Identifying the Most Relevant Lag with Runs
<p>Mean value of <math display="inline"> <mrow> <msubsup> <mi mathvariant="normal">Λ</mi> <mn>3</mn> <mi>p</mi></msubsup></mrow></math> statistic as a function of the lag time (for <span class="html-italic">p</span> = 1, 2,…, 6). Sample size for each realization is fixed at <span class="html-italic">n</span> = 10,000. The number of Monte Carlo simulations is 1000 for each model. Blue bars refer to average the <math display="inline"> <mrow> <msubsup> <mi mathvariant="normal">Λ</mi> <mn>3</mn> <mi>p</mi></msubsup></mrow></math> for each model. Red bars refer to the benchmark iid process.</p> ">
<p>NYSE Daily Returns (2000–2008).</p> ">
<p><math display="inline"> <mrow> <msubsup> <mi mathvariant="normal">Λ</mi> <mn>3</mn> <mi>p</mi></msubsup></mrow></math> function for NYSE Daily Returns (blue) and (red) expected value for <math display="inline"> <mrow> <msubsup> <mi mathvariant="normal">Λ</mi> <mn>3</mn> <mi>p</mi></msubsup></mrow></math> in case of no relevant lag.</p> ">
<p>Mean value of <math display="inline"> <mrow> <msubsup> <mi mathvariant="normal">Λ</mi> <mn>3</mn> <mi>p</mi></msubsup></mrow></math> statistic as a function of the lag time (for <span class="html-italic">p</span> = 1, 2,…,6). Sample size for each realization is fixed at <span class="html-italic">n</span> = 120. The number of Monte Carlo simulations is 1000 for each model. Blue bars refer to average the <math display="inline"> <mrow> <msubsup> <mi mathvariant="normal">Λ</mi> <mn>3</mn> <mi>p</mi></msubsup></mrow></math> for each model. Red bars refer to the benchmark standard normal process.</p> ">
<p>Mean value of <math display="inline"> <mrow> <msubsup> <mi mathvariant="normal">Λ</mi> <mn>3</mn> <mi>p</mi></msubsup></mrow></math> statistic as a function of the lag time (for <span class="html-italic">p</span> = 1, 2,…, 6). Sample size for each realization is fixed at <span class="html-italic">n</span> = 360. The number of Monte Carlo simulations is 1000 for each model. Blue bars refer to average the <math display="inline"> <mrow> <msubsup> <mi mathvariant="normal">Λ</mi> <mn>3</mn> <mi>p</mi></msubsup></mrow></math> for each model. Red bars refer to the benchmark standard normal process.</p> ">
<p>Mean value of <math display="inline"> <mrow> <msubsup> <mi mathvariant="normal">Λ</mi> <mn>3</mn> <mi>p</mi></msubsup></mrow></math> statistic as a function of the lag time (for <span class="html-italic">p</span> = 1, 2,…,6). Sample size for each realization is fixed at <span class="html-italic">n</span> = 500. The number of Monte Carlo simulations is 1000 for each model. Blue bars refer to average the <math display="inline"> <mrow> <msubsup> <mi mathvariant="normal">Λ</mi> <mn>3</mn> <mi>p</mi></msubsup></mrow></math> for each model. Red bars refer to the benchmark standard normal process.</p> ">
<p>Mean value of <math display="inline"> <mrow> <msubsup> <mi mathvariant="normal">Λ</mi> <mn>3</mn> <mi>p</mi></msubsup></mrow></math> statistic as a function of the lag time (for <span class="html-italic">p</span> = 1, 2,…, 6). Sample size for each realization is fixed at <span class="html-italic">n</span> = 1000. The number of Monte Carlo simulations is 1000 for each model. Blue bars refer to average the <math display="inline"> <mrow> <msubsup> <mi mathvariant="normal">Λ</mi> <mn>3</mn> <mi>p</mi></msubsup></mrow></math> for each model. Red bars refer to the benchmark standard normal process.</p> ">
<p>Mean value of <math display="inline"> <mrow> <msubsup> <mi mathvariant="normal">Λ</mi> <mn>3</mn> <mi>p</mi></msubsup></mrow></math> statistic as a function of the lag time (for <span class="html-italic">p</span> = 1, 2,…, 6). Sample size for each realization is fixed at <span class="html-italic">n</span> = 5000. The number of Monte Carlo simulations is 1000 for each model. Blue bars refer to average the <math display="inline"> <mrow> <msubsup> <mi mathvariant="normal">Λ</mi> <mn>3</mn> <mi>p</mi></msubsup></mrow></math> for each model. Red bars refer to the benchmark standard normal process.</p> ">
Abstract
:1. Introduction
2. Definitions and Notation
3. Constructing the Statistic
4. Monte Carlo Simulation Experiments
- DGP 1 Xt = 0.3Xt−1 + ∈t,
- DGP 2 Xt = |0.5Xt−1|0.8 + ∈t,
- DGP 4 Xt = 0.7∈t−1Xt−2+∈t,
- DGP 6 Xt = 4Xt−1(1 − Xt−1),
- DGP 7 Xt = ∈t ∼ N(0, 1).
5. Model Identification
- AR(1) Xt = 0.5Xt−1 +∈t,
- MA(1) Xt = 0.5∈t−1 +∈t,
- AR(2) Xt = 0.5Xt−2 + ∈t,
- MA(2) Xt = 0.5∈t−2 + ∈t,
- ARMA(1,1) Xt = 0.4Xt−1 + 0.4∈t−1 + ∈t,
- ARMA(1,2) Xt = 0.4Xt−1 + 0.4∈t−2 + ∈t,
- MA(2;4) Xt = 0.6∈t−2 + 0.3∈t−4 + ∈t.
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
A. Appendix
References
- Granger, C.; Weiss, A. Time Series Analysis of Error-Correcting Models. In Studies in Econometrics, Time Series, and Multivariate Statistics; Academic Press: New York, NY, USA, 1983. [Google Scholar]
- Tjostheim, D. Measures and tests of independence: A survey. Statistics 1996, 28, 249–284. [Google Scholar]
- Granger, C.; Lin, J. Using the mutual information coefficient to identify lags in nonlinear models. J. Time Series Anal. 1994, 15, 371–384. [Google Scholar]
- Tjostheim, D.; Auestad, B. Nonparametric identification of nonlinear time series: Selecting significant lags. J. Am. Statist. Assoc. 1994, 89, 1410–1419. [Google Scholar]
- Matilla-Garcia, M.; Ruiz Marin, M. Detection of non-linear structure in time series. Econ. Lett. 2009, 105, 1–6. [Google Scholar]
- Zunino, L.; Soriano, M.C.; Fischer, I.; Rosso, O.A.; Mirasso, C.R. Permutation-information-theory approach to unveil delay dynamics from time-series analysis. Phys. Rev. E 2010, 82, 046212. [Google Scholar]
- Soriano, M.C.; Zunino, L.; Rosso, O.A.; Fischer, I.; Mirasso, C.R. Time Scales of a Chaotic Semiconductor Laser with Optical Feedback Under the Lens of a Permutation Information Analysis. IEEE J. Quant. Electr. 2011, 42, 242–261. [Google Scholar]
- Toomey, J.P.; Kane, D.M. Mapping the dynamic complexity of a semiconductor laser with optical feedback using permutation entropy. Opt. Express 2014, 22, 1713–1725. [Google Scholar]
- Amigo, J.M. Permutation Complexity in Dynamical Systems; Springer: Berlin, Germany, 2010. [Google Scholar]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; University of Illinois Press: Urbana, IL, USA, 1949. [Google Scholar]
- Morse, M. Recursive geodesic on a surface of negative curvature. Trans. Am. Math. Soc. 1949, 22, 84–100. [Google Scholar]
- Collet, P.; Eckmann, J.P. Iterated Maps on the Interval as Dynamical Systems; Brickhauser: Basel, Switzerland, 1980. [Google Scholar]
- Ruiz Marin, M.; Faura, U.; Lafuente, M.; Dore, M. H. I. Nonparametric Tests for Serial Dependence Based on Runs. Dyn. Psychol. Life Sci. 2014, 18, 123–136. [Google Scholar]
T | p = 1 | p = 2 | p = 3 | p = 4 | p = 5 | p = 6 | |
---|---|---|---|---|---|---|---|
120 | 57.2 | 11 | 7.6 | 8.2 | 8.6 | 7.4 | |
ACF | 90.7 | 1.9 | 1.9 | 1.8 | 1.9 | 1.8 | |
PAF | 91.4 | 2 | 1.2 | 1.9 | 1.7 | 1.8 | |
h3 | 26.4 | 14.1 | 12.8 | 15.2 | 15.3 | 16.2 | |
360 | 93.2 | 1.7 | 1.2 | 1.5 | 1.3 | 1.1 | |
ACF | 99.7 | 0.1 | 0.1 | 0.1 | 0 | 0 | |
PAF | 99.8 | 0.1 | 0.1 | 0 | 0 | 0 | |
h3 | 50.5 | 12.0 | 8.9 | 8.9 | 9.2 | 10.5 | |
500 | 97.8 | 0.9 | 0.5 | 0.3 | 0.4 | 0.1 | |
ACF | 100 | 0 | 0 | 0 | 0 | 0 | |
PAF | 100 | 0 | 0 | 0 | 0 | 0 | |
h3 | 63.0 | 9.7 | 6.6 | 6.1 | 5.8 | 8,8 | |
1000 | 100 | 0 | 0 | 0 | 0 | 0 | |
ACF | 100 | 0 | 0 | 0 | 0 | 0 | |
PAF | 100 | 0 | 0 | 0 | 0 | 0 | |
h3 | 85.7 | 4.6 | 2.2 | 2.7 | 2.7 | 2.1 | |
5000 | 100 | 0 | 0 | 0 | 0 | 0 | |
ACF | 100 | 0 | 0 | 0 | 0 | 0 | |
PAF | 100 | 0 | 0 | 0 | 0 | 0 | |
h3 | 100 | 0 | 0 | 0 | 0 | 0 | |
10,000 | 100 | 0 | 0 | 0 | 0 | 0 | |
ACF | 100 | 0 | 0 | 0 | 0 | 0 | |
PAF | 100 | 0 | 0 | 0 | 0 | 0 | |
h3 | 100 | 0 | 0 | 0 | 0 | 0 |
T | p = 1 | p = 2 | p = 3 | p = 4 | p = 5 | p = 6 | |
---|---|---|---|---|---|---|---|
120 | 40.9 | 13.7 | 11.6 | 11.6 | 12.9 | 9.3 | |
ACF | 57.9 | 9.9 | 7.9 | 8.2 | 8.2 | 7.9 | |
PAF | 57.5 | 9.1 | 7.3 | 9 | 9.1 | 8 | |
h3 | 26.0 | 13.5 | 12.6 | 18.0 | 13.8 | 16.1 | |
360 | 73.9 | 5.9 | 4.2 | 5.9 | 5.1 | 5 | |
ACF | 92.1 | 1.6 | 1.8 | 2 | 1.3 | 1.2 | |
PAF | 92.7 | 1.6 | 1.3 | 1.8 | 1.3 | 1.3 | |
h3 | 47.1 | 9.4 | 12.0 | 8.9 | 11.1 | 11.5 | |
500 | 83.1 | 3.8 | 3.1 | 3.1 | 1.9 | 3 | |
ACF | 96.9 | 0.2 | 0.5 | 1.2 | 0.9 | 0.3 | |
PAF | 97.3 | 0.2 | 0.6 | 0.9 | 0.8 | 0.2 | |
h3 | 57.8 | 9.6 | 7.4 | 8.5 | 8.5 | 8.2 | |
1000 | 97.3 | 1 | 1 | 0.4 | 0.3 | 0 | |
ACF | 99.8 | 0.1 | 0.1 | 0 | 0 | 0 | |
PAF | 99.9 | 0.1 | 0 | 0 | 0 | 0 | |
h3 | 82.2 | 4.0 | 2.2 | 3.5 | 3.9 | 4.2 | |
5000 | 100 | 0 | 0 | 0 | 0 | 0 | |
ACF | 100 | 0 | 0 | 0 | 0 | 0 | |
PAF | 100 | 0 | 0 | 0 | 0 | 0 | |
h3 | 100 | 0 | 0 | 0 | 0 | 0 | |
10,000 | 100 | 0 | 0 | 0 | 0 | 0 | |
ACF | 100 | 0 | 0 | 0 | 0 | 0 | |
PAF | 100 | 0 | 0 | 0 | 0 | 0 | |
h3 | 100 | 0 | 0 | 0 | 0 | 0 |
T | p = 1 | p = 2 | p = 3 | p = 4 | p = 5 | p = 6 | |
---|---|---|---|---|---|---|---|
120 | 15.1 | 21.5 | 17.2 | 13.2 | 17.5 | 15.5 | |
ACF | 14.9 | 30 | 12.9 | 15.2 | 14.3 | 12.7 | |
PAF | 14.2 | 27.9 | 12.3 | 16.3 | 14.7 | 14.6 | |
h3 | 11.4 | 30.6 | 11.8 | 15.0 | 15.7 | 15.5 | |
360 | 12.1 | 33.8 | 12.5 | 13.4 | 13.5 | 14.7 | |
ACF | 14.4 | 30.3 | 12.7 | 12 | 14.6 | 16 | |
PAF | 14.5 | 29.8 | 12.5 | 12.4 | 14.9 | 15.9 | |
h3 | 12.3 | 55.4 | 8.4 | 8.0 | 8.2 | 7.7 | |
500 | 11.8 | 44.3 | 10.5 | 11.2 | 11.4 | 10.8 | |
ACF | 14.7 | 26.2 | 13 | 14.7 | 15.5 | 15.9 | |
PAF | 14.1 | 26.6 | 12.8 | 15 | 15.1 | 16.4 | |
h3 | 12.2 | 68.2 | 4.9 | 5.9 | 4.8 | 4.0 | |
1000 | 8.4 | 62.7 | 7 | 8.1 | 6.5 | 7.3 | |
ACF | 13.6 | 28.6 | 14.8 | 14.1 | 16.1 | 12.8 | |
PAF | 14 | 29 | 14.5 | 13.9 | 15.9 | 12.7 | |
h3 | 8.5 | 85.7 | 1.4 | 1.2 | 1.7 | 1.5 | |
5000 | 0.2 | 99.1 | 0.5 | 0 | 0.1 | 0.1 | |
ACF | 13.4 | 28.9 | 15.1 | 13.7 | 14.4 | 14.5 | |
PAF | 13.3 | 29.1 | 14.9 | 13.6 | 14.4 | 14.7 | |
h3 | 0 | 100 | 0 | 0 | 0 | 0 | |
10,000 | 0 | 100 | 0 | 0 | 0 | 0 | |
ACF | 13.6 | 30.9 | 12.2 | 15.4 | 14.1 | 13.8 | |
PAF | 13.4 | 30.7 | 12.3 | 15.7 | 13.9 | 14.0 | |
h3 | 0 | 100 | 0 | 0 | 0 | 0 |
T | p = 1 | p = 2 | p = 3 | p = 4 | p = 5 | p = 6 | |
---|---|---|---|---|---|---|---|
120 | 19.2 | 21.5 | 14.3 | 15.7 | 15.8 | 13.5 | |
ACF | 24.5 | 23.1 | 17.7 | 14 | 9.8 | 10.9 | |
PAF | 23.2 | 25.3 | 17 | 13.3 | 9.3 | 11.4 | |
h3 | 15.1 | 12.1 | 18.8 | 17.1 | 18.2 | 18.7 | |
360 | 17.3 | 36.4 | 12.4 | 11.9 | 11 | 11 | |
ACF | 22.7 | 24.6 | 16.6 | 17 | 8.6 | 10.5 | |
PAF | 22.5 | 25.1 | 15.6 | 17.2 | 9.4 | 10.2 | |
h3 | 15.4 | 17.0 | 16.3 | 17.8 | 15.3 | 18.2 | |
500 | 17.6 | 43.6 | 10.3 | 9.8 | 10.1 | 8.6 | |
ACF | 19.9 | 27.1 | 17.6 | 14.4 | 9.8 | 11.2 | |
PAF | 20.7 | 26.5 | 17.4 | 14.2 | 9.8 | 11.4 | |
h3 | 16.2 | 15.6 | 15.7 | 17.3 | 19.4 | 15.8 | |
1000 | 20.5 | 58.3 | 6.9 | 6.4 | 4.3 | 3.6 | |
ACF | 22.3 | 25.2 | 18.3 | 15.4 | 7.8 | 11 | |
PAF | 21.9 | 25.5 | 17.9 | 15.6 | 8.3 | 10.8 | |
h3 | 16.6 | 18.5 | 14.8 | 16.7 | 18.1 | 15.3 | |
5000 | 8.6 | 90.7 | 0.3 | 0.4 | 0 | 0 | |
ACF | 22.1 | 29.2 | 13.7 | 15.8 | 7.9 | 11.3 | |
PAF | 21.9 | 29.4 | 13.8 | 15.8 | 7.7 | 9.1 | |
h3 | 16.0 | 44.9 | 9.1 | 10.9 | 9.4 | 9.7 | |
10,000 | 2.2 | 97.8 | 0 | 0 | 0 | 0 | |
ACF | 20.7 | 30.6 | 14.9 | 17.9 | 6.9 | 9 | |
PAF | 20.2 | 30.6 | 15.1 | 17.9 | 7.1 | 9.1 | |
h3 | 13.4 | 64.5 | 4.0 | 6.4 | 6.1 | 5.6 |
T | p = 1 | p = 2 | p = 3 | p = 4 | p = 5 | p = 6 | |
---|---|---|---|---|---|---|---|
120 | 36.3 | 14.2 | 12.5 | 11.2 | 14 | 11.8 | |
ACF | 36.5 | 21.1 | 14.6 | 9.9 | 9.5 | 8.4 | |
PAF | 36.1 | 21.3 | 13.5 | 9.7 | 9.9 | 9.5 | |
h3 | 16.8 | 16.9 | 15.1 | 16.6 | 17.4 | 17.2 | |
360 | 61.6 | 11.6 | 6.9 | 6.6 | 5.9 | 7.4 | |
ACF | 39.7 | 22.2 | 14.7 | 8.4 | 9.7 | 5.3 | |
PAF | 38.9 | 23.1 | 14 | 9.2 | 9.1 | 5.7 | |
h3 | 20.2 | 16.3 | 14.6 | 16.1 | 15.2 | 17.6 | |
500 | 73.2 | 10.2 | 4.9 | 4 | 4.4 | 3.3 | |
ACF | 39.7 | 21.7 | 15.3 | 11.2 | 6.8 | 5.3 | |
PAF | 40 | 22.2 | 15.7 | 10 | 6.5 | 5.6 | |
h3 | 24,7 | 18.0 | 12.9 | 14.4 | 15.4 | 14.6 | |
1000 | 90.5 | 5.6 | 0.9 | 0.8 | 1.5 | 0.7 | |
ACF | 43.4 | 23.3 | 13.4 | 8.5 | 6.7 | 4.7 | |
PAF | 43.1 | 24.5 | 12.4 | 8.4 | 6.7 | 4.9 | |
h3 | 30.4 | 14.8 | 14.6 | 12.6 | 15.2 | 12.4 | |
5000 | 100 | 0 | 0 | 0 | 0 | 0 | |
ACF | 43.6 | 24.8 | 14.4 | 8.6 | 5.4 | 3.2 | |
PAF | 43.7 | 25.3 | 14.4 | 7.9 | 5.3 | 3.4 | |
h3 | 76.5 | 9.4 | 4.3 | 3.6 | 3.2 | 3.0 | |
10,000 | 100 | 0 | 0 | 0 | 0 | 0 | |
ACF | 45.7 | 25.2 | 11.9 | 8.1 | 6.3 | 2.8 | |
PAF | 45 | 25.7 | 12.3 | 7.8 | 6.2 | 3 | |
h3 | 93.5 | 4.2 | 0.6 | 0.4 | 0.7 | 0.6 |
T | p = 1 | p = 2 | p = 3 | p = 4 | p = 5 | p = 6 | |
---|---|---|---|---|---|---|---|
120 | 73.5 | 8.9 | 4.7 | 3.4 | 5.5 | 4 | |
ACF | 18.7 | 15 | 17 | 17 | 17.2 | 15.1 | |
PAF | 16.7 | 15 | 16.6 | 17.4 | 18.9 | 15.4 | |
h3 | 100 | 0 | 0 | 0 | 0 | 0 | |
360 | 94.6 | 4.3 | 0.3 | 0.2 | 0.3 | 0.3 | |
ACF | 15.4 | 14.7 | 17.9 | 16.5 | 16.9 | 18.6 | |
PAF | 15.8 | 14.5 | 17.6 | 16.4 | 17 | 18.7 | |
h3 | 100 | 0 | 0 | 0 | 0 | 0 | |
500 | 97.5 | 2.1 | 0.1 | 0.1 | 0.1 | 0.1 | |
ACF | 16.1 | 13.3 | 17.7 | 17.7 | 17.6 | 17.6 | |
PAF | 15.2 | 13.8 | 18.3 | 17.8 | 17.6 | 17.3 | |
h3 | 100 | 0 | 0 | 0 | 0 | 0 | |
1000 | 100 | 0 | 0 | 0 | 0 | 0 | |
ACF | 17.2 | 15.1 | 15.2 | 18.5 | 15 | 17 | |
PAF | 16.3 | 15.5 | 15.4 | 18.4 | 17.7 | 16.7 | |
h3 | 100 | 0 | 0 | 0 | 0 | 0 | |
5000 | 100 | 0 | 0 | 0 | 0 | 0 | |
ACF | 15.6 | 17.1 | 17.6 | 17.4 | 16.8 | 15.5 | |
PAF | 15.8 | 16.9 | 17.6 | 17.4 | 16.7 | 15.6 | |
h3 | 100 | 0 | 0 | 0 | 0 | 0 | |
10,000 | 100 | 0 | 0 | 0 | 0 | 0 | |
ACF | 15.2 | 16.2 | 17.2 | 17.7 | 16 | 17.7 | |
PAF | 15.5 | 16.1 | 17.3 | 17.6 | 16.1 | 17.4 | |
h3 | 100 | 0 | 0 | 0 | 0 | 0 |
T | p = 1 | p = 2 | p = 3 | p = 4 | p = 5 | p = 6 | |
---|---|---|---|---|---|---|---|
120 | 17.5 | 15.3 | 14.9 | 17.9 | 18.1 | 16.3 | |
ACF | 18.8 | 16.2 | 16.4 | 15.5 | 15 | 18.1 | |
PAF | 17.8 | 16.7 | 15 | 16.4 | 15.5 | 18.6 | |
h3 | 11.3 | 14.8 | 19.1 | 16.1 | 21.2 | 17.5 | |
360 | 14.6 | 17.3 | 16.1 | 18 | 16 | 0.18 | |
ACF | 17.7 | 17.4 | 17.3 | 17.3 | 15.2 | 15.1 | |
PAF | 16.7 | 16.6 | 17.8 | 16.9 | 15.8 | 16.2 | |
h3 | 16.0 | 17.0 | 16.9 | 16.7 | 18.0 | 15.4 | |
500 | 15.1 | 17.5 | 16.3 | 18.3 | 15.5 | 17.3 | |
ACF | 16.4 | 16.3 | 16.3 | 16.6 | 17.1 | 17.3 | |
PAF | 16.1 | 16.2 | 16.5 | 17.3 | 17 | 16.9 | |
h3 | 15.8 | 14.7 | 16.7 | 17.0 | 17.8 | 18.0 | |
1000 | 15.5 | 16.6 | 18.2 | 16.9 | 17.7 | 15.1 | |
ACF | 17.1 | 16.5 | 17 | 17.7 | 15.3 | 16.4 | |
PAF | 17.5 | 16.3 | 17 | 17 | 15.3 | 16.9 | |
h3 | 14.7 | 15.9 | 16.2 | 18.8 | 18.1 | 16.3 | |
5000 | 16.9 | 18.9 | 16.4 | 16 | 15.7 | 16.1 | |
ACF | 16.5 | 15.5 | 16.8 | 16.8 | 15.3 | 19.1 | |
PAF | 16.6 | 15.8 | 16.5 | 16.7 | 15.5 | 18.9 | |
h3 | 16.6 | 16.1 | 16.1 | 15.6 | 17.7 | 17.9 | |
10,000 | 16.9 | 16 | 18.9 | 15.5 | 16.6 | 16.1 | |
ACF | 14.3 | 16.8 | 18.5 | 16.6 | 15.6 | 18.2 | |
PAF | 14.3 | 16.9 | 18.7 | 16.7 | 15.6 | 17.8 | |
h3 | 16.8 | 16.5 | 15.5 | 15.8 | 18.3 | 17.1 |
© 2015 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faura, Ú.; Lafuente, M.; Matilla-García, M.; Ruiz, M. Identifying the Most Relevant Lag with Runs. Entropy 2015, 17, 2706-2722. https://doi.org/10.3390/e17052706
Faura Ú, Lafuente M, Matilla-García M, Ruiz M. Identifying the Most Relevant Lag with Runs. Entropy. 2015; 17(5):2706-2722. https://doi.org/10.3390/e17052706
Chicago/Turabian StyleFaura, Úrsula, Matilde Lafuente, Mariano Matilla-García, and Manuel Ruiz. 2015. "Identifying the Most Relevant Lag with Runs" Entropy 17, no. 5: 2706-2722. https://doi.org/10.3390/e17052706
APA StyleFaura, Ú., Lafuente, M., Matilla-García, M., & Ruiz, M. (2015). Identifying the Most Relevant Lag with Runs. Entropy, 17(5), 2706-2722. https://doi.org/10.3390/e17052706