Integrating Entropy and Copula Theories for Hydrologic Modeling and Analysis
<p>Comparison of the observed and simulated streamflow pairs for June and July at the station at Lees Ferry, Arizona.</p> ">
<p>Validation of marginal probabilities of the maximum entropy copula for the June and July streamflow at the station at Lees Ferry, Arizona. (<b>a</b>) Comparison of the estimated marginal probability with theoretical values (upper panel); (<b>b</b>) Absolute bias of the estimated marginal probabilities (lower panel).</p> ">
<p>Comparison of observed and simulated dependence measures including Spearman rank correlation and Blest measure of the June and July streamflow pairs at the station at Lees Ferry, Arizona.</p> ">
<p>Mutual information of the temperature and precipitation for the station at Dallas Fort Worth, TX.</p> ">
Abstract
:1. Introduction
2. Background of Entropy and Copula Theories
2.1. Entropy
2.1.1. Maximum Entropy
Continuous Case
Discrete Case
2.1.2. Relative Entropy
2.2. Copula
- Boundary condition:
- Monotonicity: For every u1,u2,v1 and v2 in I such that u1 ≤ u2 and v1 ≤ v2:
3. Entropy Copula
3.1. Maximum Entropy Copula
Continuous Case
Discrete Case
3.2. Minimum Relative Entropy Copula
4. Copula Entropy
4.1. Relative Entropy and Mutual Information
4.2. Copula Entropy
4.3. Total Correlation
5. Application
5.1. Entropy Copula for Dependence Modeling
5.2. Copula Entropy for Dependence Analysis
6. Discussion
7. Conclusions
Appendix: Entropy of a Random Vector (X,Y)
Acknowledgments
Conflicts of Interest
References
- Hao, Z.; Singh, V.P. Entropy-based method for bivariate drought analysis. J. Hydrol. Eng. 2013, 18, 780–786. [Google Scholar]
- Favre, A.C.; El Adlouni, S.; Perreault, L.; Thiémonge, N.; Bobée, B. Multivariate hydrological frequency analysis using copulas. Water Resour. Res. 2004, 40. doi: 01110.01029/02003WR002456. [Google Scholar]
- Zhang, L.; Singh, V.P. Bivariate rainfall frequency distributions using archimedean copulas. J. Hydrol. 2007, 332, 93–109. [Google Scholar]
- Zhang, L.; Singh, V.P. Trivariate flood frequency analysis using the gumbel-hougaard copula. J. Hydrol. Eng. 2007, 12, 431–439. [Google Scholar]
- Yue, S.; Ouarda, T.; Bobée, B.; Legendre, P.; Bruneau, P. The gumbel mixed model for flood frequency analysis. J. Hydrol. 1999, 226, 88–100. [Google Scholar]
- Singh, V.P. Entropy Theory and Its Application in Environmental and Water Engineering; Wiley: New York, NY, USA, 2013. [Google Scholar]
- Genest, C.; Favre, A.-C. Everything you always wanted to know about copula modeling but were afraid to ask. J. Hydrol. Eng. 2007, 12, 347–368. [Google Scholar]
- Singh, V.P. Hydrologic synthesis using entropy theory: Review. J. Hydrol. Eng. 2011, 16, 421–433. [Google Scholar]
- Singh, V.P. The use of entropy in hydrology and water resources. Hydrol. Process. 1997, 11, 587–626. [Google Scholar]
- Singh, V.P. Introduction to Entropy Theory in Hydrologic Science and Engineering; McGraw-Hill Education: New York, NY, USA, 2015. [Google Scholar]
- Nelsen, R.B. An Introduction to Copulas; Springer: New York, NY, USA, 2006. [Google Scholar]
- Schoelzel, C.; Friederichs, P. Multivariate non-normally distributed random variables in climate research–introduction to the copula approach. Nonlinear Process. Geophys. 2008, 15, 761–772. [Google Scholar]
- Genest, C.; Nešlehová, J. Copula Modeling for Extremes. In Encyclopedia of Environmetrics, 2nd ed.; El-Shaarawi, A.H., Piegorsch, W.W., Eds.; Wiley: Chichester, UK, 2012; Volume 2, pp. 530–541. [Google Scholar]
- Salvadori, G.; De Michele, C. On the use of copulas in hydrology: Theory and practice. J. Hydrol. Eng. 2007, 12, 369–380. [Google Scholar]
- Hao, Z.; Singh, V.P. Drought characterization from a multivariate perspective: A review. J. Hydrol. 2015. submitted. [Google Scholar]
- Calsaverini, R.S.V.R. An information-theoretic approach to statistical dependence: Copula information. Europhys. Lett. 2009, 88, 68003. [Google Scholar]
- Chu, B. Recovering copulas from limited information and an application to asset allocation. J. Bank. Financ. 2011, 35, 1824–1842. [Google Scholar]
- Bedford, T.; Wilson, K.J. On the construction of minimum information bivariate copula families. Ann. Inst. Stat. Math. 2014, 66, 703–723. [Google Scholar]
- Hao, Z.; Singh, V.P. Entropy-copula method for single-site monthly streamflow simulation. Water Resour. Res. 2012, 48, W06604. [Google Scholar]
- Hao, Z. Application of Entropy Theory in Hydrologic Analysis and Simulation. Ph.D Thesis, Texas A&M University, College Station, TX, USA, 2012. [Google Scholar]
- Borwein, J.; Howlett, P.; Piantadosi, J. Modelling and simulation of seasonal rainfall using the principle of maximum entropy. Entropy 2014, 16, 747–769. [Google Scholar]
- Hao, Z.; Singh, V.P. Modeling multi-site streamflow dependence with maximum entropy copula. Water Resour. Res. 2013, 49. [Google Scholar] [CrossRef]
- Kong, X.; Huang, G.; Fan, Y.; Li, Y. Maximum entropy-gumbel-hougaard copula method for simulation of monthly streamflow in Xiangxi River, China. Stoch. Env. Res. Risk Assess 2014, 29, 833–846. [Google Scholar]
- Zachariah, M.; Reddy, M.J. Development of an entropy-copula-based stochastic simulation model for generation of monthly inflows into the Hirakud Dam. ISH J. Hyd. Eng. 2013, 19, 267–275. [Google Scholar]
- Singh, V.P. Entropy-Based Parameter Estimation in Hydrology; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1998. [Google Scholar]
- Kapur, J. Maximum-Entropy Models in Science and Engineering; Wiley: New York, NY, USA, 1989. [Google Scholar]
- Frank, S.A.; Smith, E. A simple derivation and classification of common probability distributions based on information symmetry and measurement scale. J. Evol. Biol. 2010, 469–484. [Google Scholar]
- Chui, C.; Wu, X. Exponential series estimation of empirical copulas with application to financial returns. Adv. Econ. 2009, 25, 263–290. [Google Scholar]
- Pougaza, D.B.; Mohammad-Djafari, A.; Bercher, J.F. Link between copula and tomography. Pattern Recogn. Lett. 2010, 31, 2258–2264. [Google Scholar] [Green Version]
- Piantadosi, J.; Howlett, P.; Boland, J. Matching the grade correlation coefficient using a copula with maximum disorder. J. Ind. Manag. Optim. 2007, 3, 305–312. [Google Scholar]
- Piantadosi, J.; Howlett, P.; Borwein, J. Copulas with maximum entropy. Optim. Lett. 2012, 6, 99–125. [Google Scholar]
- Meeuwissen, A.; Bedford, T. Minimally informative distributions with given rank correlation for use in uncertainty analysis. J. Stat. Comput. Sim. 1997, 57, 143–174. [Google Scholar]
- Dempster, M.A.H.; Medova, E.A.; Yang, S.W. Empirical copulas for cdo tranche pricing using relative entropy. Int. J. Theor. Appl. Financ. 2007, 10, 679–701. [Google Scholar]
- Hao, Z.; Singh, V.P. Single-site monthly streamflow simulation using entropy theory. Water Resour. Res. 2011, 47, W09528, doi: 09510.01029/02010WR010208. [Google Scholar]
- Ma, J.; Sun, Z. Mutual information is copula entropy. Tsinghua Sci. Technol. 2011, 16, 51–54. [Google Scholar]
- Alfonso, L.; Lobbrecht, A.; Price, R. Information theory–based approach for location of monitoring water level gauges in polders. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- Papalexiou, S.M.; Koutsoyiannis, D. Entropy based derivation of probability distributions: A case study to daily rainfall. Adv. Water Resour 2012, 45, 51–57. [Google Scholar]
- Hao, Z.; Singh, V.P. Entropy-based method for extreme rainfall analysis in texas. J. Geophys. Res.-Atmos. 2013, 118, 263–273. [Google Scholar]
- Hao, Z.; Singh, V.P. Entropy-based parameter estimation for extended burr xii distribution. Stoch. Env. Res. Risk Assess 2009, 23, 1113–1122. [Google Scholar]
- Woodbury, A.; Ulrych, T. Minimum relative entropy: Forward probabilistic modeling. Water Resour. Res. 1993, 29, 2847–2860. [Google Scholar]
- Hou, Z.; Rubin, Y. On minimum relative entropy concepts and prior compatibility issues in vadose zone inverse and forward modeling. Water Resour. Res. 2005, 41, W12425. [Google Scholar]
- Woodbury, A.; Ulrych, T. Minimum relative entropy inversion: Theory and application to recovering the release history of a groundwater contaminant. Water Resour. Res. 1996, 32, 2671–2681. [Google Scholar]
- Mishra, A.K.; Özger, M.; Singh, V.P. An entropy-based investigation into the variability of precipitation. J. Hydrol. 2009, 370, 139–154. [Google Scholar]
- Mishra, A.K.; Özger, M.; Singh, V.P. Association between uncertainties in meteorological variables and water-resources planning for the state of texas. J. Hydrol. Eng. 2010, 16, 984–999. [Google Scholar]
- Rajsekhar, D.; Mishra, A.K.; Singh, V.P. Regionalization of drought characteristics using an entropy approach. J. Hydrol. Eng. 2012, 18, 870–887. [Google Scholar]
- Li, C.; Singh, V.P.; Mishra, A.K. Entropy theory-based criterion for hydrometric network evaluation and design: Maximum information minimum redundancy. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Mishra, A.K.; Coulibaly, P. Variability in canadian seasonal streamflow information and its implication for hydrometric network design. J. Hydrol. Eng. 2014, 19, 05014003. [Google Scholar]
- Mishra, A.; Coulibaly, P. Hydrometric network evaluation for canadian watersheds. J. Hydrol. 2010, 380, 420–437. [Google Scholar]
- Shannon, C.E. A mathematical theory of communications. Bell Syst. Tech. J 1948, 27, 379–423. [Google Scholar]
- Shannon, C.; Weaver, W. The Mathematical Theory of Communication; University Illinois Press: Champaign, IL, USA, 1949. [Google Scholar]
- Singh, V.P. Entropy Theory in Hydraulic Engineering: An Introduction; ASCE Press: Reston, VA, USA, 2014. [Google Scholar]
- Jaynes, E.T. Information theory and statistical mechanics. Phys. Rev. 1957, 106, 620–630. [Google Scholar]
- Jaynes, E.T. Information theory and statistical mechanics. II. Phys. Rev. 1957, 108, 171–190. [Google Scholar]
- Kesavan, H.; Kapur, J. Entropy Optimization Principles with Applications; Academic Press: New York, NY, USA, 1992. [Google Scholar]
- Mead, L.; Papanicolaou, N. Maximum entropy in the problem of moments. J. Math. Phys. 1984, 25, 2404–2417. [Google Scholar]
- Cover, T.; Thomas, J. Elementary of Information Theory; Wiley: New York, NY, USA, 1991. [Google Scholar]
- Dirmeyer, P.A.; Wei, J.; Bosilovich, M.G.; Mocko, D.M. Comparing evaporative sources of terrestrial precipitation and their extremes in merra using relative entropy. J. Hydrometeorol. 2014, 15, 102–116. [Google Scholar]
- Kleeman, R. Measuring dynamical prediction utility using relative entropy. J. Atmos. Sci. 2002, 59, 2057–2072. [Google Scholar]
- Brunsell, N. A multiscale information theory approach to assess spatial–temporal variability of daily precipitation. J. Hydrol. 2010, 385, 165–172. [Google Scholar]
- Majda, A.; Kleeman, R.; Cai, D. A mathematical framework for quantifying predictability through relative entropy. Methods Appl. Anal. 2002, 9, 425–444. [Google Scholar]
- DelSole, T.; Tippett, M.K. Predictability: Recent insights from information theory. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef]
- DelSole, T. Predictability and information theory. Part II: Imperfect forecasts. J. Atmos. Sci. 2005, 62, 3368–3381. [Google Scholar]
- DelSole, T. Predictability and information theory. Part I: Measures of predictability. J. Atmos. Sci. 2004, 61, 2425–2440. [Google Scholar]
- Feng, X.; Porporato, A.; Rodriguez-Iturbe, I. Changes in rainfall seasonality in the tropics. Nat. Clim. Chang. 2013, 3, 811–815. [Google Scholar]
- Pascale, S.; Lucarini, V.; Feng, X.; Porporato, A. Projected changes of rainfall seasonality and dry spells in a high concentration pathway 21st century scenario arXiv preprint. 2014, arXiv, 1410.3116.
- Kullback, S.; Leibler, R. On information and sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [Google Scholar]
- Kullback, S. Statistics and Information Theory; Wiley: New York, NY, USA, 1959. [Google Scholar]
- Salvadori, G.; de Michele, C. Multivariate multiparameter extreme value models and return periods: A copula approach. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- Khedun, C.P.; Chowdhary, H.; Mishra, A.K.; Giardino, J.R.; Singh, V.P. Water deficit duration and severity analysis based on runoff derived from noah land surface model. J. Hydrol. Eng. 2012, 18, 817–833. [Google Scholar]
- Bardossy, A.; Li, J. Geostatistical interpolation using copulas. Water Resour. Res. 2008, 44, W07412, doi: 07410.01029/02007WR006115. [Google Scholar]
- Piani, C.; Haerter, J. Two dimensional bias correction of temperature and precipitation copulas in climate models. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Chowdhary, H.; Singh, V.P. Reducing uncertainty in estimates of frequency distribution parameters using composite likelihood approach and copula-based bivariate distributions. Water Resour. Res. 2010, 46, W11516. [Google Scholar] [CrossRef]
- Laux, P.; Vogl, S.; Qiu, W.; Knoche, H.; Kunstmann, H. Copula-based statistical refinement of precipitation in rcm simulations over complex terrain. Hydrol. Earth Syst. Sci. 2011, 15, 2401–2419. [Google Scholar]
- Khedun, C.P.; Mishra, A.K.; Singh, V.P.; Giardino, J.R. A copula-based precipitation forecasting model: Investigating the interdecadal modulation of enso’s impacts on monthly precipitation. Water Resour. Res. 2014, 50, 580–600. [Google Scholar]
- Jaworski, P.; Durante, F.; Härdle, W.K.; Rychlik, T. Copula Theory and its Applications. In Lecture Notes in Statistics—Proceedings; Springer: New York, NY, USA, 2010. [Google Scholar]
- Patton, A.J. A review of copula models for economic time series. J. Multivar. Anal. 2012, 110, 4–18. [Google Scholar]
- Genest, C.; Nešlehová, J. Copulas and Copula Models. In Encyclopedia of Environmetrics, 2nd ed.; El-Shaarawi, A.H., Piegorsch, W.W., Eds.; Wiley: Chichester, UK, 2012; Volume 2, pp. 541–553. [Google Scholar]
- Joe, H. Multivariate Models and Dependence Concepts; Chapman & Hall: London, UK, 1997. [Google Scholar]
- Genest, C.; Favre, A.C.; Béliveau, J.; Jacques, C. Metaelliptical copulas and their use in frequency analysis of multivariate hydrological data. Water Resour. Res. 2007, 43, W09401, doi: 09410.01029/02006WR005275. [Google Scholar]
- Song, S.; Singh, V.P. Meta-elliptical copulas for drought frequency analysis of periodic hydrologic data. Stoch. Env. Res. Risk Assess 2010, 24, 425–444. [Google Scholar]
- Singh, V.; Zhang, L. Idf curves using the frank archimedean copula. J. Hydrol. Eng. 2007, 12, 651–662. [Google Scholar]
- Kao, S.C.; Govindaraju, R.S. Trivariate statistical analysis of extreme rainfall events via the plackett family of copulas. Water Resour. Res. 2008, 44, W02415, doi: 02410.01029/02007WR006261. [Google Scholar]
- Song, S.; Singh, V. Frequency analysis of droughts using the plackett copula and parameter estimation by genetic algorithm. Stoch. Env. Res. Risk Assess 2010, 24, 783–805. [Google Scholar]
- Salvadori, G.; de Michele, C.; Kottegoda, N.; Rosso, R. Extremes in Nature: An Approach Using Copulas; Springer: New York, NY, USA, 2007; Volume 1. [Google Scholar]
- Kurowicka, D.; Joe, H. Dependence Modeling: Vine Copula Handbook; World Scientific: Singapore, 2011. [Google Scholar]
- Bedford, T.; Cooke, R.M. Probability density decomposition for conditionally dependent random variables modeled by vines. Ann. Math. Artif. Intel. 2001, 32, 245–268. [Google Scholar]
- Gyasi-Agyei, Y. Copula-based daily rainfall disaggregation model. Water Resour. Res. 2011, 47, W07535. [Google Scholar] [CrossRef]
- Joe, H.; Li, H.; Nikoloulopoulos, A.K. Tail dependence functions and vine copulas. J. Multivar. Anal. 2010, 101, 252–270. [Google Scholar]
- Aas, K.; Czado, C.; Frigessi, A.; Bakken, H. Pair-copula constructions of multiple dependence. Insur. Math. Econ. 2009, 44, 182–198. [Google Scholar]
- Genest, C.; Ghoudi, K.; Rivest, L.-P. A semiparametric estimation procedure of dependence parameters in multivariate families of distributions. Biometrika 1995, 82, 543–552. [Google Scholar]
- Genest, C.; Carabarín-Aguirre, A.; Harvey, F. Copula parameter estimation using blomqvist’s beta. J. Soc. Fr. Stat. 2013, 154, 5–24. [Google Scholar]
- MATLAB function ADAPT. Available online: http://www.math.wsu.edu/math/faculty/genz/homepage accessed on 10 March 2015.
- Mayor, G.; Suñer, J.; Torrens, J. Copula-like operations on finite settings. IEEE Trans. Fuzzy Syst 2005, 13, 468–477. [Google Scholar]
- Kolesárová, A.; Mesiar, R.; Mordelová, J.; Sempi, C. Discrete copulas. IEEE Trans. Fuzzy Syst 2006, 14, 698–705. [Google Scholar]
- Li, X.; Mikusiński, P.; Taylor, M.D. Strong approximation of copulas. J. Math. Anal. Appl. 1998, 225, 608–623. [Google Scholar]
- Piantadosi, J.; Howlett, P.; Borwein, J.; Henstridge, J. Maximum entropy methods for generating simulated rainfall. Numer. Algebra. Contr. Optim. 2012, 2, 233–256. [Google Scholar]
- Li, X.; Mikusiński, P.; Sherwood, H.; Taylor, M.D. On approximation of copulas. In Distributions with Given Marginals and Moment Problems; Beneš, V., Štěpán, J., Eds.; Springer: Dordrecht, The Netherlands, 1997; pp. 107–116. [Google Scholar]
- Lanford, O.E. Entropy and Equilibrium States in Classical Statistical Mechanics. In Statistical Mechanics and Mathematical Problems; Lenard, A., Ed.; Springer: New York, NY, USA, 1973; pp. 1–113. [Google Scholar]
- Borwein, J.M.; Lewis, A.S. Convex Analysis and Nonlinear Optimization: Theory and Examples; Springer: New York, NY, USA, 2010. [Google Scholar]
- Centre for Computer Assisted Research Mathematics and its Applications (CARMA) website. Available online: http://docserver.carma.newcastle.edu.au/1453/1/ecr.pdf accessed on 10 March 2015.
- Kraskov, A.; Stögbauer, H.; Grassberger, P. Estimating mutual information. Phys. Rev. E 2004, 69, 066138. [Google Scholar]
- Joe, H. Relative entropy measures of multivariate dependence. J. Am. Stat. Assoc. 1989, 84, 157–164. [Google Scholar]
- Chow, C.; Liu, C. Approximating discrete probability distributions with dependence trees. IEEE Trans. Inf. Theory. 1968, 14, 462–467. [Google Scholar]
- McGill, W.J. Multivariate information transmission. Psychometrika 1954, 19, 97–116. [Google Scholar]
- Watanabe, S. Information theoretical analysis of multivariate correlation. IBM J. Res. Dev. 1960, 4, 66–82. [Google Scholar]
- Fass, D. Human Sensitivity to Mutual Information; The State University of New Jersey: New Brunswcks, NJ, USA, 2007. [Google Scholar]
- Lee, T.; Salas, J.D. Record Extension of Monthly Flows for the Colorado River System; U.S. Bureau of Reclamation, U.S. Department of the Interior: Denver, CO, USA, 2006. Available online: www.usbr.gov/lc/region/g4000/NaturalFlow/Final.RecordExtensionReport.2006.pdf accessed on 13 April 2015.
- Blest, D.C. Rank correlation—An alternative measure. Aust. N. Z. J. Stat. 2000, 42, 101–111. [Google Scholar]
- Genest, C.; Plante, J.F. On blest’s measure of rank correlation. Can. J. Stat. 2003, 31, 35–52. [Google Scholar]
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.M.B.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. (Eds.) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2013.
- Easterling, D.R.; Evans, J.; Groisman, P.Y.; Karl, T.; Kunkel, K.E.; Ambenje, P. Observed variability and trends in extreme climate events: A brief review. Bull. Am. Meteor. Soc. 2000, 81, 417–425. [Google Scholar]
- Katz, R.W. Statistics of extremes in climate change. Clim. Chang. 2010, 100, 71–76. [Google Scholar]
- Rahmstorf, S.; Coumou, D. Increase of extreme events in a warming world. Proc. Natl. Acad. Sci. USA 2011, 108, 17905–17909. [Google Scholar]
- Coumou, D.; Rahmstorf, S. A decade of weather extremes. Nat. Clim. Chang. 2012, 2, 491–496. [Google Scholar]
- Rummukainen, M. Changes in climate and weather extremes in the 21st century. Wiley Interdiscip. Rev. 2012, 3, 115–129. [Google Scholar]
- Adler, R.F.; Gu, G.; Wang, J.J.; Huffman, G.J.; Curtis, S.; Bolvin, D. Relationships between global precipitation and surface temperature on interannual and longer timescales 1979–2006. J. Geophys. Res. 2008, 113, D22104. [Google Scholar]
- Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, K.B.; Averyt, M.; Tignor, M.; Miller, H.L. (Eds.) Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK and New York, NY, USA, 2007; Volume 4.
- Liu, C.; Allan, R.P.; Huffman, G.J. Co-variation of temperature and precipitation in cmip5 models and satellite observations. Geophys. Res. Lett. 2012, 39, L13803. [Google Scholar]
- Trenberth, K.E.; Shea, D.J. Relationships between precipitation and surface temperature. Geophys. Res. Lett. 2005, 32, L14703. [Google Scholar]
- Tebaldi, C.; Sansó, B. Joint projections of temperature and precipitation change from multiple climate models: A hierarchical bayesian approach. J. R. Stat. Soc. A 2009, 172, 83–106. [Google Scholar]
- Sexton, D.M.H.; Murphy, J.M.; Collins, M.; Webb, M.J. Multivariate probabilistic projections using imperfect climate models part I: Outline of methodology. Clim. Dynam. 2012, 38, 2513–2542. [Google Scholar]
- Watterson, I. Calculation of joint pdfs for climate change with properties matching recent australian projections. Aust. Meteorol. Ocean. J 2011, 61, 211–219. [Google Scholar]
- Estrella, N.; Menzel, A. Recent and future climate extremes arising from changes to the bivariate distribution of temperature and precipitation in bavaria, germany. Int. J. Climatol. 2012, 33, 1687–1695. [Google Scholar]
- Rodrigo, F. On the covariability of seasonal temperature and precipitation in spain, 1956–2005. Int. J. Climatol. 2014, in press. [Google Scholar]
- Hoerling, M.; Kumar, A.; Dole, R.; Nielsen-Gammon, J.W.; Eischeid, J.; Perlwitz, J.; Quan, X.-W.; Zhang, T.; Pegion, P.; Chen, M. Anatomy of an extreme event. J. Clim. 2013, 26, 2811–2832. [Google Scholar]
- Karl, T.; Gleason, B.; Menne, M.; McMahon, J.; Heim, R.; Brewer, M.; Kunkel, K.; Arndt, D.; Privette, J.; Bates, J. Us temperature and drought: Recent anomalies and trends. Eos Trans Am. Geophys. Union. 2012, 93, 473–474. [Google Scholar]
- Lyon, B.; Dole, R.M. A diagnostic comparison of the 1980 and 1988 US summer heat wave-droughts. J. Clim. 1995, 8, 1658–1675. [Google Scholar]
- Zhang, X.; Vincent, L.A.; Hogg, W.; Niitsoo, A. Temperature and precipitation trends in Canada during the 20th century. Atmos. Ocean. 2000, 38, 395–429. [Google Scholar]
- Beniston, M. Trends in joint quantiles of temperature and precipitation in europe since 1901 and projected for 2100. Geophys. Res. Lett. 2009, 36, L07707. [Google Scholar]
- Hao, Z.; AghaKouchak, A.; Phillips, T.J. Changes in concurrent monthly precipitation and temperature extremes. Environ. Res. Lett. 2013, 8, 034014. [Google Scholar]
- Joe, H. Families of m-variate distributions with given margins and m (m-1)/2 bivariate dependence parameters. Lect. Notes Monogr. Ser. 1996, 28, 120–141. [Google Scholar]
- Bedford, T.; Cooke, R.M. Vines—A new graphical model for dependent random variables. Ann. Stat. 2002, 30, 1031–1068. [Google Scholar]
- Kurowicka, D.; Cooke, R.M. Uncertainty Analysis with High Dimensional Dependence Modelling; Wiley: New York, NY, USA, 2006. [Google Scholar]
- Kulpa, T. On approximation of copulas. Int. J. Math. Math. Sci. 1999, 22, 259–269. [Google Scholar]
- Zheng, Y.; Yang, J.; Huang, J.Z. Approximation of bivariate copulas by patched bivariate fréchet copulas. Insur. Math. Econ. 2011, 48, 246–256. [Google Scholar]
- Mikusinski, P.; Sherwood, H.; Taylor, M. Shuffles of min. Stochastica: Revista de Matemática Pura y Aplicada 1992, 13, 61–74. [Google Scholar]
- Durante, F.; Sarkoci, P.; Sempi, C. Shuffles of copulas. J. Math. Anal. Appl. 2009, 352, 914–921. [Google Scholar]
- Diers, D.; Eling, M.; Marek, S.D. Dependence modeling in non-life insurance using the bernstein copula. Insur. Math. Econ. 2012, 50, 430–436. [Google Scholar]
- Sancetta, A.; Satchell, S. The bernstein copula and its applications to modeling and approximations of multivariate distributions. Econom. Theory. 2004, 20, 535–562. [Google Scholar]
- Qu, L.; Yin, W. Copula density estimation by total variation penalized likelihood with linear equality constraints. Comput. Stat. Data Anal 2012, 56, 384–398. [Google Scholar]
- Shen, X.; Zhu, Y.; Song, L. Linear b-spline copulas with applications to nonparametric estimation of copulas. Comput. Stat. Data Anal 2008, 52, 3806–3819. [Google Scholar]
- Cormier, E.; Genest, C.; Nešlehová, J.G. Using b-splines for nonparametric inference on bivariate extreme-value copulas. Extremes 2014, 17, 633–659. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, Z.; Singh, V.P. Integrating Entropy and Copula Theories for Hydrologic Modeling and Analysis. Entropy 2015, 17, 2253-2280. https://doi.org/10.3390/e17042253
Hao Z, Singh VP. Integrating Entropy and Copula Theories for Hydrologic Modeling and Analysis. Entropy. 2015; 17(4):2253-2280. https://doi.org/10.3390/e17042253
Chicago/Turabian StyleHao, Zengchao, and Vijay P. Singh. 2015. "Integrating Entropy and Copula Theories for Hydrologic Modeling and Analysis" Entropy 17, no. 4: 2253-2280. https://doi.org/10.3390/e17042253
APA StyleHao, Z., & Singh, V. P. (2015). Integrating Entropy and Copula Theories for Hydrologic Modeling and Analysis. Entropy, 17(4), 2253-2280. https://doi.org/10.3390/e17042253