Simple Urban Simulation Atop Complicated Models: Multi-Scale Equation-Free Computing of Sprawl Using Geographic Automata
<p>(<b>a</b>) The <span class="html-italic">immediate</span> rule diffuses development into the five cell Moore neighborhood (in blue, also including yellow cell) of a given cell (in yellow alone). (<b>b</b>) The nearby rule diffuses to the 25-cell Moore neighborhood. The red box in (b) denotes a corner <math display="inline"> <semantics> <mrow> <msub> <mi>p</mi> <mn>1</mn> </msub> </mrow> </semantics> </math> from Equation (4).</p> "> Figure 2
<p>(<b>a</b>) The leapfrog rule casts development (blue) at a distance from a seed cell (yellow) within a neighborhood window, to the periphery of that window. (<b>b</b>) The road rule forms connective polylines (red) of development (blue) between seeded node cells (yellow).</p> "> Figure 3
<p>The irregular rule is used to establish development (blue) that takes place along a linear trajectory (red) abutting assumed physical obstacles, in this case adverse terrain and a water feature.</p> "> Figure 4
<p>The scheme for coarse projective integration.</p> "> Figure 5
<p>Historical population totals for seed sites in the simulation, derived from census data.</p> "> Figure 6
<p>The Midwestern sprawl coarse projective integration simulation at three time steps (darker yellow indicates higher relative population density than the case of lighter yellow). (Because we are averaging over many possible (heterogenous) growth trajectories/geographies, the spatial configurations above look relatively smooth).</p> "> Figure 7
<p>Relative agreement of population counts, per-cell, between direct ensemble simulation and simulation by coarse projective integration at time-step (<b>a</b>) 50, (<b>b</b>) 100, and (<b>c</b>) 200. Insets show seed city-sites for the model, with magnification expressed. The y-axis unity is 100%.</p> "> Figure 8
<p>Relative differences in population percentage (unity is 100%) between direct ensemble simulation and simulation by coarse projective integration. (In these figures we use just one shade of yellow and displacement in the y-axis indicates relative population change in positive or negative terms).</p> "> Figure 9
<p>Comparison between direct and CPI simulation population count dynamics for seed sites (<b>a</b>) Chicago, (<b>b</b>) Madison, (<b>c</b>) Lansing, and (<b>d</b>) Grand Rapids. Note that the population figures do not include the entire metropolitan area for each site, just the central city.</p> ">
Abstract
:1. Introduction
2. Background
3. Methods
3.1. Automata-Based Data Structures, Geographic Automata, and Polyspatial Functionality
3.2. Multi-Scale Equation-Free Computing on Population
4. Modeling Sprawl
4.1. Automata-Based Model Design for Sprawl Processes
4.2. Time-Stepping and Coarse Projective Integration of Population as a Macroscopic Observable of Urban Sprawl
4.3. Simulating Sprawl in the American Midwest
4.4. Parallel Computing
5. Results
5.1. Plausibility of Equation-Free Sprawl
5.2. Efficiency of the Meta-Simulation Architecture
6. Conclusions
Acknowledgements
Conflict of Interest
References
- Maandig, M.; Reznor, T.; Ross, A.; Sheridan, R. Strings and attractors. In Welcome Oblivion, How to Destroy Angels; Columbia: New York, NY, USA, 2013; Track 6. [Google Scholar]
- Gordon, P.; Richardson, H.W. Where’s the sprawl? J. Am. Plann. Assoc. 1997, 63, 275–278. [Google Scholar]
- Schwarz, N.; Haase, D.; Seppelt, R. Omnipresent sprawl? A review of urban simulation models with respect to urban shrinkage. Environ. Plann. B: Planning and Design 2010, 37, 265–283. [Google Scholar] [CrossRef]
- Torrens, P.M. Simulating sprawl. Ann. Assoc. Am. Geogr. 2006, 96, 248–275. [Google Scholar] [CrossRef]
- Brown, D.G.; Robinson, D.T. Effects of heterogeneity in residential preferences on an agent-based model of urban sprawl. Ecol. Soc. 2006, 11, 46–68. [Google Scholar]
- Batty, M.; Xie, Y.; Sun, Z. The dynamics of urban sprawl; CASA Working Paper series, No. 15; University College London, Centre for Advanced Spatial Analysis (CASA): London, UK, 1999. [Google Scholar]
- Torrens, P.M.; O’Sullivan, D. Cellular automata and urban simulation: Where do we go from here? Environ. Plann. B 2001, 28, 163–168. [Google Scholar] [CrossRef]
- Hall, P. Cities of Tomorrow: An Intellectual History of Urban Planning and Design in the Twentieth Century; Blackwell: Oxford, UK, 1988. [Google Scholar]
- Batty, M.; Torrens, P.M. Modeling and prediction in a complex world. Futures 2005, 37, 745–766. [Google Scholar] [CrossRef]
- Horgan, J. From complexity to perplexity: Can science achieve a unified theory of complexity systems? Even at the santa fe institute, some researchers have their doubts. Scientific American 1995, 272, 104–109. [Google Scholar] [CrossRef]
- Faith, J. Why gliders don’t exist: Anti-reductionism and emergence. In Artificial Life VI: Proceedings of the Sixth International Conference on Artificial Life; Adami, C., Ed.; MIT Press: Cambridge, MA, USA, 1998; pp. 389–392. [Google Scholar]
- Batty, M. Building a science of cities. Cities 2012, 29, S9–S16. [Google Scholar] [CrossRef]
- Kanda, M. Progress in the scale modeling of urban climate: Review. Theor. Appl. Climatol. 2006, 84, 23–33. [Google Scholar] [CrossRef]
- Batty, M. Fifty years of urban modeling: Macro-statics to micro-dynamics. In The Dynamics of Complex Urban Systems; Albeverio, S., Andrey, D., Giordano, P., Vancheri, A., Eds.; Physica-Verlag HD: Berlin, Germany, 2008; pp. 1–20. [Google Scholar]
- Atkinson-Palombo, C. New housing construction in phoenix: Evidence of “new suburbanism”? Cities 2010, 27, 77–86. [Google Scholar] [CrossRef]
- Torrens, P.M. A toolkit for measuring sprawl. Appl. Spat. Anal. Policy 2008, 1, 5–36. [Google Scholar] [CrossRef]
- Lang, R.E.; Dhavale, D. Beyond megalopolis: Exploring america’s new “megapolitan” geography. Metropolitan Institute Census Report Series 2005, 5, 1–35. [Google Scholar]
- Carruthers, J.I. Growth at the fringe: The influence of political fragmentation in united states metropolitan areas. Pap. Reg.Sci. 2003, 82, 472–499. [Google Scholar] [CrossRef]
- Pendall, R. Do land-use controls cause sprawl? Environ. Plann. B 1999, 26, 555–571. [Google Scholar] [CrossRef]
- Katsoulakis, M.A.; Majda, A.J.; Vlachos, D.G. Coarse-grained stochastic processes for microscopic lattice systems. Proc. Natl. Acad. Sci. 2003, 100, 782–787. [Google Scholar] [CrossRef] [PubMed]
- Katsoulakis, M.A.; Vlachos, D.G. Coarse-grained stochastic processes and kinetic monte carlo simulators for the diffusion of interacting particles. J. Chem. Phys. 2003, 119, 9412–9428. [Google Scholar] [CrossRef]
- Gear, C.W.; Kevrekidis, I.G. Projective methods for stiff differential equations: Problems with gaps in their eigenvalue spectrum. SIAM J. Sci. Comput. 2003, 24, 1091–1106. [Google Scholar] [CrossRef]
- Rico-Martınez, R.; Gear, C.W.; Kevrekidis, I.G. Coarse projective kmc integration: Forward/reverse initial and boundary value problems. J. Comput. Phys. 2004, 196, 474–489. [Google Scholar] [CrossRef]
- Setayeshgar, S.; Gear, C.W.; Othmer, H.G.; Kevrekidis, I.G. Application of coarse integration to bacterial chemotaxis. Multiscale Model. Simul. 2005, 4, 307–327. [Google Scholar] [CrossRef]
- Alonso, W. A reformulation of classical location theory and its relation to rent theory. Pap. Reg. Sci. 1967, 19, 22–44. [Google Scholar] [CrossRef]
- Batty, M.; Chapman, D.; Evans, S.; Haklay, M.; Kueppers, S.; Shiode, N.; Smith, A.; Torrens, P.M. Visualizing the city: Communicating urban design to planners and decision-makers. In Planning Support Systems in Practice: Integrating Geographic Information Systems, Models, and Visualization Tools; Brail, R.K., Klosterman, R.E., Eds.; ESRI Press and Center for Urban Policy Research Press: Redlands, CA and New Brunswick, NJ, USA, 2001; pp. 405–443. [Google Scholar]
- Epstein, J.M. Generative Social Science: Studies in Agent-Based Computational Modeling; Princeton University Press: Princeton, NJ, USA, 2007. [Google Scholar]
- Epstein, J.M.; Axtell, R. Growing Artificial Societies from the Bottom up; MIT Press: Cambridge, MA, USA, 1996. [Google Scholar]
- Edmonds, B.; Moss, S. From kiss to kids—An “antisimplistic” modelling approach. In Multi Agent Based Simulation: Lecture Notes in Artificial Intelligence, 3415; Davidsson, P., Ed.; Springer: Berlin, Germany, 2004; pp. 130–145. [Google Scholar]
- Gerber, E.R.; Gibson, C.C. Balancing regionalism and localism: How institutions and incentives shape american transportation policy. Am. J. Poli. Sci. 2009, 53, 633–648. [Google Scholar] [CrossRef]
- Imrie, R. Urban geography, relevance, and resistance to the “policy turn”. Urban Geogr. 2004, 25, 697–708. [Google Scholar] [CrossRef]
- Deichsel, S.; Pyka, A. A pragmatic reading of friedman’s methodological essay and what it tells us for the discussion of abms. J. Artif. Soci. Soc. Simul. 2009, 12. Available online: http://jasss.soc.surrey.ac.uk/12/14/16.html/ (accessed on 1 January 2012). [Google Scholar]
- Brenner, T.; Werker, C. Policy advice derived from simulation models. J. Artif. Soci. Soci. Simul. 2009, 12. Available online: http://jasss.soc.surrey.ac.uk/12/14/12.html/ (accessed on 01/01/2012). [Google Scholar]
- Rheingold, H. Tools for Thought: The History and Future of Mind-Expanding Technology; The MIT Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Axelrod, R. Advancing the art of simulation in the social sciences. Complexity 1997, 3, 16–22. [Google Scholar] [CrossRef]
- Hall, P.G. Cities in Civilization; Pantheon Books: New York, NY, USA, 1998. [Google Scholar]
- Batty, M. The size, scale, and shape of cities. Science 2008, 319, 769–771. [Google Scholar] [CrossRef] [PubMed]
- Bettencourt, L.; Lobo, J.; Helbing, D.; Kühnert, C.; West, G. Growth, innovation, scaling and the pace of life in cities. Proc. Natl. Acad. Sci. 2007, 104, 7301–7306. [Google Scholar] [CrossRef] [PubMed]
- Benenson, I.; Torrens, P.M. Geosimulation: Automata-Based Modeling of Urban Phenomena; John Wiley & Sons: London, UK, 2004. [Google Scholar]
- Ewing, R. Causes, characteristics, and effects of sprawl: A literature review. Environ. Urban Issues 1994, 21, 1–15. [Google Scholar]
- Ewing, R. Is los angeles-style sprawl desirable? J. Am. Plann. Assoc. 1997, 63, 107–126. [Google Scholar] [CrossRef]
- Gordon, P.; Richardson, H.W. Are compact cities a desirable planning goal? J. Am. Plann. Assoc. 1997, 63, 95–106. [Google Scholar] [CrossRef]
- Galster, G.; Hanson, R.; Ratcliffe, M.R.; Wolman, H.; Coleman, S.; Freihage, J. Wrestling sprawl to the ground: Defining and measuring an elusive concept. Hous. Pol. Debate 2001, 12, 681–717. [Google Scholar] [CrossRef]
- Peiser, R. Density and urban sprawl. Land Econ. 1989, 65, 193–204. [Google Scholar] [CrossRef]
- Gottman, J.; Harper, R.A. Metropolis on the Move: Geographers Look at Urban Sprawl; John Wiley & Sons: New York, NY, USA, 1967. [Google Scholar]
- Sultana, S.; Weber, J. Journey-to-work patterns in the age of sprawl: Evidence from two midsize southern metropolitan areas. Prof. Geogr. 2007, 59, 193–208. [Google Scholar] [CrossRef]
- Alberti, M. Quantifying the urban gradient: Linking urban planning and ecology. In Avian Ecology in an Urbanizing World; Marzluff, J.M., Bowman, R., McGowan, R., Donnelly, R., Eds.; Kluwer: New York, NY, USA, 2001. [Google Scholar]
- Song, Y.; Knaap, G.-J. Measuring urban form: Is portland winning the war on sprawl? J. Am. Plann. Assoc. 2004, 70, 210–225. [Google Scholar] [CrossRef]
- Hasse, J.E.; Lathrop, R.G. Land resource impact indicators of urban sprawl. Appl. Geogr. 2003, 23, 159–175. [Google Scholar] [CrossRef]
- Brown, D.G.; Page, S.E.; Riolo, R.; Rand, W. Modeling the effects of greenbelts on the urban-rural fringe, iEMSs: Integrated Assessment and Decision Support. Lugano, Switzerland, June 24–27, 2002; Lugano, Switzerland.
- Bone, C.; Dragićević, S.; Roberts, A. Evaluating forest management practices using a gis-based cellular automata modeling approach with multispectral imagery. Environ. Model. Assess. 2007, 12, 105–118. [Google Scholar] [CrossRef]
- Bone, C.; Dragicevic, S. Incorporating spatio-temporal knowledge in an intelligent agent model for natural resource management. Land. Urb. Plann. 2010, 96, 123–133. [Google Scholar] [CrossRef]
- Cervero, R. Transit Metropolis: A Global Inquiry; Island Press: Washington D.C., USA, 1998. [Google Scholar]
- Johnson, M. Environmental impacts of urban sprawl: A survey of the literature and proposed research agenda. Environ. Plann. A 2001, 33, 717–735. [Google Scholar] [CrossRef]
- Skinner, C.J. Urban density, meteorology and rooftops. Urban Policy Res. 2006, 24, 355–367. [Google Scholar] [CrossRef]
- Wang, F.; Zhou, Y. Modelling urban population densities in beijing 1982–1990: Suburbanisation and its causes. Urban Studies 1999, 36, 271–287. [Google Scholar] [CrossRef]
- Sutton, P. Modeling population density with night-time satellite imagery and GIS. Comput. Environ. Urban Syst. 1997, 21, 227–244. [Google Scholar] [CrossRef]
- Moudon, A.V.; Hess, P.M.; Snyder, M.C.; Stanilov, K. Effects of site design on pedestrian travel in mixed-use, medium-density environments. Transp. Res. Rec. 1997, 1578, 48–55. [Google Scholar] [CrossRef]
- Batty, M.; Kwang, S.K. Form follows function: Reformulating urban population density functions. Urban Stud. 1992, 29, 1043–1070. [Google Scholar] [CrossRef]
- Alperovich, G.; Deutsch, J. Population density gradients and urbanisation measurement. Urban Stud. 1992, 29, 1323–1328. [Google Scholar] [CrossRef]
- Zielinski, K. Experimental analysis of eleven models of urban population density. Environ. and Plann. A 1979, 11, 629–641. [Google Scholar] [CrossRef]
- Clark, C. Urban population densities. J. R.l Stat. Soc. Series A 1951, 114, 490–496. [Google Scholar] [CrossRef]
- Zou, Y.; Torrens, P.M.; Ghanem, R.; Kevrekidis, I.G. Accelerating agent-based computation of complex urban systems. Int. J. Geogr. Inf. Sci. 2012, 26, 1917–1937. [Google Scholar] [CrossRef]
- Torrens, P.M.; Nara, A. Polyspatial agents for multi-scale urban simulation and regional policy analysis. Reg. Sci. Policy Pract. 2013, 44, 419–445. [Google Scholar] [CrossRef]
- Von Neumann, J. The general and logical theory of automata. In Cerebral Mechanisms in Behavior; Jeffress, L.A., Ed.; Wiley: New York, NY, USA, 1951; pp. 1–41. [Google Scholar]
- Ulam, S. A Collection of Mathematical Problems; Interscience: New York, NY, USA, 1969. [Google Scholar]
- Turing, A.M. On computable numbers, with an application to the entscheidungsproblem. Proc. London Math. Soc. 1936, Series 2, 230–265. [Google Scholar]
- Turing, A.M. Correction to: On computable numbers, with an application to the entscheidungsproblem. Proc. London Math. Soc. 1938, Series 2, 544–546. [Google Scholar] [CrossRef]
- Turing, A.M. Computing machinery and intelligence. Mind 1950, 49, 433–460. [Google Scholar] [CrossRef]
- Torrens, P.M.; Benenson, I. Geographic automata systems. Int. J. Geogr. Inf. Sci. 2005, 19, 385–412. [Google Scholar] [CrossRef]
- Portugali, J. Self-Organization and the City; Springer-Verlag: Berlin, Germany, 2000. [Google Scholar]
- Torrens, P.M.; Li, X.; Griffin, W.A. Building agent-based walking models by machine-learning on diverse databases of space-time trajectory samples. Trans. Geogr. Inf. Sci. 2011, 15, 67–94. [Google Scholar] [CrossRef]
- Openshaw, S.; Charlton, M.E.; Wymer, C.; Craft, A. A mark 1 geographical analysis machine for the automated analysis of point data sets. Int. J. Geogr. Inf. Sys. 1987, 1, 335–358. [Google Scholar] [CrossRef]
- Samet, H. The quadtree and related hierarchical data structures. ACM Comput. Surv. 1984, 16, 187–260. [Google Scholar] [CrossRef]
- Benenson, I.; Torrens, P.M. A minimal prototype for integrating GIS and geographic simulation through geographic automata systems. In Geodynamics; Atkinson, P., Foody, G., Darby, S., Wu, F., Eds.; CRC Press: Boca Raton, FL, USA, 2005; pp. 347–369. [Google Scholar]
- Batty, M. Geocomputation using cellular automata. In Geocomputation; Openshaw, S., Abrahart, R., Eds.; Taylor and Francis: London, 2000; pp. 95–126. [Google Scholar]
- Longley, P.A.; Brooks, S.M.; McDonnell, R.; Macmillan, B. Geocomputation: A primer; John Wiley and Sons: London, UK, 1998. [Google Scholar]
- Kevrekidis, I.G.; Gear, C.W.; Hyman, J.M.; Kevrekidis, P.G.; Runborg, O.; Theodoropoulos, C. Equation-free, coarse-grained multiscale computation: Enabling microscopic simulators to perform system-level analysis. Commun. Math. Sci. 2003, 1, 715–762. [Google Scholar]
- Harris, C.D.; Ullman, E.L. The nature of cities. Ann. Am. Acad. Political Social Sci. 1945, 242, 7–17. [Google Scholar] [CrossRef]
- Burgess, E.W. The growth of the city: An introduction to a research project. In The City; Park, R.E., Burgess, E.W., McKenzie, R.D., Eds.; University of Chicago Press: Chicago, IL, USA, 1925; pp. 47–62. [Google Scholar]
- Harris, B. Urban simulation models in regional science. J. Reg. Sci. 1985, 25, 545–567. [Google Scholar] [CrossRef]
- Isard, W.; Azis, I.J.; Drennen, M.P.; Miller, R.E.; Saltzmann, S.; Thorbecke, E. Methods of Interregional and Regional Analysis; Ashgate: Aldershot, UK, 1998. [Google Scholar]
- Batty, M. Urban Modelling: Algorithims, Calibrations, Predictions; Cambridge University Press: London, UK, 1976. [Google Scholar]
- De la Barra, T. Integrated Land Use and Transport Modelling: Decision Chains and Hierarchies; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Wegener, M. Operational urban models: State of the art. J. Am. Plann. Assoc. 1994, 60, 17–29. [Google Scholar] [CrossRef]
- Wilson, A.G. Urban and Regional Models in Geography and Planning; John Wiley & Sons: London, UK, 1975. [Google Scholar]
- Ratti, C.; Williams, S.; Frenchman, D.; Pulselli, R. Mobile landscapes: Using location data from cell phones for urban analysis. Environ. Plann. B 2006, 33, 727–748. [Google Scholar] [CrossRef]
- Eagle, N.; Pentland, A.; Lazer, D. Inferring social network structure using mobile phone data. Proc. Natl. Acad. Sci. 2009, 106, 15274–15278. [Google Scholar] [CrossRef] [PubMed]
- Longley, P.A. Geodemographics and the practices of geographic information science. Int. J. Geogr. Inf. Sci. 2012, 26, 2227–2237. [Google Scholar] [CrossRef]
- Batty, M. Cities and Complexity: Understanding Cities with Cellular Automata, Agent-Based Models, and Fractals; The MIT Press: Cambridge, MA, USA, 2005. [Google Scholar]
- Portugali, J.; Meyer, H.; Stolk, E.; Tan, E. Complexity Theories of Cities Have Come of Age; Springer: New York, NY, USA, 2012. [Google Scholar]
- Torrens, P.M. Calibrating and validating cellular automata models of urbanization. In Urban Remote Sensing: Monitoring, Synthesis and Modeling in the Urban Environment; Yang, X., Ed.; John Wiley & Sons: Chichester, UK, 2011; pp. 335–345. [Google Scholar]
- Epstein, J.M. Agent-based computational models and generative social science. Complexity 1999, 4, 41–60. [Google Scholar] [CrossRef]
- Herold, M.; Couclelis, H.; Clarke, K.C. The role of spatial metrics in the analysis and modeling of urban land use change. Comput. Environ. Urban Syst. 2005, 29, 369–399. [Google Scholar] [CrossRef]
- Asanovic, K.; Bodik, R.; Catanzaro, B.; Gebis, J.; Husbands, P.; Keutzer, K.; Patterson, D.; Plishker, W.; Shalf, J.; Williams, S.; et al. The Landscape of Parallel Computing Research: A View from Berkeley; Technical Report No. UCB/EECS-2006-183; Department of Electrical Engineering and Computer Science, University of California, Berkeley: Berkeley, CA, 2006; Available online: http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf (accessed on 18 December 2006).
- Nagel, K.; Rickert, M. Parallel implementation of the transims micro-simulation. Parallel Comput. 2001, 27, 1611–1639. [Google Scholar] [CrossRef]
- Guan, Q.; Clarke, K.C.; Zhang, T. Calibrating a Parallel Geographic Cellular Automata Model; AutoCarto: Vancouver, WA, USA, 2006. [Google Scholar]
- Theodoropoulos, C.; Qian, Y.-H.; Kevrekidis, I.G. “Coarse” stability and bifurcation analysis using time-steppers: A reaction-diffusion example. Proc. Natl. Acad. Sci. 2000, 97, 9840–9843. [Google Scholar] [CrossRef] [PubMed]
- Audirac, I.; Shermyen, A.H.; Smith, M.T. Ideal urban form and visions of the good life: Florida’s growth management dilemma. J. Am. Plann. Assoc. 1990, 56, 470–482. [Google Scholar] [CrossRef]
- Bae, C.-H.C.; Richardson, H.W. Automobiles, the Environment and Metropolitan Spatial Structure; Lincoln Institute of Land Policy: Cambridge, MA, USA, 1994. [Google Scholar]
- Benfield, F.K.; Raimi, M.D.; Chen, D.D.T. Once There Were greenfields: How Urban Sprawl Is Undermining America’s Environment, Economy, and Social Fabric; Natural Resources Defense Council: New York, NY, and Washington DC, USA, 1999. [Google Scholar]
- Calthorpe, P.; Fulton, W.; Fishman, R. The Regional City: Planning for the End of Sprawl; Island Press: Washington DC, USA, 2001. [Google Scholar]
- Clawson, M. Urban sprawl and speculation in suburban land. Land Econ. 1962, 38, 99–111. [Google Scholar] [CrossRef]
- Downs, A. New Visions for Metropolitan America; Brookings Institute: Washington DC, USA, 1994. [Google Scholar]
- Duany, A.; Plater-Zyberk, E.; Speck, J. Suburban Nation: The Rise of Sprawl and the Decline of the American Dream; North Point Press: New York, NY, USA, 2000. [Google Scholar]
- El Nasser, H.; Overberg, P. A comprehensive look at sprawl in america. USA Today 2001, 12. [Google Scholar]
- Farley, R.; Schuman, H.; Binachi, S.; Colasanto, D.; Hatchett, S. Chocolate city, vanilla suburbs: Will the trend toward racially separate communities continue? Soc. Sci. Res. 1978, 7, 319–344. [Google Scholar] [CrossRef]
- Fulton, W.; Pendall, R.; Nguyen, M.; Harrison, A. Who sprawls most? How growth patterns differ across the U.S.; The Brookings Institution: Washington DC, USA, 2001. [Google Scholar]
- Hall, P. Decentralization without end? In The Expanding City: Essays in Honor of Professor Jean Gottmann; Academic Press: London, UK, 1983. [Google Scholar]
- Handy, S. Smart growth and the transportation-land use connection: What does the research tell us? Int. Reg. Sci. Rev. 2005, 28, 146–167. [Google Scholar] [CrossRef]
- Harvey, R.O.; Clark, W.A.V. The nature and econmics of sprawl. Land Econ. 1965, 61, 1–9. [Google Scholar] [CrossRef]
- Lang, R.E. Open spaces, bounded places: Does the american west’s arid landscape yield dense metropolitan growth? Hous. Pol. Debate 2003, 13, 755–778. [Google Scholar] [CrossRef]
- Lessinger, J. The cause for scatteration: Some reflections on the national capitol region plan for the year 2000. J. Am. Inst. Plan. 1962, 28, 159–170. [Google Scholar] [CrossRef]
- Mayer, H. The pull of land and space. In Metropolis on the Move: Geographers Look at Urban Sprawl; Gottmann, J., Harper, R.A., Eds.; John Wiley & Sons: New York, NY, USA, 1967. [Google Scholar]
- Ottensmann, J.R. Urban sprawl, land values and the density of development. Land Econ. 1977, 53, 389–400. [Google Scholar] [CrossRef]
- Sui, D.Z.; Wei, T.; Gavinha, J. How smart is smart growth? The case of austin, texas. In Worldminds: Geographical Perspectives on 100 Problems; Janelle, D.G., Warf, B., Hansen, K., Eds.; Kluwer Academic Publishers: Dordrecht, The Neatherlands, 2004; pp. 209–214. [Google Scholar]
- Hasse, J.; Lathrop, R.G. A housing-unit-level approach to characterizing residential sprawl. Photo. Eng. Rem. Sens. 2003, 69, 1021–1030. [Google Scholar] [CrossRef]
- Ewing, R.; Schmid, T.; Killingsworth, R.; Zlot, A.; Raudenbush, S. Relationship between urban sprawl and physical activity, obesity, and morbidity. Am. J. Healt. Prom. 2003, 18, 47–57. [Google Scholar] [CrossRef]
- Kahneman, D. Thinking, Fast and Slow; Farrar, Straus and Giroux: New York, NY, USA, 2011. [Google Scholar]
- Batty, M. Visually-driven urban simulation: Exploring fast and slow change in residential location. Environ. Plann. A 2013, 45, 532–552. [Google Scholar] [CrossRef]
- Evans, A.W. The property market: Ninety per cent efficient? Urban Stud. 1995, 32, 5–29. [Google Scholar] [CrossRef]
- Rossi, P.H. Why Families Move: A Study in the Social Psychology of Urban Residential Mobility; Free Press: Glencoe, IL, USA, 1955. [Google Scholar]
- Batty, M.; Longley, P.A.; Fotheringham, A.S. Urban growth and form: Scaling, fractal geometry, and diffusion-limited-aggregation. Environ. Plann. A 1989, 21, 1447–1472. [Google Scholar] [CrossRef]
- Liu, J.; Dietz, T.; Carpenter, S.R.; Alberti, M.; Folke, C.; Moran, E.; Pell, A.N.; Deadman, P.; Kratz, T.; Lubchenco, J.; et al. Complexity of coupled human and natural systems. Science 2007, 317, 1513–1516. [Google Scholar] [CrossRef] [PubMed]
- Bussière, R. The Spatial Distribution of Urban Populations; International Federation for Housing and Planning and Le Centre de Recherche d'Urbanisme: The Hague and Paris, France, 1968. [Google Scholar]
- Hess, P.; Moudon, A.; Snyder, M.; Stanilov, K. Site design and pedestrian travel. Transp. Res. Rec.: J. Transp. Res. Board 1999, 1674, 9–19. [Google Scholar] [CrossRef]
- Agrawal, A.W.; Schimek, P. Extent and correlates of walking in the USA. Transp. Research Part D: Trans. Environ. 2007, 12, 548–563. [Google Scholar] [CrossRef]
- Riebsame, W.E.; Gosnell, H.; Theobald, D.M. Land use and landscape change in the colorado mountains i: Theory, scale, and pattern. Mt. Res. Dev. 1996, 16, 395–405. [Google Scholar] [CrossRef]
- Cervero, R. America’s Suburban Centers: The Land-Use Transportation Link; Unwin-Hyman: Winchester, MA, USA, 1989. [Google Scholar]
- Zou, Y.; Kevrekidis, I.G.; Ghanem, R.G. Equation-free particle-based computations: Coarse projective integration and coarse dynamic renormalization in 2d. Ind. Engin. Chem. Res. 2006, 45, 7002–7014. [Google Scholar] [CrossRef]
- Gottmann, J. Megalopolis: The Urbanized Northeastern Seaboard of the United States; MIT Press: Cambridge, MA, USA, 1967. [Google Scholar]
- Walker, R.; Ellis, M.; Barff, R. Linked migration systems: Immigration and internal labor flows in the united states. Econ. Geogr. 1992, 68, 234–248. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liao, D.; Yip, S. Coupling continuum to molecular-dynamics simulation: Reflecting particle method and the field estimator. Phys. Rev. E 1998, 57, 7259. [Google Scholar] [CrossRef]
- Tesfatsion, L. Agent-Based Computational Economics: Growing Economies from the Bottom up; Iowa State University: Ames, IA, USA, 2002. [Google Scholar]
- Torrens, P.M. Moving agent pedestrians through space and time. Ann. Assoc. Am. Geogr. 2012, 102, 35–66. [Google Scholar] [CrossRef]
- Benguigi, L.; Czamanski, D.; Marinov, M. City growth as a leap-frogging process: An application to the tel-aviv metropolis. Urban Stud. 2001, 38, 1819–1839. [Google Scholar] [CrossRef]
- Monserud, R.A.; Leemans, R. Comparing global vegetation maps with the kappa statistic. Ecolo. Modell. 1992, 62, 275–293. [Google Scholar] [CrossRef]
- Schelling, T.C. Models of segregation. Am. Econ. Rev. 1969, 59, 488–493. [Google Scholar]
- Crooks, A.; Castle, C.; Batty, M. Key challenges in agent-based modelling for geo-spatial simulation. Comput. Environ. Urban Syst. 2008, 32, 417–430. [Google Scholar] [CrossRef]
- Albrecht, J. A new age for geosimulation. Trans. Geogr. Inf. Sci. 2005, 9, 451–454. [Google Scholar] [CrossRef]
- Benenson, I.; Torrens, P.M. Special issue: Geosimulation: Object-based modeling of urban phenomena. Comput., Environ. Urban Syst. 2004, 28, 1–8. [Google Scholar] [CrossRef]
- Mandl, P. Geo-simulation—Experimentieren und problemlösen mit gis-modellen. In Angewandte Geographische Informationsverarbeitung XII: Beiträge zum Agit-Symposium, Salzburg; Strobl, J., Blaschke, T., Griesebner, G., Eds.; Herbert Wichmann Verlag: Heidelberg, Germany, 2000; pp. 345–356. [Google Scholar]
- Shen, Z.; Kawakami, M.; Kawamura, I. Geosimulation model using geographic automata for simulating land-use patterns in urban partitions. Environ. Plann. B: Plann. Des. 2009, 36, 802–823. [Google Scholar] [CrossRef]
- Zhao, Y.; Murayama, Y. A new method to model neighborhood interaction in cellular automata-based urban geosimulation. In Lecture Notes in Computer Science 4488: Computational Science (ICCS 2007); Shi, Y., Albada, G.D., Dongarra, J., Eds.; Springer: Berlin, Germany, 2007; pp. 550–557. [Google Scholar]
- Batty, M.; Torrens, P.M. Modeling complexity: The limits to prediction. CyberGeo 2001, 201. [Google Scholar] [CrossRef]
- Blikstein, P.; Abrahamson, D.; Wilensky, U. Netlogo: Where We Are, Where We’re Going, In the Proceedings of Annual Meeting of Interaction Design & Children, Boulder, CO, USA, 8–10 June, 2005; Eisenberg, M., Eisenberg, A., Eds.; Boulder, CO, USA, 2005. [Google Scholar]
- North, M.J.; Collier, N.T.; Vos, J.R. Experiences creating three implementations of the repast agent modeling toolkit. ACM Trans. Model. Comput. Simul. 2006, 16, 1–25. [Google Scholar] [CrossRef]
- Masson, V. Urban surface modeling and the meso-scale impact of cities. Theor. Applied Climatol. 2006, 84, 35–45. [Google Scholar] [CrossRef]
- Oke, T.R. Towards better scientific communication in urban climate. Theor. Appl. Climatol. 2006, 84, 179–190. [Google Scholar] [CrossRef]
- Kiehl, J.; Hack, J.; Bonan, G.; Boville, B.; Williamson, D.; Rasch, P. The national center for atmospheric research community climate model: Ccm3. J. Clim. 1998, 11, 1131–1149. [Google Scholar] [CrossRef]
- Chen, L.; Debenedetti, P.; Gear, C.; Kevrekidis, I. From molecular dynamics to coarse self-similar solutions: A simple example using equation-free computation. J. Non-Newt. Flu. Mech. 2004, 120, 215–223. [Google Scholar] [CrossRef]
- Erban, R.; Kevrekidis, I.G.; Adalsteinsson, D.; Elston, T.C. Gene regulatory networks: A coarse-grained, equation-free approach to multiscale computation. 2005; arXiv preprint physics/0508112. [Google Scholar]
- G Makeev, A.; G Kevrekidis, I. Equation-free multiscale computations for a lattice-gas model: Coarse-grained bifurcation analysis of the no+ co reaction on pt (100). Chem. Engin. Sci. 2004, 59, 1733–1743. [Google Scholar] [CrossRef]
- Hummer, G.; Kevrekidis, I.G. Coarse molecular dynamics of a peptide fragment: Free energy, kinetics, and long-time dynamics computations. 2002; arXiv preprint physics/0212108. [Google Scholar]
- Daoutidis, P.; Soroush, M.; Kravaris, C. Feedforward/feedback control of multivariable nonlinear processes. AIChE J. 1990, 36, 1471–1484. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Torrens, P.M.; Kevrekidis, Y.; Ghanem, R.; Zou, Y. Simple Urban Simulation Atop Complicated Models: Multi-Scale Equation-Free Computing of Sprawl Using Geographic Automata. Entropy 2013, 15, 2606-2634. https://doi.org/10.3390/e15072606
Torrens PM, Kevrekidis Y, Ghanem R, Zou Y. Simple Urban Simulation Atop Complicated Models: Multi-Scale Equation-Free Computing of Sprawl Using Geographic Automata. Entropy. 2013; 15(7):2606-2634. https://doi.org/10.3390/e15072606
Chicago/Turabian StyleTorrens, Paul M., Yannis Kevrekidis, Roger Ghanem, and Yu Zou. 2013. "Simple Urban Simulation Atop Complicated Models: Multi-Scale Equation-Free Computing of Sprawl Using Geographic Automata" Entropy 15, no. 7: 2606-2634. https://doi.org/10.3390/e15072606