</mo> <mspace width="3.33333pt"/> <mn>4</mn> </mrow> </semantics></math>. Nodes with larger <span class="html-italic">k</span> appear larger.</p> "> Figure 2
<p>Normalized number of clusters (The normalization has been calculated at the maximum value at the critical point at <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>) as a function of <span class="html-italic">r</span>, on ER (Erdős–Rényi) networks with <math display="inline"><semantics> <mrow> <mo><</mo> <mi>k</mi> <mo>></mo> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math> and <span class="html-italic">N</span> = 10,000, for the k-shell (blue, top line) and k-sorted model (red, bottom line) at the network breakdown point (<math display="inline"><semantics> <mi>κ</mi> </semantics></math> = 2). The solid lines are optical guides. The ranges of error bars in y-axis are between <math display="inline"><semantics> <mrow> <mn>8.2</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>4</mn> </mrow> </msup> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mn>8.9</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>4</mn> </mrow> </msup> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mn>7.6</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>4</mn> </mrow> </msup> </mrow> </semantics></math>–<math display="inline"><semantics> <mrow> <mn>8.9</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>4</mn> </mrow> </msup> </mrow> </semantics></math> for the k-shell and k-sorted model, respectively, for all <span class="html-italic">r</span> values.</p> "> Figure 3
<p>Number of removed nodes (as a fraction of the total nodes) as a function of <span class="html-italic">r</span>, derived by simulations of the k-shell (blue, bottom line) and the k-sorted model (red, top line), on ER networks with <math display="inline"><semantics> <mrow> <mo><</mo> <mi>k</mi> <mo>></mo> <mspace width="3.33333pt"/> <mo>=</mo> <mspace width="3.33333pt"/> <mn>20</mn> </mrow> </semantics></math> and <span class="html-italic">N</span> = 10,000, at the network breakdown point (<math display="inline"><semantics> <mrow> <mi>κ</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>). The solid lines are optical guides. The ranges of error bars in y-axis are between <math display="inline"><semantics> <mrow> <mn>5.78</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>5</mn> </mrow> </msup> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mn>6.24</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>5</mn> </mrow> </msup> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mn>5.29</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>5</mn> </mrow> </msup> </mrow> </semantics></math>–<math display="inline"><semantics> <mrow> <mn>6.24</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>5</mn> </mrow> </msup> </mrow> </semantics></math> for the k-shell and k-sorted model, respectively, for all <span class="html-italic">r</span> values.</p> "> Figure 4
<p>Distributions of the sizes of clusters for the two models at the critical point <math display="inline"><semantics> <mrow> <mi>κ</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math> in log–log plot for <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>0.8</mn> </mrow> </semantics></math>. For <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> the distributions are identical for the 2 models (black dots). For <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>0.8</mn> </mrow> </semantics></math>, the distributions for the k-shell model (red dots) and k-sorted model (blue dots) are not identical.</p> "> Figure 5
<p>Analytical (solid line) and simulation (dots) results for the relative size of the largest cluster <span class="html-italic">S</span> during the entire removal process for the k-shell model as a function of the fraction of removed nodes for <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>. The networks have size <span class="html-italic">N</span> = 10,000 and <math display="inline"><semantics> <mrow> <mo><</mo> <mi>k</mi> <mo>></mo> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math>.</p> "> Figure 6
<p>Relative size of the largest cluster <span class="html-italic">S</span> during the entire removal process for the two models, for <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>0.8</mn> </mrow> </semantics></math>, as a fraction of the removed nodes. For <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> the values of <span class="html-italic">S</span> for the two models do overlap (black, bottom line). For <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>0.8</mn> </mrow> </semantics></math> we observe 2 distinct curves for the k-shell (blue, middle line ) and the k-sorted model (red, top line). The networks have size <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>10</mn> <mo>,</mo> <mn>000</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mo><</mo> <mi>k</mi> <mo>></mo> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Method of Simulation
3. k-Sorted Model
4. k-Shell Model
5. Results
6. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dimou, A.; Argyrakis, P.; Kopelman, R. Tumor Hypoxia Heterogeneity Affects Radiotherapy: Inverse-Percolation Shell-Model Monte Carlo Simulations. Entropy 2022, 24, 86. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Folz, J.; Tan, J.W.Y.; Jo, J.; Wang, X.; Kopelman, R. Chemical Imaging in vivo: Photoacoustic-Based 4-Dimensional Chemical Analysis. Anal. Chem. 2019, 91, 2561–2569. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Wu, Q.; Dang, Y.; Lei, X.; Feng, G.; Chen, M.; Yu, X.-Y. Synergistic Therapy Using Doxorubicin-Loading and Nitric Oxide-Generating Hollow Prussian Blue Nanoparticles with Photoacoustic Imaging Potential Against Breast Cancer. Int. J. Nanomed. 2021, 16, 6003–6016. [Google Scholar] [CrossRef] [PubMed]
- Bell, E.H.; Zhang, P.; Shaw, E.G.; Buckner, J.C.; Barger, G.R.; Bullard, D.E.; Mehta, M.P.; Gilbert, M.R.; Brown, P.D.; Stelzer, K.J.; et al. Comprehensive Genomic Analysis in NRG Oncology/RTOG 9802: A Phase III Trial of Radiation Versus Radiation Plus Procarbazine, Lomustine (CCNU), and Vincristine in High-Risk Low-Grade Glioma. J. Clin. Oncol. 2020, 38, 3407–3417. [Google Scholar] [CrossRef]
- Anemone, A.; Consolino, L.; Arena, F.; Capozza, M.; Longo, D.L. Imaging tumor acidosis: A survey of the available techniques for mapping in vivo tumor pH. Cancer Metastasis Rev. 2019, 38, 25–49. [Google Scholar] [CrossRef]
- Anemone, A.; Consolino, L.; Conti, L.; Reineri, F.; Cavallo, F.; Aime, S.; Longo, D.L. In vivo evaluation of tumour acidosis for assessing the early metabolic response and onset of resistance to dichloroacetate by using magnetic resonance pH imaging. Int. J. Oncol. 2017, 51, 498–506. [Google Scholar] [CrossRef]
- Raghunand, N.; He, X.; Van Sluis, R.; Mahoney, B.; Baggett, B.; Taylor, C.W.; Paine-Murrieta, G.; Roe, D.; Bhujwalla, Z.M.; Gillies, R. Enhancement of chemotherapy by manipulation of tumour pH. Br. J. Cancer 1999, 80, 1005–1011. [Google Scholar] [CrossRef]
- Gerweck, L.E.; Vijayappa, S.; Kozin, S. Tumor pH controls the in vivo efficacy of weak acid and base chemotherapeutics. Mol. Cancer Ther. 2006, 5, 1275–1279. [Google Scholar] [CrossRef]
- Martin, N.K.; Robey, I.F.; Gaffney, E.; Gillies, R.; A Gatenby, R.; Maini, P.K. Predicting the safety and efficacy of buffer therapy to raise tumour pHe: An integrative modelling study. Br. J. Cancer 2012, 106, 1280–1287. [Google Scholar] [CrossRef]
- Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science 2009, 22, 1029–1033. [Google Scholar] [CrossRef]
- Stauffer, D.; Aharony, A. Introduction to Percolation Theory, 2nd ed.; Taylor & Francis: Abingdon, UK, 1992. [Google Scholar]
- Bunde, A.; Havlin, S. Fractals and Disordered Systems; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Ramirez, L.S.; Centres, P.M.; Ramirez-Pastor, A.J. Inverse percolation by removing straight rigid rods from square lattices in the presence of impurities. J. Stat. Mech. Theory Exp. 2019, 2019, 033207. [Google Scholar] [CrossRef]
- Dorogovtsev, S.N.; Mendes, J.F.F. Evolution of Networks: From Biological Nets to the Internet and WWW; Oxford University Press: Oxford, UK, 2003. [Google Scholar]
- Dorogovtsev, S.N.; Mendes, J.F.F. The Nature of Complex Networks; Oxford University Press: Oxford, UK, 2022. [Google Scholar]
- Qiu, M.; Wang, D.; Huang, H.; Yin, T.; Bao, W.; Zhang, B.; Xie, Z.; Xie, N.; Wu, Z.; Ge, C.; et al. A Regioselectively Oxidized 2D Bi/BiOx Lateral Nano-Heterostructure for Hypoxic Photodynamic Therapy. Adv. Mater. 2021, 33, 2102562. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y. Attack robustness and stability of generalized k-cores. New J. Phys. 2019, 21, 093013. [Google Scholar] [CrossRef]
- Shang, Y. Generalized k-core percolation on correlated and uncorrelated multiplex networks. Phys. Rev. E 2020, 101, 042306. [Google Scholar] [CrossRef]
- Uthamacumaran, A.; Zenil, H. A Review of Mathematical and Computational Methods in Cancer Dynamics. Front. Oncol. 2022, 12, 850731. [Google Scholar] [CrossRef]
- Erdős, P.; Rényi, A. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 1960, 5, 17–60. [Google Scholar]
- Erdős, P.; Rényi, A. On random graphs. Publ. Math. 1959, 6, 290–297. [Google Scholar]
- Lahav, N.; Ksherim, B.; Ben-Simon, E.; Maron-Katz, A.; Cohen, R.; Havlin, S. K-shell decomposition reveals hierarchical cortical organization of the human brain. New J. Phys. 2016, 18, 083013. [Google Scholar] [CrossRef]
- Cohen, R.; Erez, K.; Ben-Avraham, D.; Havlin, S. Resilience of the Internet to Random Breakdowns. Phys. Rev. Lett. 2000, 85, 4626–4628. [Google Scholar] [CrossRef]
- Cohen, R.; Erez, K.; Ben-Avraham, D.; Havlin, S. Breakdown of the Internet under Intentional Attack. Phys. Rev. Lett. 2001, 86, 3682–3685. [Google Scholar] [CrossRef]
- Carmi, S.; Havlin, S.; Kirkpatrick, S.; Shavitt, Y.; Shir, E. A model of Internet topology using k-shell decomposition. Proc. Natl. Acad. Sci. USA 2007, 104, 11150–11154. [Google Scholar] [CrossRef] [PubMed]
- Codes Are Freely. Available online: https://github.com/argdimou/Tumor-Biochemical-Heterogeneity-and-Oncology-Network-Breakdown-Zone-Model (accessed on 28 July 2022).
- Popovtzer, R.; Agrawal, A.; Kotov, N.; Popovtzer, A.; Balter, J.; Carey, T.; Kopelman, R. Targeted Gold Nanoparticles Enable Molecular CT Imaging of Cancer. Nano Lett. 2008, 8, 4593–4596. [Google Scholar] [CrossRef] [PubMed]
- Albert, R.; Barabási, A.L. Statistical mechanics of complex networks. Rev. Mod. Phys. 2002, 74, 47–97. [Google Scholar] [CrossRef]
- Grover, A.; Leskovec, J. Node2vec: Scalable Feature Learning for Networks, Node2vec: Scalable Feature Learning for Networks. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 855–864. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimou, A.; Argyrakis, P.; Kopelman, R. Tumor Biochemical Heterogeneity and Cancer Radiochemotherapy: Network Breakdown Zone-Model. Entropy 2022, 24, 1069. https://doi.org/10.3390/e24081069
Dimou A, Argyrakis P, Kopelman R. Tumor Biochemical Heterogeneity and Cancer Radiochemotherapy: Network Breakdown Zone-Model. Entropy. 2022; 24(8):1069. https://doi.org/10.3390/e24081069
Chicago/Turabian StyleDimou, Argyris, Panos Argyrakis, and Raoul Kopelman. 2022. "Tumor Biochemical Heterogeneity and Cancer Radiochemotherapy: Network Breakdown Zone-Model" Entropy 24, no. 8: 1069. https://doi.org/10.3390/e24081069
APA StyleDimou, A., Argyrakis, P., & Kopelman, R. (2022). Tumor Biochemical Heterogeneity and Cancer Radiochemotherapy: Network Breakdown Zone-Model. Entropy, 24(8), 1069. https://doi.org/10.3390/e24081069