Joint Detection of Community and Structural Hole Spanner of Networks in Hyperbolic Space
<p>Diffusion networks. (<b>a</b>) Epidemic network. Blue nodes represent the susceptible, yellow nodes represent the exposed, and red nodes represent the infected. Directed edges represent the potential transmission path of the contact network. The dotted circle indicates the potential transmission community. (<b>b</b>) Information diffusion network. Directed edges indicate the repost (retweet) path of social platforms such as Weibo. Different colored areas represent different communities.</p> "> Figure 2
<p>Illustration of weak ties and structural hole spanners.</p> "> Figure 3
<p>Flow chart of the critical gap method (CGM). (<b>a</b>) A network example. (<b>b</b>) The network embedded in a Poincaré disk. The dotted line represents the connected shape of Euclidean space, not the actual connection state of hyperbolic space. In fact, the connected edges should be represented as curved lines in hyperbolic space. (<b>c</b>) Different communities in hyperbolic space. Different communities are separated by dark blue dashed lines, and the internal nodes in different communities are distinguished by different colors.</p> "> Figure 4
<p>Possible positions of structural hole spanners. Dark blue dashed lines separate the two communities. Node <span class="html-italic">S</span> is arbitrarily set as an SHS; then, the shadow area is what we need to calculate.</p> "> Figure 5
<p>Visualization of network communities in the hyperbolic space. Every point represents a node of a connected graph. The disk takes polar coordinates as the coordinate system. For the sake of simplicity, edges have not been added in the disk. We used the CGM to determine the community structure of the network. The colors are randomly generated, and different colors represent different angular coordinates. (<b>a</b>) Synthetic network 1 with <math display="inline"><semantics> <mrow> <mi>Q</mi> <mo>=</mo> <mn>0.6520</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mfenced open="|" close="|"> <mi>C</mi> </mfenced> <mo>=</mo> <mn>15</mn> </mrow> </semantics></math>. (<b>b</b>) Synthetic network 2 with <math display="inline"><semantics> <mrow> <mi>Q</mi> <mo>=</mo> <mn>0.6466</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mfenced open="|" close="|"> <mi>C</mi> </mfenced> <mo>=</mo> <mn>16</mn> </mrow> </semantics></math>. (<b>c</b>) Synthetic network 3 with <math display="inline"><semantics> <mrow> <mi>Q</mi> <mo>=</mo> <mn>0.8355</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mfenced open="|" close="|"> <mi>C</mi> </mfenced> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math>. (<b>d</b>) soc-hamsterster with <math display="inline"><semantics> <mrow> <mi>Q</mi> <mo>=</mo> <mn>0.3342</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mfenced open="|" close="|"> <mi>C</mi> </mfenced> <mo>=</mo> <mn>36</mn> </mrow> </semantics></math>. (<b>e</b>) fb-pages-politician with <math display="inline"><semantics> <mrow> <mi>Q</mi> <mo>=</mo> <mn>0.2929</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mfenced open="|" close="|"> <mi>C</mi> </mfenced> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>. (<b>f</b>) power-US-Grid with <math display="inline"><semantics> <mrow> <mi>Q</mi> <mo>=</mo> <mn>0.7576</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mfenced open="|" close="|"> <mi>C</mi> </mfenced> <mo>=</mo> <mn>15</mn> </mrow> </semantics></math>.</p> "> Figure 6
<p>CS-score of different methods on different networks.</p> ">
Abstract
:1. Introduction
- We analyze mesoscopic and microscopic structural features of scale-free networks and study the inter-community connection probability, which is described as the distance between the mesoscopic communities and the microscopic SHS in hyperbolic space.
- By analyzing community structure and structural hole spanners bridging different communities in hyperbolic space, we find that low-dimensional similarity can be used to measure the community and SHS of networks. We obtain the critical gap for detecting communities and the angular region where structural hole spanners may exist.
- Based on the analysis of the critical gap and angular region, we propose an algorithm SDHE for detecting communities and structural hole spanners simultaneously. Experimental results on synthetic networks and real networks testify the effectiveness and efficiency of our proposed algorithm SDHE.
2. Related Work
2.1. Community Detection
2.2. Shs Identification
2.3. Hyperbolic Embedding
3. Preliminaries
3.1. Community
3.2. SHS and Weak Tie
4. Methods
4.1. Hyperbolic Embedding
4.2. Critical Gap of Community Structure
Algorithm 1 Critical Gap Method (CGM) |
Input: Graph ; Coordinates in hyperbolic plane for ; |
Output: Assignments to communities C; Modularity Q; |
1: repeat |
2: Make all pairs of nodes connected to be a connected component when ; |
3: Assign all nodes of the same connected component to the same community; |
4: Calculating Q according to Equation (11); |
5: if then |
6: |
7: end if |
8: Increase ; |
9: until |
- (1)
- In the GPA model
- (2)
- In the nPSO model
4.3. Angular Area of SHS
4.4. SDHE Algorithm
Algorithm 2 SDHE |
Input: Graph ; Coordinates in hyperbolic plane for ; The critical gap ; |
Output: The distributed structural hole spanners; |
1: Initialize and sort the set of angular coordinates ; |
2: Calculate the consecutive angular differences = ; |
3: Detecting communities by using Algorithm 1 CGM; |
4: for do |
5: if then |
6: Select nodes whose angular coordinates satisfy or ; |
7: Select top-k nodes with positive 2-step connectivity scores; |
8: end if |
9: end for |
10: return Top-k structural hole spanners; |
5. Results
5.1. Datasets
5.2. Compared Methods
- PageRank-based (PR) [67] is a classic ranking algorithm that assigns each node a PageRank score for ranking potential SHSs. This algorithm is widely used in industries such as Google Search.
- Betweenness-centrality-based (BC) [68] gives each node a score for its shortest paths. Then, the algorithm selects nodes of the top-k scores as the possible SHSs.
- Two-step connectivity (2-Step) [69] estimates the number of pairs of a node’s neighbors that are not pairwise linked. The more that the number of edges means, the larger the possibility of belonging to an SHS.
- HAM [43] formulates a harmonic modularity function for discovering the possible SHSs. The rationale is that nodes whose neighbors belong to more different subnetworks can be regarded as SHSs.
5.3. Evaluation Criteria
5.4. Experimental Result
6. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SHS | Structural hole spanner |
NRL | Network representation learning |
EE | Efficient embedding |
CGM | Critical gap method |
GPA | Geometric preferential attachment |
PSO | Popularity-similarity optimization |
GM | Gaussian mixture |
CDF | Cumulative distribution function |
References
- Yan, X.Y.; Wang, W.X.; Gao, Z.Y.; Lai, Y.C. Universal model of individual and population mobility on diverse spatial scales. Nat. Commun. 2017, 8, 1639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, B.; Yan, X.Y.; Xu, X.K.; Xu, X.T.; Wang, N. Evolutionary of online social networks driven by Pareto wealth distribution and bidirectional preferential attachment. Phys. A Stat. Mech. Its Appl. 2018, 507, 427–434. [Google Scholar] [CrossRef] [Green Version]
- Lv, Y.; Chen, Y.; Zhang, X.; Duan, Y.; Li, N.L. Social media based transportation research: The state of the work and the networking. IEEE/CAA J. Autom. Sin. 2017, 4, 19–26. [Google Scholar] [CrossRef]
- Ghahramani, M.; Zhou, M.; Wang, G. Urban sensing based on mobile phone data: Approaches, applications, and challenges. IEEE/CAA J. Autom. Sin. 2020, 7, 627–637. [Google Scholar] [CrossRef]
- Jiang, H.; Yi, S.; Wu, L.; Leung, H.; Wang, Y.; Zhou, X.; Chen, Y.; Yang, L. Data-driven cell zooming for large-scale mobile networks. IEEE Trans. Netw. Serv. Manag. 2018, 15, 156–168. [Google Scholar] [CrossRef]
- Wasserman, S.; Faust, K. Social Network Analysis: Methods and Applications; Cambridge University Press: Cambridge, MA, USA, 1994. [Google Scholar]
- Su, X.; Xue, S.; Liu, F.; Wu, J.; Yang, J.; Zhou, C.; Hu, W.; Paris, C.; Nepal, S.; Jin, D.; et al. A Comprehensive Survey on Community Detection with Deep Learning. IEEE Trans. Neural Netw. Learn. Syst. 2021. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Xue, S.; Wu, J.; Zhou, C.; Hu, W.; Paris, C.; Nepal, S.; Yang, J.; Yu, P.S. Deep Learning for Community Detection: Progress, Challenges and Opportunities. In Proceedings of the IJCAI, Yokohama, Japan, 11–17 July 2020; pp. 4981–4987. [Google Scholar]
- St-Onge, G.; Thibeault, V.; Allard, A.; Dubé, L.J.; Hébert-Dufresne, L. Social confinement and mesoscopic localization of epidemics on networks. Phys. Rev. Lett. 2021, 126, 098301. [Google Scholar] [CrossRef] [PubMed]
- Lambiotte, R.; Panzarasa, P. Communities, knowledge creation, and information diffusion. J. Inf. 2009, 3, 180–190. [Google Scholar] [CrossRef] [Green Version]
- Reichardt, J.; Alamino, R.; Saad, D. The interplay between microscopic and mesoscopic structures in complex networks. PLoS ONE 2011, 6, e21282. [Google Scholar] [CrossRef] [Green Version]
- Lozano, S.; Arenas, A.; Sanchez, A. Mesoscopic structure conditions the emergence of cooperation on social networks. PLoS ONE 2008, 3, e1892. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Liu, Z.; Zhao, D.; Sun, M.; Chang, E. Network representation learning with rich text information. In Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI), Buenos Aires, Argentina, 25–31 July 2015. [Google Scholar]
- Papadopoulos, F.; Psomas, C.; Krioukov, D. Network mapping by replaying hyperbolic growth. IEEE/ACM Trans. Netw. 2014, 23, 198–211. [Google Scholar] [CrossRef] [Green Version]
- García-Pérez, G.; Boguñá, M.; Allard, A.; Serrano, M.Á. The hidden hyperbolic geometry of international trade: World Trade Atlas 1870–2013. Sci. Rep. 2016, 6, 33441. [Google Scholar] [CrossRef]
- Muscoloni, A.; Thomas, J.M.; Ciucci, S.; Bianconi, G.; Cannistraci, C.V. Machine learning meets complex networks via coalescent embedding in the hyperbolic space. Nat. Commun. 2017, 8, 1615. [Google Scholar] [CrossRef]
- García-Pérez, G.; Allard, A.; Serrano, M.Á.; Boguñá, M. Mercator: Uncovering faithful hyperbolic embeddings of complex networks. New J. Phys. 2019, 21, 123033. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhang, Y.; Shi, C. Hyperbolic heterogeneous information network embedding. In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence (AAAI), Honolulu, HI, USA, 27 January–1 February 2019; pp. 5337–5344. [Google Scholar]
- Barabási, A.L.; Albert, R. Emergence of scaling in random networks. Science 1999, 286, 509–512. [Google Scholar] [CrossRef] [Green Version]
- Fortunato, S.; Bergstrom, C.T.; Börner, K.; Evans, J.A.; Helbing, D.; Milojević, S.; Petersen, A.M.; Radicchi, F.; Sinatra, R.; Uzzi, B.; et al. Science of science. Science 2018, 359, eaao0185. [Google Scholar] [CrossRef] [Green Version]
- Voitalov, I.; van der Hoorn, P.; van der Hofstad, R.; Krioukov, D. Scale-free networks well done. Phys. Rev. Res. 2019, 1, 033034. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Wu, J.; Xue, S.; Zhou, C.; Yang, J.; Sheng, Q. Detecting the evolving community structure in dynamic social networks. World Wide Web 2020, 23, 715–733. [Google Scholar] [CrossRef]
- Radicchi, F.; Castellano, C.; Cecconi, F.; Loreto, V.; Parisi, D. Defining and identifying communities in networks. Proc. Natl. Acad. Sci. USA 2004, 101, 2658–2663. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Wu, J.; Zhou, C.; Yang, J. Evolutionary community detection in dynamic social networks. In Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; pp. 1–7. [Google Scholar]
- Nadakuditi, R.R.; Newman, M.E. Graph spectra and the detectability of community structure in networks. Phys. Rev. Lett. 2012, 108, 188701. [Google Scholar] [CrossRef] [Green Version]
- Girvan, M.; Newman, M.E. Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 2002, 99, 7821–7826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newman, M.E.; Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 2004, 69, 026113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, G.; Gao, L. Spectral clustering for detecting protein complexes in protein–protein interaction (PPI) networks. Math. Comput. Model. 2010, 52, 2066–2074. [Google Scholar] [CrossRef]
- Gregory, S. Finding overlapping communities using disjoint community detection algorithms. In Complex Networks; Springer: Berlin/Heidelberg, Germany, 2009; pp. 47–61. [Google Scholar]
- Xie, J.; Szymanski, B.K.; Liu, X. Slpa: Uncovering overlapping communities in social networks via a speaker-listener interaction dynamic process. In Proceedings of the 2011 IEEE 11th International Conference on Data Mining Workshops, Vancouver, BC, Canada, 11 December 2011; pp. 344–349. [Google Scholar]
- Pons, P.; Latapy, M. Computing communities in large networks using random walks. In Proceedings of the International Symposium on Computer and Information Sciences, Istanbul, Turkey, 26–28 October 2018; Springer: Berlin/Heidelberg, Germany, 2005; pp. 284–293. [Google Scholar]
- Coscia, M.; Giannotti, F.; Pedreschi, D. A classification for community discovery methods in complex networks. Stat. Anal. Data Min. ASA Data Sci. J. 2011, 4, 512–546. [Google Scholar] [CrossRef] [Green Version]
- Lancichinetti, A.; Fortunato, S. Consensus clustering in complex networks. Sci. Rep. 2012, 2, 336. [Google Scholar] [CrossRef]
- Lee, D.; Lee, S.H.; Kim, B.J.; Kim, H. Consistency landscape of network communities. Phys. Rev. E 2021, 103, 052306. [Google Scholar] [CrossRef]
- Kwak, H.; Eom, Y.H.; Choi, Y.; Jeong, H. Consistent community identification in complex networks. J. Korean Phys. Soc. 2011, 59, 3128. [Google Scholar] [CrossRef]
- Kim, H.; Lee, S.H. Relational flexibility of network elements based on inconsistent community detection. Phys. Rev. E 2019, 100, 022311. [Google Scholar] [CrossRef] [Green Version]
- Clauset, A. Finding local community structure in networks. Phys. Rev. E 2005, 72, 026132. [Google Scholar] [CrossRef] [Green Version]
- Burt, R.S. Structural Holes: The Social Structure of Competition; Harvard University Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Lou, T.; Tang, J. Mining structural hole spanners through information diffusion in social networks. In Proceedings of the International World Wide Web Conference (WWW), Rio de Janeiro, Brazil, 13–17 May 2013; pp. 825–836. [Google Scholar]
- Rezvani, M.; Liang, W.; Xu, W.; Liu, C. Identifying top-k structural hole spanners in large-scale social networks. In Proceedings of the 24th ACM International on Conference on Information and Knowledge Management (CIKM), Melbourne, VIC, Australia, 19–23 October 2015; pp. 263–272. [Google Scholar]
- Xu, W.; Rezvani, M.; Liang, W.; Yu, J.X.; Liu, C. Efficient Algorithms for the Identification of Top-k Structural Hole Spanners in Large Social Networks. IEEE Trans. Knowl. Data Eng. 2017, 29, 1017–1030. [Google Scholar] [CrossRef]
- Wu, A.K.; Tian, L.; Liu, Y.Y. Bridges in complex networks. Phys. Rev. E 2018, 97, 012307. [Google Scholar] [CrossRef] [Green Version]
- He, L.; Lu, C.T.; Ma, J.; Cao, J.; Shen, L.; Yu, P.S. Joint community and structural hole spanner detection via harmonic modularity. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), San Francisco, CA, USA, 13–17 August 2016; pp. 875–884. [Google Scholar]
- Krioukov, D.; Papadopoulos, F.; Kitsak, M.; Vahdat, A.; Boguná, M. Hyperbolic geometry of complex networks. Phys. Rev. E 2010, 82, 036106. [Google Scholar] [CrossRef] [Green Version]
- Papadopoulos, F.; Krioukov, D.; Boguná, M.; Vahdat, A. Greedy forwarding in dynamic scale-free networks embedded in hyperbolic metric spaces. In Proceedings of the 2010 Proceedings IEEE INFOCOM, San Diego, CA, USA, 14–19 March 2010; pp. 1–9. [Google Scholar]
- Taherian, S.G. On algebraic structures related to Beltrami–Klein model of hyperbolic geometry. Results Math. 2010, 57, 205–219. [Google Scholar] [CrossRef]
- Cohl, H.S.; Kalnins, E.G. Fourier and Gegenbauer expansions for a fundamental solution of the Laplacian in the hyperboloid model of hyperbolic geometry. J. Phys. A Math. Theor. 2012, 45, 145206. [Google Scholar] [CrossRef] [Green Version]
- Stahl, S. The Poincaré Half-Plane: A Gateway to Modern Geometry; Jones & Bartlett Learning: Burlington, MA, USA, 1993. [Google Scholar]
- Bläsius, T.; Friedrich, T.; Krohmer, A.; Laue, S. Efficient embedding of scale-free graphs in the hyperbolic plane. IEEE/ACM Trans. Netw. 2018, 26, 920–933. [Google Scholar] [CrossRef]
- Alanis-Lobato, G.; Mier, P.; Andrade-Navarro, M.A. Efficient embedding of complex networks to hyperbolic space via their Laplacian. Sci. Rep. 2016, 6, 30108. [Google Scholar] [CrossRef] [Green Version]
- Boguna, M.; Bonamassa, I.; De Domenico, M.; Havlin, S.; Krioukov, D.; Serrano, M.Á. Network geometry. Nat. Rev. Phys. 2021, 3, 114–135. [Google Scholar] [CrossRef]
- Alanis-Lobato, G.; Mier, P.; Andrade-Navarro, M.A. Manifold learning and maximum likelihood estimation for hyperbolic network embedding. Appl. Netw. Sci. 2016, 1, 10. [Google Scholar] [CrossRef] [Green Version]
- Granovetter, M. The strength of weak ties: A network theory revisited. Sociol. Theory 1983, 1, 201–233. [Google Scholar] [CrossRef]
- De Meo, P.; Ferrara, E.; Fiumara, G.; Provetti, A. On Facebook, most ties are weak. Commun. ACM 2014, 57, 78–84. [Google Scholar] [CrossRef]
- Zhao, J.; Wu, J.; Xu, K. Weak ties: Subtle role of information diffusion in online social networks. Phys. Rev. E 2010, 82, 016105. [Google Scholar] [CrossRef] [Green Version]
- Nickel, M.; Kiela, D. Poincaré embeddings for learning hierarchical representations. Adv. Neural Inf. Process. Syst. 2017, 30, 6338–6347. [Google Scholar]
- Chamberlain, B.P.; Clough, J.; Deisenroth, M.P. Neural embeddings of graphs in hyperbolic space. arXiv 2017, arXiv:1705.10359. [Google Scholar]
- Faqeeh, A.; Osat, S.; Radicchi, F. Characterizing the analogy between hyperbolic embedding and community structure of complex networks. Phys. Rev. Lett. 2018, 121, 098301. [Google Scholar] [CrossRef] [Green Version]
- Papadopoulos, F.; Kitsak, M.; Serrano, M.Á.; Boguná, M.; Krioukov, D. Popularity versus similarity in growing networks. Nature 2012, 489, 537–540. [Google Scholar] [CrossRef] [Green Version]
- Bruno, M.; Sousa, S.F.; Gursoy, F.; Serafino, M.; Vianello, F.V.; Vranić, A.; Boguñá, M. Community detection in the hyperbolic space. arXiv 2019, arXiv:1906.09082. [Google Scholar]
- Newman, M.E. Fast algorithm for detecting community structure in networks. Phys. Rev. E 2004, 69, 066133. [Google Scholar] [CrossRef] [Green Version]
- Serrano, M.Á.; Boguná, M.; Sagués, F. Uncovering the hidden geometry behind metabolic networks. Mol. Biosyst. 2012, 8, 843–850. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Gou, C.; Duan, Y.; Lin, Y.; Zheng, X.; Wang, F.Y. Generative adversarial networks: Introduction and outlook. IEEE/CAA J. Autom. Sin. 2017, 4, 588–598. [Google Scholar] [CrossRef]
- Zuev, K.; Boguná, M.; Bianconi, G.; Krioukov, D. Emergence of soft communities from geometric preferential attachment. Sci. Rep. 2015, 5, 9421. [Google Scholar] [CrossRef] [Green Version]
- Muscoloni, A.; Cannistraci, C.V. A nonuniform popularity-similarity optimization (nPSO) model to efficiently generate realistic complex networks with communities. New J. Phys. 2018, 20, 052002. [Google Scholar] [CrossRef]
- Rossi, R.A.; Ahmed, N.K. The Network Data Repository with Interactive Graph Analytics and Visualization. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI), Austin, TX, USA, 25–30 January 2015. [Google Scholar]
- Hashemi, A.; Dowlatshahi, M.B.; Nezamabadi-Pour, H. MGFS: A multi-label graph-based feature selection algorithm via PageRank centrality. Expert Syst. Appl. 2020, 142, 113024. [Google Scholar] [CrossRef]
- Zhang, J.; Luo, Y. Degree centrality, betweenness centrality, and closeness centrality in social network. In Proceedings of the 2nd International Conference on Modelling, Simulation and Applied Mathematics (MSAM2017), Bangkok, Thailand, 26–27 March 2017; Volume 132, pp. 300–303. [Google Scholar]
- Tang, J.; Lou, T.; Kleinberg, J. Inferring social ties across heterogenous networks. In Proceedings of the 5th ACM International Conference on Web Search and Data Mining (WSDM), Washington, DC, USA, 8–12 February 2012; pp. 743–752. [Google Scholar]
- Li, F.; Zou, Z.; Li, J.; Li, Y.; Chen, Y. Distributed Parallel Structural Hole Detection on Big Graphs. In Proceedings of the Database Systems for Advanced Applications (DASFAA), Chiang Mai, Thailand, 22–25 April 2019; pp. 519–535. [Google Scholar]
- Raghavan, U.N.; Albert, R.; Kumara, S. Near linear time algorithm to detect community structures in large-scale networks. Phys. Rev. E 2007, 76, 036106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Method | Feature | Complexity |
---|---|---|
HyperMap | Based on PSO model | |
Efficient Embedding | Introducing common neighbors | |
LaBNE | Based on Laplace spectral decomposition | |
Coalescent Embedding | Based on repulsion–attraction and betweenness | to |
LaBNE+HM | Combining LaBNE with HyperMap | to |
Mercator | model |
Notation | Definition |
---|---|
the set of nodes; represents the i-th node | |
the set of edges; represents a link | |
the set of communities whose element represents community i | |
an undirected graph (network) that consists of set of nodes V and set of edges E | |
(or n) | the total number of nodes |
the total number of edges | |
the total number of communities | |
the radial coordinate of node in hyperbolic space | |
the angular coordinate of node in hyperbolic space | |
the angular difference of and | |
the hyperbolic distance of and | |
the critical gap, which is an angular gap partitioning two communities | |
the set of structural hole spanners’ angle difference range | |
inf | infimum |
sup | supremum |
the number of varied communities that node ’s neighbors belong to | |
degree of | |
strength weight of edge connecting and |
Graph Name | Average Degree3 | Average Clustering Coefficient | Power-Law Index | Category | ||
---|---|---|---|---|---|---|
Synthetic network 1 | 2000 | 98,725 | 99 | 0.6016 | 2.9039 | Synthetic networks |
Synthetic network 2 | 2000 | 98,725 | 99 | 0.6157 | 2.8989 | Synthetic networks |
Synthetic network 3 | 2000 | 7990 | 8 | 0.4640 | 3.4288 | Synthetic networks |
soc-hamsterster | 2000 | 16,631 | 14 | 0.5375 | 4.8520 | Social networks |
fb-pages-politician | 5908 | 41,729 | 14 | 0.3851 | 3.2455 | Social networks |
power-US-Grid | 4941 | 6594 | 3 | 0.0801 | 3.2175 | Power networks |
socfb-Amherst41 | 2235 | 90,954 | 81 | 0.3104 | 5.6425 | Social networks |
socfb-Simmons81 | 1510 | 32,988 | 43 | 0.3149 | 4.7393 | Social networks |
socfb-Swarthmore42 | 1657 | 61,050 | 73 | 0.2965 | 5.5988 | Social networks |
socfb-Rochester38 | 4561 | 161,404 | 70 | 0.2932 | 5.3782 | Social networks |
socfb-Reed98 | 962 | 18,812 | 39 | 0.3184 | 4.3817 | Social networks |
socfb-Mississippi66 | 10,519 | 610,911 | 116 | 0.2479 | 5.4252 | Social networks |
Graph Name | Our Algorithm | PageRank | Betweenness | 2-Step | HAM | ESH |
---|---|---|---|---|---|---|
Synthetic network 1 | 2.2402 | 5.5835 | 5.5835 | 5.5835 | 5.5076 | 3.9269 |
Synthetic network 2 | 4.9280 | 10.4967 | 10.4967 | 10.4967 | 10.0240 | 14.7173 |
Synthetic network 3 | 42.1019 | 67.4177 | 55.5883 | 60.3040 | 71.0014 | 49.4057 |
soc-hamsterster | 17.4755 | 112.2295 | 66.2897 | 98.3370 | 80.4742 | 48.5466 |
fb-pages-politician | 33.7559 | 901.6482 | 599.9436 | 1583.0686 | 216.4362 | 221.5029 |
power-US-Grid | 5.6422 | 25.5685 | 16.3807 | 41.0428 | 9.4812 | 6.1929 |
socfb-Amherst41 | 0.1590 | 33.8065 | 31.1441 | 28.5272 | 8.0049 | 3.9821 |
socfb-Simmons81 | 0.4939 | 16.2367 | 12.9662 | 15.0613 | 7.9427 | 7.1944 |
socfb-Swarthmore42 | 0.5542 | 9.7298 | 7.8113 | 9.7298 | 3.9401 | 3.2916 |
socfb-Rochester38 | 8.9028 | 103.4225 | 99.0418 | 128.1894 | 90.4591 | 42.3957 |
socfb-Reed98 | 1.6438 | 10.5912 | 9.4288 | 10.4065 | 5.0676 | 6.6712 |
socfb-Mississippi66 | 3.1859 | 135.9779 | 67.7351 | 227.7486 | 45.1414 | 29.2449 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nie, Q.; Jiang, H.; Zhong, S.-D.; Wang, Q.; Wang, J.-J.; Wang, H.; Wu, L.-H. Joint Detection of Community and Structural Hole Spanner of Networks in Hyperbolic Space. Entropy 2022, 24, 894. https://doi.org/10.3390/e24070894
Nie Q, Jiang H, Zhong S-D, Wang Q, Wang J-J, Wang H, Wu L-H. Joint Detection of Community and Structural Hole Spanner of Networks in Hyperbolic Space. Entropy. 2022; 24(7):894. https://doi.org/10.3390/e24070894
Chicago/Turabian StyleNie, Qi, Hao Jiang, Si-Dong Zhong, Qiang Wang, Juan-Juan Wang, Hao Wang, and Li-Hua Wu. 2022. "Joint Detection of Community and Structural Hole Spanner of Networks in Hyperbolic Space" Entropy 24, no. 7: 894. https://doi.org/10.3390/e24070894
APA StyleNie, Q., Jiang, H., Zhong, S. -D., Wang, Q., Wang, J. -J., Wang, H., & Wu, L. -H. (2022). Joint Detection of Community and Structural Hole Spanner of Networks in Hyperbolic Space. Entropy, 24(7), 894. https://doi.org/10.3390/e24070894