Multi-Scale Analysis Based Ball Bearing Defect Diagnostics Using Mahalanobis Distance and Support Vector Machine
<p>Conceptual illustration of SVM.</p> "> Figure 2
<p>Picture of the bearing fault test rig.</p> "> Figure 3
<p>Diagnostic accuracy with FS and MD evaluations (10% data sets for SVM training).</p> "> Figure 4
<p>Diagnostic accuracy with FS and MD evaluations (20% data sets for SVM training).</p> ">
Abstract
:1. Introduction
2. Entropy and Multi-Scale Analysis
2.1. Sample Entropy
- (1)
- Measure the mean self-similarity value of the pattern of length m, φm(r), where r is the tolerance.
- (2)
- Expand the pattern length m to m+1, and measure the mean value of φm+1(r).
- (3)
2.2. Spectral Entropy
2.3. Permutation Entropy
2.4. Multi-Scale Analysis
2.4.1. Coarse-Grain Process
- (1)
- using the moving average filter to remove the high frequency components.
- (2)
- down-sampling the signal.
2.4.2. Multi-Scale Entropy
2.4.3. Multi-Scale Permutation Entropy
2.4.4. Multi-Scale Root-Mean-Square
2.4.5. Multi-Band Spectrum Entropy
3. Feature Selection
3.1. Fisher Score
3.2. Mahalanobis Distance
4. Support Vector Machine
5. Experimental Validation
Shaft Speed / Defect Level | Rotation Speed (rpm) | |||||||||||
1730 | 1750 | 1772 | 1797 | |||||||||
Diameter of defective hole (mm) | ||||||||||||
Fault Class | 7 | 14 | 21 | 7 | 14 | 21 | 7 | 14 | 21 | 7 | 14 | 21 |
Normal | 237 | 236 | 236 | 119 | ||||||||
Ball | 238 | 237 | 237 | 237 | 237 | 237 | 237 | 237 | 237 | 121 | 119 | |
Inner race | 237 | 236 | 238 | 237 | 238 | 239 | 237 | 186 | 236 | 31 | 119 | |
Outer race (3) | 237 | 236 | 237 | 237 | 236 | 239 | 62 | |||||
Outer race (6) | 238 | 238 | 238 | 237 | 237 | 238 | 237 | 236 | 238 | 119 | 120 | |
Outer race (12) | 236 | 237 | 235 | 237 | 235 | 237 | 63 |
Fifteen Selected Features Through FS Evaluation. | ||||
Classification Result | Actual Class | |||
Normal | Ball | Inner Race | Outer Race | |
Normal | 98.31% | 1.69% | 0.00% | 0.00% |
Ball | 0.06% | 95.04% | 2.70% | 2.21% |
Inner race | 0.00% | 1.25% | 97.73% | 1.02% |
Outer race | 0.00% | 1.58% | 0.41% | 98.02% |
Total of 80 Features Without FS Evaluation | ||||
Classification Result | Actual Class | |||
Normal | Ball | Inner Race | Outer Race | |
Normal | 95.59% | 4.41% | 0.00% | 0.00% |
Ball | 0.05% | 94.42% | 2.30% | 3.23% |
Inner race | 0.00% | 2.71% | 93.73% | 3.55% |
Outer race | 0.00% | 1.78% | 1.00% | 97.22% |
Ten Selected Features Through MD Evaluation | ||||
Classification Result | Actual Class | |||
Normal | Ball | Inner Race | Outer Race | |
Normal | 99.57% | 0.42% | 0.01% | 0.00% |
Ball | 0.00% | 96.86% | 1.49% | 1.65% |
Inner race | 0.00% | 0.85% | 98.33% | 0.82% |
Outer race | 0.00% | 0.93% | 0.26% | 98.81% |
Total of 80 Features Without MD Evaluation | ||||
Classification Result | Actual Class | |||
Normal | Ball | Inner Race | Outer Race | |
Normal | 95.56% | 4.44% | 0.00% | 0.00% |
Ball | 0.05% | 94.47% | 2.21% | 3.27% |
Inner race | 0.00% | 2.63% | 93.83% | 3.54% |
Outer race | 0.00% | 1.78% | 0.99% | 97.22% |
Twenty Selected Features Through FS Evaluation | ||||
Classification Result | Actual Class | |||
Normal | Ball | Inner Race | Outer Race | |
Normal | 98.62% | 1.38% | 0.00% | 0.00% |
Ball | 0.03% | 96.45% | 1.74% | 1.78% |
Inner race | 0.00% | 1.12% | 97.92% | 0.96% |
Outer race | 0.00% | 1.38% | 0.46% | 98.16% |
Total of 80 features without FS evaluation | ||||
Classification Result | Actual Class | |||
Normal | Ball | Inner Race | Outer Race | |
Normal | 98.41% | 1.59% | 0.00% | 0.00% |
Ball | 0.05% | 96.65% | 1.40% | 1.90% |
Inner race | 0.00% | 2.00% | 96.01% | 2.00% |
Outer race | 0.00% | 1.15% | 0.59% | 98.26% |
Ten Selected Features Through MD Evaluation | ||||
Classification Result | Actual class | |||
Normal | Ball | Inner race | Outer race | |
Normal | 99.79% | 0.21% | 0.00% | 0.00% |
Ball | 0.00% | 97.91% | 1.22% | 0.87% |
Inner race | 0.00% | 0.54% | 99.00% | 0.45% |
Outer race | 0.00% | 0.60% | 0.13% | 99.27% |
Total of 80 Features Without MD Evaluation | ||||
Classification Result | Actual class | |||
Normal | Ball | Inner race | Outer race | |
Normal | 98.54% | 1.46% | 0.00% | 0.00% |
Ball | 0.03% | 96.59% | 1.47% | 1.91% |
Inner race | 0.00% | 1.98% | 96.05% | 1.96% |
Outer race | 0.00% | 1.15% | 0.61% | 98.24% |
6. Conclusions
Acknowledgement
References
- Randall, R.B. State of the art in monitoring rotating machinery-Part 1. Sound Vib. 2004, 38, 14–21. [Google Scholar]
- Randall, R.B. State of the art in monitoring rotating machinery-Part 2. Sound Vib. 2004, 38, 10–17. [Google Scholar]
- McFadden, P.D.; Smith, J.D. Vibration monitoring of rolling element bearings by the high-frequency resonance technique—A Review. Tribol. Int. 1984, 17, 3–10. [Google Scholar] [CrossRef]
- McInerny, S.A.; Dai, Y. Basic Vibration signal processing for bearing fault detection. IEEE Trans. Educ. 2003, 46, 149–156. [Google Scholar] [CrossRef]
- Ho, D.; Randall, R.B. Optimization of bearing diagnostic techniques using simulated and actual bearing fault signals. Mech. Syst. Signal. Process. 2000, 14, 763–788. [Google Scholar] [CrossRef]
- Randall, R.B.; Amtoni, J.; Chobsaard, S. The relationship between spectral correlation and envelope analysis in the diagnostics of bearing faults and other cyclostationary machine signals. Mech. Syst. Signal. Process. 2001, 15, 945–962. [Google Scholar] [CrossRef]
- Antoni, J.; Randall, R.B. A stochastic model for simulation and diagnostics of rolling element bearings with localized faults. Trans. ASME J. Vib. Acoust. 2003, 125, 282–289. [Google Scholar] [CrossRef]
- Yang, Y.; Yu, D.; Cheng, J. A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM. Measurement 2007, 40, 943–950. [Google Scholar] [CrossRef]
- Cheng, J.; Yu, D.; Yang, Y. Application of an impulse response wavelet to fault diagnosis of rolling bearings. Mech. Syst. Signal. Process. 2007, 21, 920–929. [Google Scholar]
- Peng, Z.K.; Tse, P.W.; Chu, F.L. A comparison study of improved Hilbert–Huang transform and wavelet transform: Application to fault diagnosis for rolling bearing. Mech. Syst. Signal. Process. 2005, 19, 974–988. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Y.; Zheng, H. Bearing fault detection and diagnosis based on order tracking and Teager-Huang transform. J. Mech. Sci.Technol. 2010, 24, 811–822. [Google Scholar] [CrossRef]
- Saravanan, N.; Kumar Siddabattuni, V.N.S.; Ramachandran, K.I. A comparative study on classification of features by SVM and PSVM extracted using morlet wavelet for fault diagnosis of spur bevel gear box. Expert Syst. Appl. 2008, 35, 1351–1366. [Google Scholar] [CrossRef]
- Saravanan, N.; Ramachandran, K.I. Fault diagnosis of spur bevel gear box using discrete wavelet features and decision tree classification. Expert Syst. Appl. 2009, 36, 9564–9573. [Google Scholar] [CrossRef]
- Yu, D.; Cheng, J.; Yang, Y. Application of EMD method and Hilbert spectrum to the fault diagnosis of roller bearings. Mech. Syst. Signal. Process. 2005, 19, 259–270. [Google Scholar] [CrossRef]
- Wu, T.Y.; Chung, Y.L. Misalignment diagnosis of rotating machinery through vibration analysis via hybrid EEMD and EMD approach. Smart Mater. Struct. 2009, 18, 095004. [Google Scholar] [CrossRef]
- Wu, T.Y.; Chung, Y.L.; Liu, C.H. Looseness diagnosis of rotating machinery via vibration analysis through Hilbert-Huang transform approach. Trans. ASME J. Vib. Acoust. 2010, 132, 031005. [Google Scholar] [CrossRef]
- Wu, T.Y.; Chen, J.C.; Wang, C.C. Characterization of gear faults in variable rotating speed using Hilbert-Huang transform and instantaneous dimensionless frequency normalization. Mech. Syst. Signal. Process. 2012, 30, 103–122. [Google Scholar] [CrossRef]
- Yan, R.; Gao, R.X. Approximate entropy as a diagnosis tool for machine health monitoring. Mech. Syst. Signal. Process. 2007, 21, 824–839. [Google Scholar] [CrossRef]
- Pen, Y.N.; Chen, J.; Li, X.L. Spectral Entropy: A complementary index for rolling element bearing performance degradation assessment. Proc. Inst. Mech. Eng. Part C—J. Mech. Eng. Sci. 2009, 223, 1223–1231. [Google Scholar] [CrossRef]
- Hao, R.; Peng, Z.; Feng, Z.; Chu, F. Application of support vector machine based on pattern spectrum entropy in fault diagnostics of rolling element bearings. Meas. Sci. Technol. 2011, 22, 045708. [Google Scholar] [CrossRef]
- Yu, D.; Yang, Y.; Cheng, J. Application of time frequency entropy method based on Hilbert-Huang transform to gear fault diagnosis. Measurement 2007, 40, 823–830. [Google Scholar] [CrossRef]
- Lei, Y.G.; Zuo, M.J.; He, Z.J.; Zi, Y.Y. A multidimensional hybrid intelligent method for gear fault diagnosis. Expert Syst. Appl. 2010, 37, 1419–1430. [Google Scholar] [CrossRef]
- Costa, M.; Goldberger, A.L.; Peng, C.K. Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett. 2002, 89, 068102–1. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.; Goldberger, A.L.; Peng, C.K. Multiscale entropy analysis of biological signals. Phys. Rev. E. 2005, 71, 021906. [Google Scholar] [CrossRef]
- Zhang, L.; Xiong, G.; Liu, H.; Zou, H.; Guo, W. Bearing fault diagnosis using multi-scale entropy and adaptive Neuro-Fuzzy inference. Expert Syst. Appl. 2010, 37, 6077–6085. [Google Scholar] [CrossRef]
- Zhang, L.; Xiong, G.; Liu, H.; Zou, H.; Guo, W. Applying improved multiscale entropy and support vector machines for bearing health condition identification. Proc. Inst. Mech. Eng. Part C—J. Mech. Eng. Sci. 2010, 224, 1315–1325. [Google Scholar] [CrossRef]
- Lin, J.L.; Liu, J.Y.C.; Li, C.W.; Tsai, L.F.; Chung, H.Y. Motor shaft misalignment detection using multiscale entropy with wavelet denoising. Expert Syst. Appl. 2010, 37, 7200–7204. [Google Scholar] [CrossRef]
- Litak, G.; Syta, A.; Rusinek, R. Dynamical changes during composite milling: Recurrence and multiscale entropy analysis. Int. J. Adv. Manuf. Technol. 2011. [Google Scholar] [CrossRef]
- Wu, S.D.; Wu, P.H.; Wu, C.W.; Ding, J.J.; Wang, C.C. Bearing fault diagnosis based on multiscale permutation entropy and support vector machine. Entropy 2012, 14, 1343–1356. [Google Scholar] [CrossRef]
- Sun, W.X.; Chen, J.; Li, J.Q. Decision tree and PCA-based fault diagnosis of rotating machinery. Mech. Syst. Signal. Process. 2007, 21, 1300–1317. [Google Scholar] [CrossRef]
- Li, Z.X.; Yan, X.P.; Yuan, C.Q.; Peng, Z.X.; Li, L. Virtual prototype and experimental research on gear multi-fault diagnosis using wavelet-autoregressive model and principal component analysis method. Mech. Syst. Signal. Process. 2011, 25, 2589–2607. [Google Scholar] [CrossRef]
- Chen, P.; Toyota, T.; He, Z.J. Automated function generation of symptom parameters and application to fault diagnosis of machinery under variable operating conditions. IEEE Trans. Syst. Man Cybern. Part A—Syst. Hum. 2001, 31, 775–781. [Google Scholar] [CrossRef]
- Kao, W.C.; Hsu, M.C.; Yang, Y.Y. Local contrast enhancement and adaptive feature extraction for illumination-invariant face recognition. Pattern Recogn. 2010, 43, 1736–1747. [Google Scholar] [CrossRef]
- Wu, T.Y.; Hong, H.C.; Chung, Y.L. A looseness identification approach for rotating machinery based on post-processing of ensemble empirical mode decomposition and autoregressive modeling. J. Vib. Control. 2012, 18, 796–807. [Google Scholar] [CrossRef]
- Case western reserve university bearing data center website. Available online: http://www.eecs.case.edu/laboratory/bearing/welcome_overview.htm (accessed on 5 May 2011).
- Shannon, E.C. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423, 623–656. [Google Scholar] [CrossRef]
- Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol.—Heart Circul. Physiol. 2000, 278, H2039–H2049. [Google Scholar]
- Powell, G.E.; Percival, I.C. A spectral entropy method for distinguishing regular and irregular motion of hamiltonian systems. J. Phys. A—Math. Gen. 1979, 12, 2053–2071. [Google Scholar] [CrossRef]
- Pen, Y.N.; Chen, J.; Li, X.L. Spectral Entropy: A complementary index for rolling element bearing performance degradation assessment. Proc. Ins. Mech. Eng. Part C—J. Mech. Eng. Sci. 2009, 223, 1223–1231. [Google Scholar] [CrossRef]
- Bandt, C.; Pompe, B. Permutation entropy: A natural complexity measure for time series. Phys. Rev. Lett. 2002, 88, 174102:1–174102:4. [Google Scholar] [CrossRef]
- Olofsen, E.; Sleigh, J.W.; Dahan, A. permutation entropy of the electroencephalogram: A measure of anaesthetic drug effect. Brit. J. Anaesth. 2008, 101, 810–821. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Cui, S.; Voss, L.J. Using permutation entropy to measure the electroencephalographic effects of sevoflurane. Anesthesiology 2008, 109, 448–456. [Google Scholar] [CrossRef] [PubMed]
- Yan, R.; Liu, Y.; Gao, R.X. Permutation entropy: A nonlinear statistical measure for status characterization of rotary machines. Mech. Syst. Signal. Process. 2012, 29, 474–484. [Google Scholar] [CrossRef]
- Costa, M.; Peng, C.K.; Goldberger, A.L.; Hausdorff, J.M. Multiscale entropy analysis of human gait dynamics. Physica. A 2003, 330, 53–60. [Google Scholar] [CrossRef]
- Aziz, W.; Arif, M. Multiscale permutation entropy of physiological time series. In the 9th International Multitopic Conference, IEEE Inmic, Karachi, Pakistan, 24–25 December, 2005.
- Mahalanobis, P.C. On the generalized distance in statistics. Proc. Natl. Ins. Sci. India. 1936, 2, 49–55. [Google Scholar]
- Vapnik, V.N. Statistical Learning Theory; John Wiley & Sons: New York, NY, USA, 1998. [Google Scholar]
- Hsu, C.W.; Lin, C.J. A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Networ. 2002, 13, 415–425. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Wu, S.-D.; Wu, C.-W.; Wu, T.-Y.; Wang, C.-C. Multi-Scale Analysis Based Ball Bearing Defect Diagnostics Using Mahalanobis Distance and Support Vector Machine. Entropy 2013, 15, 416-433. https://doi.org/10.3390/e15020416
Wu S-D, Wu C-W, Wu T-Y, Wang C-C. Multi-Scale Analysis Based Ball Bearing Defect Diagnostics Using Mahalanobis Distance and Support Vector Machine. Entropy. 2013; 15(2):416-433. https://doi.org/10.3390/e15020416
Chicago/Turabian StyleWu, Shuen-De, Chiu-Wen Wu, Tian-Yau Wu, and Chun-Chieh Wang. 2013. "Multi-Scale Analysis Based Ball Bearing Defect Diagnostics Using Mahalanobis Distance and Support Vector Machine" Entropy 15, no. 2: 416-433. https://doi.org/10.3390/e15020416
APA StyleWu, S. -D., Wu, C. -W., Wu, T. -Y., & Wang, C. -C. (2013). Multi-Scale Analysis Based Ball Bearing Defect Diagnostics Using Mahalanobis Distance and Support Vector Machine. Entropy, 15(2), 416-433. https://doi.org/10.3390/e15020416