Analyses of the Instabilities in the Discretized Diffusion Equations via Information Theory
"> Figure 1
<p>Snapshot of the Monte Carlo simulation for a grid size of 255<sup>2</sup> at different Monte Carlo Steps (MCS) times (0, 10, 300, 655 (stability criterion), and 1000) and the concentration profiles under Gaussian approximation and given by the Monte Carlo method.</p> "> Figure 2
<p>Histograms of the program sizes for the system <math display="inline"> <semantics> <mi>X</mi> </semantics> </math> (<b>a</b>–<b>e</b>) and the sub system <math display="inline"> <semantics> <mrow> <msub> <mi>x</mi> <mn>4</mn> </msub> </mrow> </semantics> </math> (<b>f</b>–<b>j</b>) corresponding to the Monte Carlo simulation for a grid size of 255<sup>2</sup> at different MCS times (0, 10, 300, 655 (stability criterion), and 1000). (a) Mean and standard deviation are computed and Gaussian density is plotted.</p> "> Figure 3
<p><math display="inline"> <semantics> <mrow> <mi>dim</mi> <mo stretchy="false">(</mo> <mi>H</mi> <mi>U</mi> <mi>F</mi> <mo>∘</mo> <mi>R</mi> <mi>L</mi> <mi>E</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mrow> <mi>dim</mi> <mo stretchy="false">(</mo> <mi>H</mi> <mi>U</mi> <mi>F</mi> <mo>∘</mo> <mi>R</mi> <mi>L</mi> <mi>E</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mn>4</mn> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </semantics> </math> <span class="html-italic">versus</span> the diffusion time (in MCS) for the grid size of 255<sup>2</sup> cells (see <a href="#entropy-18-00155-f001" class="html-fig">Figure 1</a>). Points are means of 40 simulations.</p> "> Figure 4
<p>Three adjacent cells <math display="inline"> <semantics> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>3</mn> </msub> </mrow> </semantics> </math> of the discretized space grid <math display="inline"> <semantics> <mrow> <mo>Δ</mo> <mi>x</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math> on which mesoscopic simulations are processed up to the instability criterion. Gaussian curves G<sub>1</sub>, G<sub>2</sub> and G<sub>3</sub> with standard deviation of <math display="inline"> <semantics> <mrow> <mo>Δ</mo> <mi>x</mi> <mo>=</mo> <msqrt> <mrow> <mn>2</mn> <mi>D</mi> <mi>t</mi> </mrow> </msqrt> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math> (<math display="inline"> <semantics> <mrow> <mi>D</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math>, <math display="inline"> <semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </semantics> </math>, <span class="html-italic">i.e.</span>, <math display="inline"> <semantics> <mrow> <mi mathvariant="sans-serif">λ</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </semantics> </math>) are centered on each cell.</p> "> Figure 5
<p><math display="inline"> <semantics> <mrow> <mi>dim</mi> <mo stretchy="false">(</mo> <mi>H</mi> <mi>U</mi> <mi>F</mi> <mo>∘</mo> <mi>R</mi> <mi>L</mi> <mi>E</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mn>4</mn> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>/</mo> <mi>dim</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mn>4</mn> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </semantics> </math> <span class="html-italic">versus</span> the diffusion time (in MCS) for different grid sizes of cells (250, 300, …, 950, 1000). Values of the time <math display="inline"> <semantics> <mrow> <msubsup> <mi>t</mi> <mrow> <mi>H</mi> <mi>U</mi> <mi>F</mi> <mo>∘</mo> <mi>R</mi> <mi>L</mi> <mi>E</mi> </mrow> <mrow> <mi>max</mi> </mrow> </msubsup> </mrow> </semantics> </math> are plotted (graph on the right corner) <span class="html-italic">versus</span> the theoretical stability criterion <math display="inline"> <semantics> <mrow> <msubsup> <mi>n</mi> <mi>s</mi> <mrow> <mi>s</mi> <mi>c</mi> </mrow> </msubsup> <mo>=</mo> <msup> <mrow> <mo stretchy="false">(</mo> <mi>s</mi> <mo>/</mo> <mn>10</mn> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </msup> </mrow> </semantics> </math> given by Equation (18).</p> "> Figure 6
<p>Values of <math display="inline"> <semantics> <mrow> <mo>Δ</mo> <mi>a</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>c</mi> <mo>,</mo> <mi mathvariant="sans-serif">σ</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>exp</mi> <mn>0.5</mn> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−</mo> <mi>c</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> <mo>/</mo> <msup> <mi mathvariant="sans-serif">σ</mi> <mn>2</mn> </msup> </mrow> </semantics> </math> <span class="html-italic">versus</span> <span class="html-italic">x</span> for different standard deviations σ. These functions allow producing nonlinear PDEs involving different stability criteria <math display="inline"> <semantics> <mrow> <msqrt> <mrow> <msub> <mi>n</mi> <mi>s</mi> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>c</mi> <mo>,</mo> <mi mathvariant="sans-serif">σ</mi> <mo stretchy="false">)</mo> </mrow> </msqrt> <mo>≤</mo> <mo>Δ</mo> <mi>x</mi> <mo>/</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mo>Δ</mo> <mi>a</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>c</mi> <mo>,</mo> <mi mathvariant="sans-serif">σ</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> </mrow> </semantics> </math> along the <span class="html-italic">x</span> position for a given pair<math display="inline"> <semantics> <mrow> <mo stretchy="false">(</mo> <mi>c</mi> <mo>,</mo> <mi mathvariant="sans-serif">σ</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math>.</p> "> Figure 7
<p>Snapshots of the Monte Carlo simulation for a grid size of 1024<sup>2</sup> pixels at different Monte Carlo Steps (MCS) times (50, stability criterion, 28,377). (<b>a</b>) <math display="inline"> <semantics> <mrow> <mi mathvariant="sans-serif">σ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics> </math>, <span class="html-italic">t</span> = 50; (<b>b</b>) <math display="inline"> <semantics> <mrow> <mi mathvariant="sans-serif">σ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics> </math>, <span class="html-italic">t</span> = 16,384; (<b>c</b>) <math display="inline"> <semantics> <mrow> <mi mathvariant="sans-serif">σ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics> </math>, <span class="html-italic">t</span> = 28,377; (<b>d</b>) <math display="inline"> <semantics> <mrow> <mi mathvariant="sans-serif">σ</mi> <mo>=</mo> <msup> <mrow> <mn>11</mn> </mrow> <mn>2</mn> </msup> </mrow> </semantics> </math>, <span class="html-italic">t</span> = 50; (<b>e</b>) <math display="inline"> <semantics> <mrow> <mi mathvariant="sans-serif">σ</mi> <mo>=</mo> <msup> <mrow> <mn>11</mn> </mrow> <mn>2</mn> </msup> </mrow> </semantics> </math>, <span class="html-italic">t</span> = 9938; (<b>f</b>) <math display="inline"> <semantics> <mrow> <mi mathvariant="sans-serif">σ</mi> <mo>=</mo> <msup> <mrow> <mn>11</mn> </mrow> <mn>2</mn> </msup> </mrow> </semantics> </math>, <span class="html-italic">t</span> = 28,377.</p> "> Figure 8
<p><math display="inline"> <semantics> <mrow> <mi>dim</mi> <mo stretchy="false">(</mo> <mi>H</mi> <mi>U</mi> <mi>F</mi> <mo>∘</mo> <mi>R</mi> <mi>L</mi> <mi>E</mi> <mo stretchy="false">(</mo> <msub> <mi>i</mi> <mn>5</mn> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>/</mo> <mi>dim</mi> <mo stretchy="false">(</mo> <msub> <mi>i</mi> <mn>5</mn> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </semantics> </math> <span class="html-italic">versus</span> the diffusion time (in MCS) for different values of standard deviations.</p> "> Figure 9
<p>Plot of MCS <math display="inline"> <semantics> <mrow> <msubsup> <mi>t</mi> <mrow> <mi>H</mi> <mi>U</mi> <mi>F</mi> <mo>∘</mo> <mi>R</mi> <mi>L</mi> <mi>E</mi> </mrow> <mrow> <mi>max</mi> </mrow> </msubsup> </mrow> </semantics> </math> <span class="html-italic">versus</span> the theoretical stability criterion <math display="inline"> <semantics> <mrow> <msubsup> <mi>n</mi> <mi>s</mi> <mrow> <mi>s</mi> <mi>c</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mo>Δ</mo> <mi>x</mi> <mo>/</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mo>Δ</mo> <mi>a</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </semantics> </math> given by Equation (21) for both cells <span class="html-italic">i<sub>4</sub></span> and <span class="html-italic">i<sub>5</sub></span> corresponding to maximal values of <a href="#entropy-18-00155-f008" class="html-fig">Figure 8</a>.</p> "> Figure 10
<p>Snapshots of the nonlinear Monte Carlo simulation for a grid size of 129<sup>2</sup> pixels at five Monte Carlo Steps (MCS) times with different values of <span class="html-italic">a</span> given by <math display="inline"> <semantics> <mrow> <mi>D</mi> <mrow> <mo>(</mo> <mrow> <mi>C</mi> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>t</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mrow> <msub> <mi>D</mi> <mn>0</mn> </msub> </mrow> <mo>/</mo> <mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mi>a</mi> <mi>C</mi> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>t</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mrow> </mrow> </semantics> </math> and snapshots corresponding to stability criterion and their associated Monte Carlo Steps.</p> "> Figure 11
<p><math display="inline"> <semantics> <mrow> <mi>dim</mi> <mo stretchy="false">(</mo> <mi>H</mi> <mi>U</mi> <mi>F</mi> <mo>∘</mo> <mi>R</mi> <mi>L</mi> <mi>E</mi> <mo stretchy="false">(</mo> <msub> <mi>i</mi> <mn>5</mn> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>/</mo> <mi>dim</mi> <mo stretchy="false">(</mo> <msub> <mi>i</mi> <mn>5</mn> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </semantics> </math> <span class="html-italic">versus</span> the diffusion time (in MCS) for different values of diffusion coefficient <math display="inline"> <semantics> <mrow> <mi>D</mi> <mrow> <mo>(</mo> <mrow> <mi>C</mi> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>t</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mrow> <msub> <mi>D</mi> <mn>0</mn> </msub> </mrow> <mo>/</mo> <mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mi>a</mi> <mi>C</mi> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>t</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mrow> </mrow> </semantics> </math>.</p> "> Figure 12
<p>Plot of MCS <math display="inline"> <semantics> <mrow> <msubsup> <mi>t</mi> <mrow> <mi>H</mi> <mi>U</mi> <mi>F</mi> <mo>∘</mo> <mi>R</mi> <mi>L</mi> <mi>E</mi> </mrow> <mrow> <mi>max</mi> </mrow> </msubsup> </mrow> </semantics> </math> <span class="html-italic">versus</span> the theoretical stability criterion for both cells <span class="html-italic">i<sub>4</sub></span> and <span class="html-italic">i<sub>5</sub></span> corresponding to maximal values of <a href="#entropy-18-00155-f011" class="html-fig">Figure 11</a> (Size = 257<sup>2</sup>) and Size = (129<sup>2</sup>, 512<sup>2</sup>).</p> "> Figure 13
<p>The central scheme used by Mishra [<a href="#B20-entropy-18-00155" class="html-bibr">20</a>] to illustrate physical interpretation of the unconditional instability of the simple centered finite difference scheme. Continuous arrows (green) indicate numerical propagation and dashed ones arrows (magenta) physical propagation.</p> ">
Abstract
:1. Introduction
2. Diffusion Equations
2.1. Parabolic Differential Equations
2.2. Stability Study
2.3. Monte Carlo Simulation
3. Quantitative Description of the System in the Area of the Information Theory
3.1. Mathematical Formalism
3.2. The Different Classes of Algebra
4. Results
4.1. Compression Data Analyses
4.2. The Relation between Stability Criteria and the Dimension of Reduced Space
5. Two Examples of PDE
5.1. Non Constant Diffusion Coefficient
5.2. Nonlinear PDE
6. Discussion
7. Conclusions
Author Contributions
Conflicts of Interest
References
- Dautray, R.; Lions, J.-L. Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques. Volume 1: Modèles Physiques; Masson: Paris, France, 1987. (In French) [Google Scholar]
- Dautray, R.; Lions, J.-L. Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques. Volume 7: Evolution, Fourier, Laplace; Masson: Paris, France, 1988. (In French) [Google Scholar]
- Dautray, R.; Lions, J.-L. Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques. Tome 9: Evolution, Numérique, Transport; Masson: Paris, France, 1997. (In French) [Google Scholar]
- Forsythe, G.E.; Wasow, W.R. Finite Difference Methods for Partial Differential Equations; Wiley: New York, NY, USA, 1960. [Google Scholar]
- Brillouin, L. Science and Information Theory; Academic Press: New York, NY, USA, 1956. [Google Scholar]
- Delahaye, J.P. Information, Complexité Hasard; Hermès: Paris, France, 1994. (In French) [Google Scholar]
- Chaitin, G.J. Algorithmic Information Theory; Cambridge University Press: Cambridge, UK, 1887. [Google Scholar]
- Bigerelle, M.; Iost, A. Relations entre l’entropie physique, le codage de l’information et l’énergie de simulation. Can. J. Phys. 2007, 85, 1381–1394. (In French) [Google Scholar] [CrossRef]
- Adda, Y.; Philibert, J. La Diffusion Dans les Solides, Tome II; Presses Universitaires de France: Paris, France, 1966. [Google Scholar]
- Peitgen, H.O.; Jürgens, H.; Saupe, D. Chaos and Fractals: New Frontiers of Science; Springer: New York, NY, USA, 1992. [Google Scholar]
- Feferman, J.W. Kurt Gödel Collected Works. Volume 1: Publications, 1929–1936; Oxford University Press: Oxford, UK, 1986. [Google Scholar]
- Salomon, D. Data Compression; Springer: New York, NY, USA, 1998. [Google Scholar]
- Huffman, D. A method for the construction of minimum redundancy codes. Proc. IRE 1952, 40, 1098–1101. [Google Scholar] [CrossRef]
- Bigerelle, M.; Iost, A. Relationship between information reduction and the equilibrium state description. Comput. Mater. Sci. 2002, 24, 133–138. [Google Scholar] [CrossRef]
- Einstein, A. Investigation on the Theory of Brownian Motion; Dover Publications: New York, NY, USA, 1956. [Google Scholar]
- Bigerelle, M.; Iost, A. Physical interpretation of the numerical instabilities in diffusion equations via statistical thermodynamics. Int. J. Nonlinear Sci. Numer. Simul. 2004, 5, 121–134. [Google Scholar] [CrossRef]
- Lee, C.F. On the solution of some diffusion equations with concentration-dependent diffusion coefficients—II. IMA J. Appl. Math. 1972, 10, 129–133. [Google Scholar] [CrossRef]
- Wagner, C. Diffusion processes during the uptake of excess calcium by calcium fluoride. J. Phys. Chem. Solids 1968, 29, 1925–1930. [Google Scholar] [CrossRef]
- Mishra, S.; Veerappa Gowda, G.D. Optimal entropy solutions for conservation laws with discontinuous flux-functions. J. Hyperbolic Differ. Equ. 2005, 2, 783–837. [Google Scholar]
- Mishra, S. Numerical Methods for Conservation Laws and Related Equations. Available online: https://www2.math.ethz.ch/education/bachelor/lectures/fs2013/math/nhdgl/numcl_notes_HOMEPAGE.pdf (accessed on 14 April 2016).
- Tadmor, E. Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numer. 2003, 12, 451–512. [Google Scholar] [CrossRef]
- Carrillo, J.A.; Jüngel, A.; Markowich, P.A.; Toscani, G.; Unterreiter, A. Entropy dissipation methods for degenerate parabolic problems and generalized sobolev inequalities. Monatshefte für Mathematik 2001, 133, 1–82. [Google Scholar] [CrossRef]
- Lefloch, P.G.; Mercier, J.M.; Rohde, C. Fully discrete, entropy conservative schemes of arbitrary order. SIAM J. Numer. Anal. 2002, 40, 1968–1992. [Google Scholar] [CrossRef]
- Noble, P.; Vila, J.P. Stability theory for difference approximations of some dispersive shallow water equations and application to thin film flows. 2013; arXiv:1304.3805. [Google Scholar]
- Jaroszkiewicz, G. Principles of Discrete Time Mechanics; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bigerelle, M.; Naceur, H.; Iost, A. Analyses of the Instabilities in the Discretized Diffusion Equations via Information Theory. Entropy 2016, 18, 155. https://doi.org/10.3390/e18040155
Bigerelle M, Naceur H, Iost A. Analyses of the Instabilities in the Discretized Diffusion Equations via Information Theory. Entropy. 2016; 18(4):155. https://doi.org/10.3390/e18040155
Chicago/Turabian StyleBigerelle, Maxence, Hakim Naceur, and Alain Iost. 2016. "Analyses of the Instabilities in the Discretized Diffusion Equations via Information Theory" Entropy 18, no. 4: 155. https://doi.org/10.3390/e18040155
APA StyleBigerelle, M., Naceur, H., & Iost, A. (2016). Analyses of the Instabilities in the Discretized Diffusion Equations via Information Theory. Entropy, 18(4), 155. https://doi.org/10.3390/e18040155