Normalised Mutual Information of High-Density Surface Electromyography during Muscle Fatigue
<p>Electrode arrangement and position.</p> "> Figure 2
<p>An example of the Normalised Mutual Information (NMI) between the electrode positioned at row 9 column 3 and every other electrode showing the first (non-fatigued) and last (fatigued) time segments for 40% Maximum Voluntary Contraction (MVC) in plot (<b>a</b>) and 80% MVC in plot (<b>b</b>). Blue bars represent the NMI during the non-fatigued state and yellow bars represent the NMI during the fatigued state.</p> "> Figure 3
<p>Eample Magnitude Maps of <math display="inline"> <semantics> <msub> <mi mathvariant="bold">D</mi> <mi mathvariant="bold">norm</mi> </msub> </semantics> </math> for one subject.</p> "> Figure 4
<p>Average <math display="inline"> <semantics> <mrow> <mi>M</mi> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </semantics> </math> for all participants.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Equipment
2.3. Electrode Placement
2.4. Experimental Procedure
2.5. Data Analysis
2.5.1. Computation of NMI
2.5.2. Approximating the Probability Distributions of the Data
2.5.3. Analysis of NMI of the HD-sEMG
2.5.4. Statistical Analysis
3. Results
3.1. NMI Result for a Single Electrode
3.2. Comparison of Total NMI for Different MVC Levels
3.3. Comparison of the Average M(k) for Different MVC Levels
3.4. Statistical Analysis
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Enoka, R.M. Mechanisms of muscle fatigue: Central factors and task dependency. J. Electromyogr. Kinesiol. 1995, 5, 141–149. [Google Scholar] [CrossRef]
- Al-Mulla, M.R.; Sepulveda, F.; Colley, M. A review of non-invasive techniques to detect and predict localised muscle fatigue. Sensors 2011, 11, 3545–3594. [Google Scholar] [CrossRef] [PubMed]
- Beck, R.B.; O’Malley, M.J.; Stegeman, D.F.; Houtman, C.J.; Connolly, S.; Zwarts, M.J. Tracking motor unit action potentials in the tibialis anterior during fatigue. Muscle Nerve 2005, 32, 506–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, D.K.; Arjunan, S.P.; Naik, G.R. Measuring Increase in Synchronization to Identify Muscle Endurance Limit. IEEE Trans. Neural Syst. Rehabil. Eng. 2011, 19, 578–587. [Google Scholar] [CrossRef] [PubMed]
- Carpentier, A.; Duchateau, J.; Hainaut, K. Motor unit behaviour and contractile changes during fatigue in the human first dorsal interosseus. J. Physiol. 2001, 534, 903–912. [Google Scholar] [CrossRef] [PubMed]
- Jensen, B.R.; Pilegaard, M.; Sjøgaard, G. Motor unit recruitment and rate coding in response to fatiguing shoulder abductions and subsequent recovery. Eur. J. Appl. Physiol. 2000, 83, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Holtermann, A.; Grönlund, C.; Karlsson, J.S.; Roeleveld, K. Motor unit synchronization during fatigue: Described with a novel sEMG method based on large motor unit samples. J. Electromyogr. Kinesiol. 2009, 19, 232–241. [Google Scholar] [CrossRef] [PubMed]
- Merletti, R.; Farina, D. Analysis of intramuscular electromyogram signals. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2009, 367, 357–368. [Google Scholar] [CrossRef] [PubMed]
- Semmler, J.G. Motor Unit Synchronization and Neuromuscular Performance. Exerc. Sport Sci. Rev. 2002, 30, 8–14. [Google Scholar] [CrossRef] [PubMed]
- De Luca, C.J.; Chang, S.S.; Roy, S.H.; Kline, J.C.; Nawab, S.H. Decomposition of surface EMG signals from cyclic dynamic contractions. J. Neurophysiol. 2015, 113, 1941–1951. [Google Scholar] [CrossRef] [PubMed]
- Negro, F.; Muceli, S.; Castronovo, A.M.; Holobar, A.; Farina, D. Multi-channel intramuscular and surface EMG decomposition by convolutive blind source separation. J. Neural Eng. 2016, 13, 026027. [Google Scholar] [CrossRef] [PubMed]
- Muceli, S.; Poppendieck, W.; Negro, F.; Yoshida, K.; Hoffmann, K.P.; Butler, J.E.; Gandevia, S.C.; Farina, D. Accurate and representative decoding of the neural drive to muscles in humans with multi-channel intramuscular thin-film electrodes. J. Physiol. 2015, 593, 3789–3804. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Izal, M.; Malanda, A.; Gorostiaga, E.; Izquierdo, M. Electromyographic models to assess muscle fatigue. J. Electromyogr. Kinesiol. 2012, 22, 501–512. [Google Scholar] [CrossRef] [PubMed]
- Öberg, T.; Sandsjö, L.; Kadefors, R. Subjective and objective evaluation of shoulder muscle fatigue. Ergonomics 1994, 37, 1323–1333. [Google Scholar] [CrossRef] [PubMed]
- Roeleveld, K.; Stegeman, D.F. What do we learn from motor unit action potentials in surface electromyography? Muscle Nerve Suppl. 2002, 11, S92–S97. [Google Scholar] [CrossRef] [PubMed]
- Lapatki, B.G.; Oostenveld, R.; Van Dijk, J.P.; Jonas, I.E.; Zwarts, M.J.; Stegeman, D.F. Topographical characteristics of motor units of the lower facial musculature revealed by means of high-density surface EMG. J. Neurophysiol. 2006, 95, 342–354. [Google Scholar] [CrossRef] [PubMed]
- Farina, D.; Merletti, R. Estimation of average muscle fiber conduction velocity from two-dimensional surface EMG recordings. J. Neurosci. Methods 2004, 134, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Abboud, J.; Nougarou, F.; Lardon, A.; Dugas, C.; Descarreaux, M. Influence of Lumbar Muscle Fatigue on Trunk Adaptations during Sudden External Perturbations. Front. Hum. Neurosci. 2016, 10, 576. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Kouzaki, M.; Moritani, T. Region-specific myoelectric manifestations of fatigue in human rectus femoris muscle. Muscle Nerve 2013, 48, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Gallina, A.; Merletti, R.; Vieira, T.M.M. Are the myoelectric manifestations of fatigue distributed regionally in the human medial gastrocnemius muscle? J. Electromyogr. Kinesiol. 2011, 21, 929–938. [Google Scholar] [CrossRef] [PubMed]
- Troiano, A.; Naddeo, F.; Sosso, E.; Camarota, G.; Merletti, R.; Mesin, L. Assessment of force and fatigue in isometric contractions of the upper trapezius muscle by surface EMG signal and perceived exertion scale. Gait Posture 2008, 28, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Farina, D.; Pozzo, M.; Merlo, E.; Bottin, A.; Merletti, R. Assessment of average muscle fiber conduction velocity from surface EMG signals during fatiguing dynamic contractions. IEEE Trans. Biomed. Eng. 2004, 51, 1383–1393. [Google Scholar] [CrossRef] [PubMed]
- Farina, D.; Merletti, R. Methods for estimating muscle fibre conduction velocity from surface electromyographic signals. Med. Biol. Eng. Comput. 2004, 42, 432–445. [Google Scholar] [CrossRef] [PubMed]
- De Luca, C.J.; Nawab, S.H.; Kline, J.C. Clarification of methods used to validate surface EMG decomposition algorithms as described by Farina et al. (2014). J. Appl. Physiol. 2015, 118, 1084. [Google Scholar] [CrossRef] [PubMed]
- Farina, D.; Enoka, R.M. Surface EMG Decomposition Requires an Appropriate Validation. J. Neurophysiol. 2011, 105, 981–982. [Google Scholar] [CrossRef] [PubMed]
- Holobar, A.; Minetto, M.A.; Farina, D. Accurate identification of motor unit discharge patterns from high-density surface EMG and validation with a novel signal-based performance metric. J. Neural Eng. 2014, 11, 016008. [Google Scholar] [CrossRef] [PubMed]
- Kline, J.C.; De Luca, C.J. Error reduction in EMG signal decomposition. J. Neurophysiol. 2014, 112, 2718–2728. [Google Scholar] [CrossRef] [PubMed]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory, 2 ed.; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Kvalseth, T.O. Entropy and Correlation: Some Comments. IEEE Trans. Syst. Man Cybern. 1987, 17, 517–519. [Google Scholar] [CrossRef]
- Samani, A.; Srinivasan, D.; Mathiassen, S.E.; Madeleine, P. Variability in spatio-temporal pattern of trapezius activity and coordination of hand-arm muscles during a sustained repetitive dynamic task. Exp. Brain Res. 2016, 235, 389–400. [Google Scholar] [CrossRef] [PubMed]
- Kawczynski, A.; Samani, A.; Mroczek, D.; Chmura, P.; Blach, W.; Migasiewicz, J.; Klich, S.; Chmura, J.; Madeleine, P. Functional connectivity between core and shoulder muscles increases during isometric endurance contractions in judo competitors. Eur. J. Appl. Physiol. 2015, 115, 1351–1358. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Liang, J.; Yang, Y.; Wu, Y.; Yan, T.; Song, R. Investigating Aging-Related Changes in the Coordination of Agonist and Antagonist Muscles Using Fuzzy Entropy and Mutual Information. Entropy 2016, 18, 229. [Google Scholar] [CrossRef]
- Ju, Z.; Ouyang, G.; Liu, H. EMG-EMG correlation analysis for human hand movements. In Proceedings of the 2013 IEEE Workshop on Robotic Intelligence in Informationally Structured Space (RiiSS), Singapore, 16–19 April 2013; pp. 38–42. [Google Scholar]
- Mista, C.A.; Salomoni, S.E.; Graven-Nielsen, T. Spatial reorganisation of muscle activity correlates with change in tangential force variability during isometric contractions. J. Electromyogr. Kinesiol. 2014, 24, 37–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estevez, P.A.; Tesmer, M.; Perez, C.A.; Zurada, J.M. Normalized Mutual Information Feature Selection. IEEE Trans. Neural Netw. 2009, 20, 189–201. [Google Scholar] [CrossRef] [PubMed]
- Strehl, A.; Ghosh, J. Cluster Ensembles—A Knowledge Reuse Framework for Combining Multiple Partitions. J. Mach. Learn. Res. 2002, 3, 583–617. [Google Scholar]
- Vinh, N.X.; Epps, J.; Bailey, J. Information Theoretic Measures for Clusterings Comparison: Variants, Properties, Normalization and Correction for Chance. J. Mach. Learn. Res. 2010, 11, 2837–2854. [Google Scholar]
- Madeleine, P.; Samani, A.; Binderup, A.T.; Stensdotter, A.K. Changes in the spatio-temporal organization of the trapezius muscle activity in response to eccentric contractions. Scand. J. Med. Sci. Sports 2011, 21, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Bingham, A.; Arjunan, S.P.; Kumar, D.K. Estimating the progression of muscle fatigue based on dependence between motor units using high density surface electromyogram. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 3654–3657. [Google Scholar]
- Farina, D.; Arendt-Nielsen, L.; Merletti, R.; Graven-Nielsen, T. Assessment of single motor unit conduction velocity during sustained contractions of the tibialis anterior muscle with advanced spike triggered averaging. J. Neurosci. Methods 2002, 115, 1–12. [Google Scholar] [CrossRef]
- Barbero, M.; Merletti, R.; Rainoldi, A. Atlas of Muscle Innervation Zones; Springer: Mailand, Italy, 2012; Volume 1, p. 142. [Google Scholar]
- Contessa, P.; Adam, A.; De Luca, C.J. Motor unit control and force fluctuation during fatigue. J. Appl. Physiol. 2009, 107, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Adam, A.; De Luca, C.J. Recruitment Order of Motor Units in Human Vastus Lateralis Muscle Is Maintained During Fatiguing Contractions. J. Neurophysiol. 2003, 90, 2919–2927. [Google Scholar] [CrossRef] [PubMed]
- Arjunan, S.P.; Kumar, D.K.; Naik, G. Computation and Evaluation of Features of Surface Electromyogram to Identify the Force of Muscle Contraction and Muscle Fatigue. BioMed Res. Int. 2014, 2014, 6. [Google Scholar] [CrossRef] [PubMed]
- Ash, R. Information Theory; Interscience Publishers: New York, NY, USA, 1965. [Google Scholar]
- Moddemeijer, R. On estimation of entropy and mutual information of continuous distributions. Signal Process. 1989, 16, 233–248. [Google Scholar] [CrossRef]
- Morris, A.; Langari, R. Measurement and Instrumentation: Theory and Application; Elsevier Science: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Bingham, A.; Arjunan, S.P.; Kumar, D.K. Measuring the Interactions between Different Locations in a Muscle to Monitor Localized Muscle Fatigue. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Seogwipo, Korea, 11–15 July 2017; pp. 3461–3464. [Google Scholar]
- Naik, G.R.; Kumar, D.K.; Yadav, V.; Wheeler, K.; Arjunan, S. Testing of motor unit synchronization model for localized muscle fatigue. In Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 3–6 September 2009; pp. 360–363. [Google Scholar]
- Roy, S.H.; De Luca, C.J.; Schneider, J. Effects of electrode location on myoelectric conduction velocity and median frequency estimates. J. Appl. Physiol. 1986, 61, 1510–1517. [Google Scholar] [PubMed]
- Hansen, N.L.; Hansen, S.; Christensen, L.; Petersen, N.T.; Nielsen, J.B. Synchronization of Lower Limb Motor Unit Activity During Walking in Human Subjects. J. Neurophysiol. 2001, 86, 1266–1276. [Google Scholar] [PubMed]
- Nielsen, J.; Kagamihara, Y. Synchronization of human leg motor units during co-contraction in man. Exp. Brain Res. 1994, 102, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.; Gore, J.C.; Peterson, B.S. Mutual information analysis of the EEG in patients with Alzheimer’s disease. Clin. Neurophysiol. 2001, 112, 827–835. [Google Scholar] [CrossRef]
- Saitou, K.; Masuda, T.; Michikami, D.; Kojima, R.; Okada, M. Innervation zones of the upper and lower limb muscles estimated by using multichannel surface EMG. J. Hum. Ergol. 2000, 29, 35–52. [Google Scholar]
- Beretta Piccoli, M.; Rainoldi, A.; Heitz, C.; Wüthrich, M.; Boccia, G.; Tomasoni, E.; Spirolazzi, C.; Egloff, M.; Barbero, M. Innervation zone locations in 43 superficial muscles: Toward a standardization of electrode positioning. Muscle Nerve 2014, 49, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Aquilonius, S.M.; Askmark, H.; Gillberg, P.G.; Nandedkar, S.; Olsson, Y.; Stårlberg, E. Topographical localization of motor endplates in cryosections of whole human muscles. Muscle Nerve 1984, 7, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Beck, T.W.; DeFreitas, J.M.; Stock, M.S. Accuracy of three different techniques for automatically estimating innervation zone location. Comput. Methods Programs Biomed. 2012, 105, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Marateb, H.R.; Farahi, M.; Rojas, M.; Mañanas, M.A.; Farina, D. Detection of Multiple Innervation Zones from Multi-Channel Surface EMG Recordings with Low Signal-to-Noise Ratio Using Graph-Cut Segmentation. PLoS ONE 2016, 11, e0167954. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Falces, J. A new method for the localization of the innervation zone based on monopolar surface-detected potentials. J. Electromyogr. Kinesiol. 2017, 35, 47–60. [Google Scholar] [CrossRef] [PubMed]
MVC | Initial () | Final () | Range |
---|---|---|---|
40% | |||
80% |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bingham, A.; Arjunan, S.P.; Jelfs, B.; Kumar, D.K. Normalised Mutual Information of High-Density Surface Electromyography during Muscle Fatigue. Entropy 2017, 19, 697. https://doi.org/10.3390/e19120697
Bingham A, Arjunan SP, Jelfs B, Kumar DK. Normalised Mutual Information of High-Density Surface Electromyography during Muscle Fatigue. Entropy. 2017; 19(12):697. https://doi.org/10.3390/e19120697
Chicago/Turabian StyleBingham, Adrian, Sridhar P. Arjunan, Beth Jelfs, and Dinesh K. Kumar. 2017. "Normalised Mutual Information of High-Density Surface Electromyography during Muscle Fatigue" Entropy 19, no. 12: 697. https://doi.org/10.3390/e19120697