We Are Also Metabolites: Towards Understanding the Composition of Sweat on Fingertips via Hyperspectral Imaging
Abstract
:1. Introduction
2. Analysis of Sweat Samples from Fingerprints
2.1. Use of Sweat Metabolites in Forensics
2.2. Use of Metabolites for Coronary Heart Disease Detection
3. Exploiting Sweat Metabolites as a Future Biometric Modality
4. Analyzing Biochemical Content through Imaging: Where Are We?
5. Recent Technologies Using Sweat Metabolites
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leslie, D. Understanding bias in facial recognition technologies. arXiv 2020, arXiv:2010.07023. [Google Scholar] [CrossRef]
- Marasco, E. Biases in fingerprint recognition systems: Where are we at? In Proceedings of the IEEE 10th International Conference on Biometrics Theory, Applications and Systems (BTAS), Tampa, FL, USA, 23–26 September 2019; pp. 1–5. [Google Scholar]
- Marasco, E.; Ross, A. A survey on antispoofing schemes for fingerprint recognition systems. ACM Comput. Surv. (CSUR) 2014, 47, 1–36. [Google Scholar] [CrossRef]
- Sousedik, C.; Busch, C. Presentation attack detection methods for fingerprint recognition systems: A survey. IET Biom. 2014, 3, 219–233. [Google Scholar] [CrossRef] [Green Version]
- Marcel, S.; Nixon, M.S.; Fierrez, J.; Evans, N. Handbook of Biometric Anti-Spoofing: Presentation Attack Detection; Springer: Berlin/Heidelberg, Germany, 2019; Volume 2. [Google Scholar]
- Grother, P.J.; Ngan, M.L.; Hanaoka, K.K. Face Recognition Vendor Test Part 3: Demographic Effects; NIST Interagency/Internal Report (NISTIR); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2019.
- Garcia, R.V.; Wandzik, L.; Grabner, L.; Krueger, J. The harms of demographic bias in deep face recognition research. In Proceedings of the IAPR International Conference on Biometrics (ICB), Crete, Greec, 4–7 June 2019; pp. 1–6. [Google Scholar]
- Listek, V. DEFCON: Fooling Biometric Sensors Using 3D Printed Fake Fingerprints. 2020. Available online: https://3dprint.com/271540/d-defcon-fooling-biometric-sensors-using-3d-printed-fake-fingerprints/ (accessed on 17 May 2023).
- Jadoon, S.; Karim, S.; Akram, M.R.; Kalsoom Khan, A.; Zia, M.A.; Siddiqi, A.R.; Murtaza, G. Recent developments in sweat analysis and its applications. Int. J. Anal. Chem. 2015, 2015, 164974. [Google Scholar] [CrossRef] [Green Version]
- Hair, M.E.; Mathis, A.I.; Brunelle, E.K.; Halámkovrá, L.; Halámek, J. Metabolite biometrics for the differentiation of individuals. Anal. Chem. 2018, 90, 5322–5328. [Google Scholar] [CrossRef]
- Huynh, C.; Brunelle, E.; Halámková, L.; Agudelo, J.; Halámek, J. Forensic Identification of Gender From Fingerprints. Anal. Chem. 2015, 87, 11531–11536. [Google Scholar] [CrossRef]
- Juniper, K.; Stewart, J.R.; DeVaney, G.T.; Smith, T.J. Fingertip sweat-gland activity and saliva secretion as indices of anticholinergic drug effect. Am. J. Dig. Dis. 1964, 9, 31–42. [Google Scholar] [CrossRef]
- Jelly, R.; Patton, E.L.; Lennard, C.; Lewis, S.W.; Lim, K.F. The detection of latent fingermarks on porous surfaces using amino acid sensitive reagents: A review. Anal. Chim. Acta 2009, 652, 128–142. [Google Scholar] [CrossRef] [Green Version]
- Baker, L.B. Physiology of Sweat Gland Function: The Roles of Sweating and Sweat Composition in Human Health. Temperature 2019, 6, 211–259. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.; Chen, J. Non-intrusive fingerprints extraction from hyperspectral imagery. In Proceedings of the 2018 26th European Signal Processing Conference (EUSIPCO), Rome, Italy, 3–7 September 2018; pp. 1432–1436. [Google Scholar]
- Bartick, E.; Schwartz, R.; Bhargava, R.; Schaeberle, M.; Fernandez, D.; Levin, I. Spectrochemical analysis and hyperspectral imaging of latent fingerprints. In Proceedings of the 16th Meeting of the International Association of Forensic Sciences, Montpellier, France, 2–7 September 2002; Volume 7, pp. 61–64. [Google Scholar]
- Hooton, K.; Li, L. Non occlusive sweat collection combined with chemical isotope labeling LC–MS for human sweat metabolomics and mapping the sweat metabolomes at different skin locations. Anal. Chem. 2017, 89, 7847–7851. [Google Scholar] [CrossRef] [Green Version]
- Meinke, M.; Gersonde, I.; Friebel, M.; Helfmann, J.; Müller, G. Chemometric determination of blood parameters using visible–near-infrared spectra. Appl. Spectrosc. 2005, 59, 826–835. [Google Scholar] [CrossRef]
- Baker, L.B.; Wolfe, A.S. Physiological Mechanisms Determining Eccrine Sweat Composition. Eur. J. Appl. Physiol. 2020, 120, 719–752. [Google Scholar] [CrossRef] [Green Version]
- Hazarika, P.; Jickells, S.M.; Wolff, K.; Russell, D.A. Imaging of latent fingerprints through the detection of drugs and metabolites. Angew. Chem. Int. Ed. 2008, 47, 10167–10170. [Google Scholar] [CrossRef]
- Hazarika, P.; Jickells, S.M.; Russell, D.A. Rapid detection of drug metabolites in latent fingermarks. Analyst 2009, 134, 93–96. [Google Scholar] [CrossRef]
- Cavus, E.; Karakas, M.; Ojeda, F.M.; Kontto, J.; Veronesi, G.; Ferrario, M.M.; Linneberg, A.; Jørgensen, T.; Meisinger, C.; Thorand, B.; et al. Association of circulating metabolites with risk of coronary heart disease in a European population: Results from the Biomarkers for Cardiovascular Risk Assessment in Europe (BiomarCaRE) Consortium. JAMA Cardiol. 2019, 4, 1270–1279. [Google Scholar] [CrossRef]
- Heather, L.C.; Wang, X.; West, J.A.; Griffin, J.L. A practical guide to metabolomic profiling as a discovery tool for human heart disease. J. Mol. Cell. Cardiol. 2013, 55, 2–11. [Google Scholar] [CrossRef]
- Főrstrőm, L.; Goldyne, M.E.; Winkelmann, R. Work in progress: Prostaglandin activity in human eccrine sweat. Prostaglandins 1974, 7, 459–464. [Google Scholar] [CrossRef]
- Prompt, C.A.; Quinto, P.M.; Kleeman, C.R. High concentrations of sweat calcium, magnesium and phosphate in chronic renal failure. Nephron 1978, 20, 4–9. [Google Scholar] [CrossRef]
- Agudelo, J.; Privman, V.; Halámek, J. Promises and Challenges in Continuous Tracking Utilizing Amino Acids in Skin Secretions for Active Multi-Factor Biometric Authentication for Cybersecurity. ChemPhysChem 2017, 18, 1714–1720. [Google Scholar] [CrossRef] [Green Version]
- Devor, A.; Sakadžić, S.; Srinivasan, V.J.; Yaseen, M.A.; Nizar, K.; Saisan, P.A.; Tian, P.; Dale, A.M.; Vinogradov, S.A.; Franceschini, M.A.; et al. Frontiers in optical imaging of cerebral blood flow and metabolism. J. Cereb. Blood Flow Metab. 2012, 32, 1259–1276. [Google Scholar] [CrossRef]
- Lee, H.H.; Cho, S.M.J.; Lee, H.; Baek, J.; Bae, J.H.; Chung, W.J.; Kim, H.C. Korea heart disease fact sheet 2020: Analysis of nationwide data. Korean Circ. J. 2021, 51, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Bomb, R.; Kumar, S.; Chockalingam, A. Coronary artery disease detection-limitations of stress testing in left ventricular dysfunction. World J. Cardiol. 2017, 9, 304. [Google Scholar] [CrossRef] [PubMed]
- Liappis, N.; Hungerland, H. The trace amino acid pattern in human eccrine sweat. Clin. Chim. Acta 1973, 48, 233–236. [Google Scholar] [CrossRef] [PubMed]
- Heinonen, M.; Shen, H.; Zamboni, N.; Rousu, J. Metabolite Identification and Molecular Fingerprint Prediction Through Machine Learning. Bioinformatics 2012, 28, 2333–2341. [Google Scholar] [CrossRef] [Green Version]
- He, Q.; Wang, R.K. Analysis of Skin Morphological Features and Real-Time Monitoring Using Snapshot Hyperspectral Imaging. Biomed. Opt. Express 2019, 10, 5625–5638. [Google Scholar] [CrossRef]
- Lu, G.; Fei, B. Medical Hyperspectral Imaging: A Review. J. Biomed. Opt. 2014, 19, 010901. [Google Scholar] [CrossRef]
- Lowe, A.; Harrison, N.; French, A.P. Hyperspectral Image Analysis Techniques for the Detection and Classification of the Early Onset of Plant Disease and Stress. Plant Methods 2017, 13, 1–12. [Google Scholar] [CrossRef]
- McGoldrick, L.K.; Halámek, J. Recent Advances in Noninvasive Biosensors for Forensics, Biometrics, and Cybersecurity. Sensors 2020, 20, 5974. [Google Scholar] [CrossRef]
- Akhter, N.; Tharewal, S.; Kale, V.; Bhalerao, A.; Kale, K. Heart-based biometrics and possible use of heart rate variability in biometric recognition systems. Adv. Comput. Syst. Secur. 2016, 1, 15–29. [Google Scholar]
- Tome, P.; Vanoni, M.; Marcel, S. On the vulnerability of finger vein recognition to spoofing. In Proceedings of the 2014 International Conference of the Biometrics Special Interest Group (BIOSIG), Darmstadt, Germany, 10–12 September 2014; pp. 1–10. [Google Scholar]
- Roggan, A.; Friebel, M.; Dörschel, K.; Hahn, A.; Mueller, G.J. Optical properties of circulating human blood in the wavelength range 400–2500 nm. J. Biomed. Opt. 1999, 4, 36–46. [Google Scholar] [CrossRef] [Green Version]
- Friebel, M.; Helfmann, J.; Müller, G.; Meinke, M. Influence of shear rate on the optical properties of human blood in the spectral range 250 to 1100 nm. J. Biomed. Opt. 2007, 12, 054005. [Google Scholar] [CrossRef] [Green Version]
- Godbole, A.; Grosz, S.A.; Nandakumar, K.; Jain, A.K. On demographic bias in fingerprint recognition. In Proceedings of the IEEE International Joint Conference on Biometrics (IJCB), Abu Dhabi, United Arab Emirates, 10–13 October 2022; pp. 1–10. [Google Scholar]
- Lewis, T. Sweaty Hands? New Fingerprinting Method Takes Pore Prints. 2014. Available online: https://www.livescience.com/45227-new-fingerprinting-method-takes-pore-prints.html#:~:text=Criminals%20might%20not%20get%20away,with%20tiny%20droplets%20of%20water (accessed on 17 May 2023).
- Marasco, E.; Tao, Y. Mitigating the Impact of Hand Sanitizer on the Spectral Signature of Finger Hypercubes. In Proceedings of the IEEE International Joint Conference on Biometrics (IJCB), Abu Dhabi, United Arab Emirates, 10–13 October 2022; pp. 1–6. [Google Scholar]
- Sumanth, S.; Marasco, E. A Novel Demographic-based Time-Series Database of Finger Hypercubes before and after Hand Sanitization. In Proceedings of the 2022 26th International Conference on Pattern Recognition (ICPR), Montreal, QC, Canada, 21–15 August 2022. [Google Scholar]
- Komkova, M.A.; Eliseev, A.A.; Poyarkov, A.A.; Daboss, E.V.; Evdokimov, P.V.; Eliseev, A.A.; Karyakin, A.A. Simultaneous monitoring of sweat lactate content and sweat secretion rate by wearable remote biosensors. Biosens. Bioelectron. 2022, 202, 113970. [Google Scholar] [CrossRef]
- Yang, Q.; Rosati, G.; Abarintos, V.; Aroca, M.A.; Osma, J.F.; Merkoçi, A. Wearable and fully printed microfluidic nanosensor for sweat rate, conductivity, and copper detection with healthcare applications. Biosens. Bioelectron. 2022, 202, 114005. [Google Scholar] [CrossRef]
- Laochai, T.; Yukird, J.; Promphet, N.; Qin, J.; Chailapakul, O.; Rodthongkum, N. Non-invasive electrochemical immunosensor for sweat cortisol based on L-cys/AuNPs/MXene modified thread electrode. Biosens. Bioelectron. 2022, 203, 114039. [Google Scholar] [CrossRef]
- Wang, M.; Yang, Y.; Min, J.; Song, Y.; Tu, J.; Mukasa, D.; Ye, C.; Xu, C.; Heflin, N.; McCune, J.S.; et al. A wearable electrochemical biosensor for the monitoring of metabolites and nutrients. Nat. Biomed. Eng. 2022, 6, 1225–1235. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marasco, E.; Ricanek, K.; Le, H. We Are Also Metabolites: Towards Understanding the Composition of Sweat on Fingertips via Hyperspectral Imaging. Digital 2023, 3, 137-145. https://doi.org/10.3390/digital3020010
Marasco E, Ricanek K, Le H. We Are Also Metabolites: Towards Understanding the Composition of Sweat on Fingertips via Hyperspectral Imaging. Digital. 2023; 3(2):137-145. https://doi.org/10.3390/digital3020010
Chicago/Turabian StyleMarasco, Emanuela, Karl Ricanek, and Huy Le. 2023. "We Are Also Metabolites: Towards Understanding the Composition of Sweat on Fingertips via Hyperspectral Imaging" Digital 3, no. 2: 137-145. https://doi.org/10.3390/digital3020010