A Citizen Science Unmanned Aerial System Data Acquisition Protocol and Deep Learning Techniques for the Automatic Detection and Mapping of Marine Litter Concentrations in the Coastal Zone
"> Figure 1
<p>Flowchart of the proposed methodology.</p> "> Figure 2
<p>Pix4D capture unmanned aerial systems (UAS) mission planning preview.</p> "> Figure 3
<p>Pix4D capture of UAS mission planning preview for Xabelia beach.</p> "> Figure 4
<p>Preview of the annotation process through the Zooniverse project builder platform.</p> "> Figure 5
<p>Visual explanation of the confusion matrix.</p> "> Figure 6
<p>The learning experience of the corresponding models. (<b>A</b>) Training and validation accuracy for each epoch and (<b>B</b>) training and validation loss for each epoch.</p> "> Figure 7
<p>Marine litter (ML) density maps were obtained manually and automatically using deep learning. All maps are depicted from left to right in the following order: (<b>A</b>) manual classification, (<b>B</b>) VGG19, (<b>C</b>) VGG16, (<b>D</b>) Densnet201, (<b>E</b>) Densnet169, and (<b>F</b>) Densnet121.</p> "> Figure 8
<p>Boxplots of the tiles with litter concentration per 100 m<sup>2</sup> difference between the reference values (manual classification) and the model results. The negative values represent overestimation occurrences, and the positive values represent underestimation.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. UAS Data Acquisition Protocol
2.2. Data Acquisition and UAS Survey
2.3. Data Preprocessing
2.4. Data Sources
2.5. Data Annotation
2.6. Deep Learning for ML Recognition
2.6.1. Training and Validation Image-Sets
2.6.2. CNN Training
2.7. Metrics Performance
3. Results and Discussion
3.1. Training
3.2. Generalization Ability
3.3. Density Maps
3.4. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Löhr, A.; Savelli, H.; Beunen, R.; Kalz, M.; Ragas, A.; Van Belleghem, F. Solutions for global marine litter pollution. Curr. Opin. Environ. Sustain. 2017, 28, 90–99. [Google Scholar] [CrossRef] [Green Version]
- Schulz, M.; Clemens, T.; Förster, H.; Harder, T.; Fleet, D.; Gaus, S.; Grave, C.; Flegel, I.; Schrey, E.; Hartwig, E. Statistical analyses of the results of 25 years of beach litter surveys on the south-eastern North Sea coast. Mar. Environ. Res. 2015, 109. [Google Scholar] [CrossRef]
- Vikas, M.; Dwarakish, G.S. Coastal Pollution: A Review. Aquat. Procedia 2015, 4, 381–388. [Google Scholar] [CrossRef]
- Galgani, F. Marine litter, future prospects for research. Front. Mar. Sci. 2015. [Google Scholar] [CrossRef] [Green Version]
- Munari, C.; Corbau, C.; Simeoni, U.; Mistri, M. Marine litter on Mediterranean shores: Analysis of composition, spatial distribution and sources in north-western Adriatic beaches. Waste Manag. 2016, 49, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Ríos, N.; Frias, J.P.G.L.; Rodríguez, Y.; Carriço, R.; Garcia, S.M.; Juliano, M.; Pham, C.K. Spatio-temporal variability of beached macro-litter on remote islands of the North Atlantic. Mar. Pollut. Bull. 2018, 133, 304–311. [Google Scholar] [CrossRef]
- Valavanidis, A.; Vlachogianni, T. Marine litter: Man-made solid waste pollution in the Mediterranean Sea and coastline. Abundance, composition and sources identification. Sci. Adv. Environ. Chem. Toxicol. Ecotoxicol. 2012, 1, 18. [Google Scholar]
- United Nations Environmental Programme (UNEP). Plastic Debris in the Ocean (UNEP Year Book). In UNEP Year Book 2014 Emerging issues Update; UNEP Division of Early Warning and Assessment: Nairobi, Kenya, 2014; ISBN 978-92-807-3381-5. [Google Scholar]
- G20. Annex to G20 Leaders Declaration: G20 Action Plan on Marine Litter; Federal Ministry for Environment, Nature Conservation and Nuclear Safety: Hamburg, Germany, 2017.
- Cicin-Sain, B. Conserve and sustainably use the oceans, seas and marine resources for sustainable development. UN Chron. 2015, 51, 32–33. [Google Scholar] [CrossRef]
- Ferrari, R.; McKinnon, D.; He, H.; Smith, R.; Corke, P.; González-Rivero, M.; Mumby, P.; Upcroft, B. Quantifying Multiscale Habitat Structural Complexity: A Cost-Effective Framework for Underwater 3D Modelling. Remote Sens. 2016, 8, 113. [Google Scholar] [CrossRef] [Green Version]
- Chircop, A.; Coffen-Smout, S.; McConnell, M.L. Report of the United Nations Conference to Support the Implementation of Sustainable Development Goal 14: Conserve and Sustainably Use the Oceans, Seas and Marine Resources for Sustainable Development, 5–9 June 2017. Ocean Yearb. Online 2018, 32, 752–817. [Google Scholar] [CrossRef]
- Morseletto, P. A new framework for policy evaluation: Targets, marine litter, Italy and the Marine Strategy Framework Directive. Mar. Policy 2020, 117, 103956. [Google Scholar] [CrossRef]
- Maes, T.; Perry, J.; Alliji, K.; Clarke, C.; Birchenough, S.N.R. Shades of grey: Marine litter research developments in Europe. Mar. Pollut. Bull. 2019, 146, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Maximenko, N.; Corradi, P.; Law, K.L.; Sebille, E. Van; Garaba, S.P.; Lampitt, R.S.; Galgani, F.; Martinez-Vicente, V.; Goddijn-Murphy, L.; Veiga, J.M.; et al. Towards the integrated marine debris observing system. Front. Mar. Sci. 2019, 6. [Google Scholar] [CrossRef] [Green Version]
- Costanzo, L.G.; Marletta, G.; Alongi, G. Assessment of marine litter in the coralligenous habitat of a marine protected area along the ionian coast of sicily (central mediterranean). J. Mar. Sci. Eng. 2020, 8, 656. [Google Scholar] [CrossRef]
- Painting, S.J.; Collingridge, K.A.; Durand, D.; Grémare, A.; Créach, V.; Arvanitidis, C.; Bernard, G. Marine monitoring in Europe: Is it adequate to address environmental threats and pressures? Ocean Sci. 2020, 16, 235–252. [Google Scholar] [CrossRef] [Green Version]
- Cheshire, A.; Adler, E.; Barbière, J.; Cohen, Y.; Evans, S.; Jarayabhand, S.; Jeftic, L.; Jung, R.-T.; Kinsey, S.; Kusui, E.T.; et al. UNEP/IOC Guidelines on Survey and Monitoring of Marine Litter; UNEP Regional Seas Reports and Studies, No. 186; IOC Technical Series No. 83; United Nations Environment Programme/Intergovernmental Oceanographic Commission, 2009; pp. xii–120. [Google Scholar]
- Husson, E.; Reese, H.; Ecke, F. Combining Spectral Data and a DSM from UAS-Images for Improved Classification of Non-Submerged Aquatic Vegetation. Remote Sens. 2017, 9, 247. [Google Scholar] [CrossRef] [Green Version]
- Veiga, J.M.; Fleet, D.; Kinsey, S.; Nilsson, P.; Vlachogianni, T.; Werner, S.; Galgani, F.; Thompson, R.C.; Dagevos, J.; Gago, J.; et al. Identifying Sources of Marine Litter. MSFD GES TG Marine Litter Thematic Report. In JRC Technical Reports; Publications Office of the European Union: Luxemburg, 2016; ISBN 9789279645228. [Google Scholar]
- Topouzelis, K.; Papakonstantinou, A.; Garaba, S.P. Detection of floating plastics from satellite and unmanned aerial systems (Plastic Litter Project 2018). Int. J. Appl. Earth Obs. Geoinf. 2019, 79, 175–183. [Google Scholar] [CrossRef]
- Gonçalves, G.; Andriolo, U.; Pinto, L.; Duarte, D. Mapping marine litter with Unmanned Aerial Systems: A showcase comparison among manual image screening and machine learning techniques. Mar. Pollut. Bull. 2020, 155, 111158. [Google Scholar] [CrossRef]
- Gonçalves, G.; Andriolo, U.; Gonçalves, L.; Sobral, P.; Bessa, F. Quantifying marine macro litter abundance on a sandy beach using unmanned aerial systems and object-oriented machine learning methods. Remote Sens. 2020, 12, 2599. [Google Scholar] [CrossRef]
- Andriolo, U.; Gonçalves, G.; Bessa, F.; Sobral, P. Mapping marine litter on coastal dunes with unmanned aerial systems: A showcase on the Atlantic Coast. Sci. Total Environ. 2020, 736. [Google Scholar] [CrossRef]
- Benassai, G.; Aucelli, P.; Budillon, G.; De Stefano, M.; Di Luccio, D.; Di Paola, G.; Montella, R.; Mucerino, L.; Sica, M.; Pennetta, M. Rip current evidence by hydrodynamic simulations, bathymetric surveys and UAV observation. Nat. Hazards Earth Syst. Sci. Discuss. 2017, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Bao, Z.; Sha, J.; Li, X.; Hanchiso, T.; Shifaw, E. Monitoring of beach litter by automatic interpretation of unmanned aerial vehicle images using the segmentation threshold method. Mar. Pollut. Bull. 2018, 137, 388–398. [Google Scholar] [CrossRef]
- Haarr, M.L.; Westerveld, L.; Fabres, J.; Iversen, K.R.; Busch, K.E.T. A novel GIS-based tool for predicting coastal litter accumulation and optimising coastal cleanup actions. Mar. Pollut. Bull. 2019, 139, 117–126. [Google Scholar] [CrossRef]
- Topouzelis, K.; Papageorgiou, D.; Karagaitanakis, A.; Papakonstantinou, A.; Ballesteros, M.A. Remote sensing of sea surface artificial floating plastic targets with Sentinel-2 and unmanned aerial systems (plastic litter project 2019). Remote Sens. 2020, 12, 2013. [Google Scholar] [CrossRef]
- Smail, E.A.; DiGiacomo, P.M.; Seeyave, S.; Djavidnia, S.; Celliers, L.; Le Traon, P.Y.; Gault, J.; Escobar-Briones, E.; Plag, H.P.; Pequignet, C.; et al. An introduction to the ‘Oceans and Society: Blue Planet’ initiative. J. Oper. Oceanogr. 2019, 12, S1–S11. [Google Scholar] [CrossRef] [Green Version]
- Papakonstantinou, A.; Topouzelis, K.; Doukari, M.; Andreadis, O. Mapping refugee litters in the eastern coast of Lesvos using UAS, an emerging marine litter problem. Abstr. ICA 2019, 1, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Velegrakis, A.; Andreadis, O.; Papakonstantinou, A.; Manoutsoglou, E.; Doukari, M.; Hasiotis, T.; Topouzelis, K.; Sea, K.A. Preliminary Study on the Emerging Marine Litter Problem Along the Eastern Coast of Lesvos Isl., Greece. In Proceedings of theCommission Internationale pour l’Exploration Scientifique de la Méditerranée (CIESM) Congress, Kiel, Gerrmany, 12–16 September 2016. [Google Scholar]
- Geraeds, M.; van Emmerik, T.; de Vries, R.; bin Ab Razak, M.S. Riverine plastic litter monitoring using Unmanned Aerial Vehicles (UAVs). Remote Sens. 2019, 11, 2045. [Google Scholar] [CrossRef] [Green Version]
- Lo, H.S.; Wong, L.C.; Kwok, S.H.; Lee, Y.K.; Po, B.H.K.; Wong, C.Y.; Tam, N.F.Y.; Cheung, S.G. Field test of beach litter assessment by commercial aerial drone. Mar. Pollut. Bull. 2020, 151, 110823. [Google Scholar] [CrossRef]
- Martin, C.; Parkes, S.; Zhang, Q.; Zhang, X.; McCabe, M.F.; Duarte, C.M. Use of unmanned aerial vehicles for efficient beach litter monitoring. Mar. Pollut. Bull. 2018, 131, 662–673. [Google Scholar] [CrossRef] [Green Version]
- Topouzelis, K.; Papakonstantinou, A. The Use of Unmanned Aerial Systems for Seagrass Mapping. Conf. Pap. 2016, 81100. [Google Scholar]
- Papakonstantinou, A.; Stamati, C.; Topouzelis, K. Comparison of True-Color and Multispectral Unmanned Aerial Systems Imagery for Marine Habitat Mapping Using Object-Based Image Analysis. Remote Sens. 2020, 12, 554. [Google Scholar] [CrossRef] [Green Version]
- Papakonstantinou, A.; Topouzelis, K.; Doukari, M. UAS close range remote sensing for mapping coastal environments. In Proceedings of the Fifth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2017), Paphos, Cyprus, 20–23 March 2017; Papadavid, G., Hadjimitsis, D.G., Michaelides, S., Ambrosia, V., Themistocleous, K., Schreier, G., Eds.; SPIE: Bellingham, WA, USA, 2017; Volume 10444, p. 35. [Google Scholar]
- Doukari, M.; Batsaris, M.; Papakonstantinou, A.; Topouzelis, K. A Protocol for Aerial Survey in Coastal Areas Using UAS. Remote Sens. 2019, 11, 1913. [Google Scholar] [CrossRef] [Green Version]
- Mury, A.; Collin, A.; Houet, T.; Alvarez-Vanhard, E.; James, D. Using multispectral drone imagery for spatially explicit modeling of wave attenuation through a salt marsh meadow. Drones 2020, 4, 25. [Google Scholar] [CrossRef]
- Taddia, Y.; Stecchi, F.; Pellegrinelli, A. Coastal mapping using dji phantom 4 RTK in post-processing kinematic mode. Drones 2020, 4, 9. [Google Scholar] [CrossRef] [Green Version]
- Riihimäki, H.; Luoto, M.; Heiskanen, J. Estimating fractional cover of tundra vegetation at multiple scales using unmanned aerial systems and optical satellite data. Remote Sens. Environ. 2019, 224, 119–132. [Google Scholar] [CrossRef]
- Kershaw, P.J.; Turra, A.; Galgani, F. (Eds.) Guidelines for the monitoring and assessment of plastic litter in the ocean. In GESAMP Reports and Studies; No. 99; IMO/FAO/UNESCO-IOC/UNIDO/WMO/IAEA/UN/UNEP/UNDP/ISA Joint Group of Experts on the Scientific Aspects of Marine Environmental Prote; United Nations Office: Nairobi, Kenya, 2019; 130p. [Google Scholar]
- Deidun, A.; Gauci, A.; Lagorio, S.; Galgani, F. Optimising beached litter monitoring protocols through aerial imagery. Mar. Pollut. Bull. 2018, 131, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow: A system for large-scale machine learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI), Savannah, GA, USA, 2–4 November 2016; pp. 265–283. [Google Scholar]
- Fallati, L.; Polidori, A.; Salvatore, C.; Saponari, L.; Savini, A.; Galli, P. Anthropogenic Marine Debris assessment with Unmanned Aerial Vehicle imagery and deep learning: A case study along the beaches of the Republic of Maldives. Sci. Total Environ. 2019, 693, 133581. [Google Scholar] [CrossRef]
- Gonçalves, G.; Andriolo, U.; Pinto, L.; Bessa, F. Mapping marine litter using UAS on a beach-dune system: A multidisciplinary approach. Sci. Total Environ. 2020, 706, 135742. [Google Scholar] [CrossRef]
- Kylili, K.; Hadjistassou, C.; Artusi, A. An intelligent way for discerning plastics at the shorelines and the seas. Environ. Sci. Pollut. Res. 2020, 27, 42631–42643. [Google Scholar] [CrossRef]
- Kylili, K.; Kyriakides, I.; Artusi, A.; Hadjistassou, C. Identifying floating plastic marine debris using a deep learning approach. Environ. Sci. Pollut. Res. 2019, 26, 17091–17099. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015; pp. 1–14. [Google Scholar]
- Schulz, M.; van Loon, W.; Fleet, D.M.; Baggelaar, P.; van der Meulen, E. OSPAR standard method and software for statistical analysis of beach litter data. Mar. Pollut. Bull. 2017, 122, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Galgani, F.; Hanke, G.; Werner, S.; De Vrees, L. Marine litter within the European Marine Strategy Framework Directive. ICES J. Mar. Sci. 2013, 70, 1055–1064. [Google Scholar] [CrossRef]
- OSPAR. Guideline for Monitoring Marine Litter on the Beaches in the OSPAR Maritime Area, 1.0. ed.; OSPAR Commission: London, UK, 2010; 16p, plus appendices forms and photoguides. [Google Scholar] [CrossRef]
- Haseler, M.; Schernewski, G.; Balciunas, A.; Sabaliauskaite, V. Monitoring methods for large micro- and meso-litter and applications at Baltic beaches. J. Coast. Conserv. 2018, 22, 27–50. [Google Scholar] [CrossRef]
- Rees, G.; Pond, K. Marine litter monitoring programmes-A review of methods with special reference to national surveys. Mar. Pollut. Bull. 1995, 30, 103–108. [Google Scholar] [CrossRef]
- Pix4D Pix4Dcapture. Available online: https://www.pix4d.com/product/pix4dcapture (accessed on 31 October 2020).
- Da-Jiang Innovations Mavic 2 Enterprise Series—DJI. Available online: https://www.dji.com/gr/mavic-2-enterprise?site=brandsite&from=nav (accessed on 11 December 2020).
- Da-Jiang Innovations Phantom 4 Pro V2.0—DJI. Available online: https://www.dji.com/gr/phantom-4-pro-v2?site=brandsite&from=nav (accessed on 11 December 2020).
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef] [Green Version]
- Simpson, R.; Page, K.R.; De Roure, D. Zooniverse: Observing the world’s largest citizen science platform. In WWW 2014 Companion, Proceedings of the 23rd International Conference on World Wide Web, Seoul, Korea, 7–11 April 2014; Association for Computing Machinery: New York, NY, USA; pp. 1049–1054. [CrossRef]
- Cox, J.; Oh, E.Y.; Simmons, B.; Lintott, C.; Masters, K.; Greenhill, A.; Graham, G.; Holmes, K. Defining and Measuring Success in Online Citizen Science: A Case Study of Zooniverse Projects. Comput. Sci. Eng. 2015, 17, 28–41. [Google Scholar] [CrossRef]
- Fortson, L.; Masters, K.; Nichol, R.; Borne, K.; Edmondson, E.; Lintott, C.; Raddick, J.; Schawinski, K.; Wallin, J. Galaxy Zoo: Morphological Classification and Citizen Science. In Machine Learning and Data Mining for Astronomy; Michael, J., Way, J.D., Scargle, K.M., Ali, A.N.S., Eds.; CRC Press; Taylor & Francis Group: Cleveland, OH, USA, 2012; pp. 213–236. [Google Scholar]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269. [Google Scholar] [CrossRef] [Green Version]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of the Advances in Neural Information Processing Systems; Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q., Eds.; Curran Associates, Inc.: Lake Tahoe, NV, USA, 2012; Volume 25, pp. 1097–1105. [Google Scholar]
- Duarte, D.; Andriolo, U.; Gonçalves, G. Addressing the class imbalance problem in the automatic image classification of coastal litter from orthophotos derived from uas imagery. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 5, 439–445. [Google Scholar] [CrossRef]
- Buda, M.; Maki, A.; Mazurowski, M.A. A systematic study of the class imbalance problem in convolutional neural networks. Neural Netw. 2018, 106, 249–259. [Google Scholar] [CrossRef] [Green Version]
- Kingma, D.P.; Ba, J.L. Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference on Learning Representations. ICLR 2015, San Diego, CA, USA, 7–9 May 2015; pp. 1–15. [Google Scholar]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv 2016, arXiv:1603.04467. [Google Scholar]
- François, C. Keras: The Python Deep Learning Library; Software Available from Keras.io. Available online: https://Keras.io (accessed on 10 December 2020).
- Corporation, N. CUDA Zone. Available online: https://developer.nvidia.com/cuda-zone (accessed on 10 December 2020).
- Annoni, A.; Bernard, L.; Lillethun, A.; Ihde, J.; Gallego, J.; Rives, M.; Sommer, E.; Poelman, H.; Condé, S.; Greaves, M.; et al. Short Proceedings of the 1st European Workshop on Reference Grids; JRC-Institute for Environment and Sustainability: Ispra, Italy.
- Xanthos, D.; Walker, T.R. International policies to reduce plastic marine pollution from single-use plastics (plastic bags and microbeads): A review. Mar. Pollut. Bull. 2017, 118, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Nazerdeylami, A.; Majidi, B.; Movaghar, A. Autonomous litter surveying and human activity monitoring for governance intelligence in coastal eco-cyber-physical systems. Ocean Coast. Manag. 2021, 200, 105478. [Google Scholar] [CrossRef]
- Acosta, J.; Allee, R.J.; Althaus, F.; Alvarez, G.; Amblas, D.; Anderson, T.J.; Archambault, P.; Armstrong, R.A.; Bäck, S.; Baker, E.K.; et al. Contributors. In Seafloor Geomorphology as Benthic Habitat; Harris, P.T., Baker, E.K., Eds.; Elsevier: London, UK, 2012; pp. xxxi–xlv. ISBN 978-0-12-385140-6. [Google Scholar]
- Papachristopoulou, I.; Filippides, A.; Fakiris, E.; Papatheodorou, G. Vessel-based photographic assessment of beach litter in remote coasts. A wide scale application in Saronikos Gulf, Greece. Mar. Pollut. Bull. 2020, 150, 110684. [Google Scholar] [CrossRef] [PubMed]
Dataset | Raw Images | 512 × 512 Tiles |
---|---|---|
Beach A | 231 | 3834 |
Beach B | 254 | 11,624 |
Beach C | 499 | 11,611 |
Beach D | 122 | 490 |
Beach E | 869 | 3234 |
Total tiles | 1975 | 30,793 |
Dataset | Litter Tiles | No Litter Tiles |
---|---|---|
Beach A | 1301 | 2533 |
Beach B | 4477 | 7147 |
Beach C | 672 | 10,939 |
Beach D | 104 | 386 |
Beach E | 1116 | 2118 |
Total tiles | 7670 | 23,123 |
Dataset | Litter | No Litter | Total |
---|---|---|---|
Training images | 6138 | 6138 | 12,276 |
Validation images | 1532 | 1532 | 3064 |
Total images | 7670 | 7670 | 15,340 |
Model | TP | FP | FN | TN | Precision | Recall | f-Score | Accuracy |
---|---|---|---|---|---|---|---|---|
VGG16 | 2547 | 864 | 1474 | 2535 | 0.7467 | 0.6334 | 0.6854 | 0.6849 |
VGG19 | 2850 | 561 | 1101 | 2908 | 0.8355 | 0.7213 | 0.7742 | 0.7760 |
DenseNet121 | 566 | 2845 | 22 | 3987 | 0.1659 | 0.9625 | 0.2830 | 0.6136 |
DenseNet169 | 525 | 2886 | 11 | 3998 | 0.1539 | 0.9794 | 0.2660 | 0.6095 |
DenseNet201 | 590 | 2821 | 39 | 3970 | 0.1729 | 0.9379 | 0.2920 | 0.6145 |
Metric | VGG19 | VGG16 | DenseNet201 | DenseNet169 | DenseNet121 |
---|---|---|---|---|---|
MAE | 1.39 | 1.92 | 4.18 | 4.34 | 4.31 |
RMSE | 1.92 | 2.69 | 5.64 | 5.87 | 5.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papakonstantinou, A.; Batsaris, M.; Spondylidis, S.; Topouzelis, K. A Citizen Science Unmanned Aerial System Data Acquisition Protocol and Deep Learning Techniques for the Automatic Detection and Mapping of Marine Litter Concentrations in the Coastal Zone. Drones 2021, 5, 6. https://doi.org/10.3390/drones5010006
Papakonstantinou A, Batsaris M, Spondylidis S, Topouzelis K. A Citizen Science Unmanned Aerial System Data Acquisition Protocol and Deep Learning Techniques for the Automatic Detection and Mapping of Marine Litter Concentrations in the Coastal Zone. Drones. 2021; 5(1):6. https://doi.org/10.3390/drones5010006
Chicago/Turabian StylePapakonstantinou, Apostolos, Marios Batsaris, Spyros Spondylidis, and Konstantinos Topouzelis. 2021. "A Citizen Science Unmanned Aerial System Data Acquisition Protocol and Deep Learning Techniques for the Automatic Detection and Mapping of Marine Litter Concentrations in the Coastal Zone" Drones 5, no. 1: 6. https://doi.org/10.3390/drones5010006
APA StylePapakonstantinou, A., Batsaris, M., Spondylidis, S., & Topouzelis, K. (2021). A Citizen Science Unmanned Aerial System Data Acquisition Protocol and Deep Learning Techniques for the Automatic Detection and Mapping of Marine Litter Concentrations in the Coastal Zone. Drones, 5(1), 6. https://doi.org/10.3390/drones5010006