Radiomic Analysis of Magnetic Resonance Imaging for Breast Cancer with TP53 Mutation: A Single Center Study
<p>Radiomics work-flow of the study. (<b>A</b>) Substraction images were loaded. (<b>B</b>) Tumor area was segmented semi-automatically. (<b>C</b>) Radiomic features were extracted using radiomics module. (<b>D</b>) Logistic regression using radiomics features. (<b>E</b>) <span class="html-italic">TP53</span> mutations were predicted using ROC curve analysis.</p> "> Figure 2
<p>Flow-diagram of the patient selection process.</p> "> Figure 3
<p>Mutational profiles of the tumors shown by Oncoprint.</p> "> Figure 4
<p>Three-dimensional views of the segmented tumors with <span class="html-italic">TP53</span> mutations.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Next Generation Sequencing Procedures
2.3. Magnetic Resonance Imaging Acquisition and Tumor Segmentation
2.4. Radiomic Feature Extraction
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics
BMI, Body Mass Index
3.2. Association Between Genetic Alterations and Radiomic Features
3.3. Prediction of Genetic Alterations by Radiomic Features
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AUC | Area Under the Curve |
DICOM | Digital Imaging and Communication in Medicine |
GLCM | Gray Level Co-occurrence Matrix |
GLDM | Gray Level Dependence Matrix |
GLRLM | Gray Level Run Length Matrix |
GLSZM | Gray Level Size Zone Matrix |
HER2 | Human epidermal growth receptor 2 |
LASSO | Least Absolute Shrinkage and Selection Operator |
MRI | Magnetic Resonance Imaging |
NGS | Next Generation Sequencing |
NGTDM | Neighboring Gray Tone Difference Matrix |
PACS | Picture Archiving and Communication System |
ROC | Receiver Operating Characteristic |
References
- Filho, A.M.; Laversanne, M.; Ferlay, J.; Colombet, M.; Pineros, M.; Znaor, A.; Parkin, D.M.; Soerjomataram, I.; Bray, F. The GLOBOCAN 2022 cancer estimates: Data sources, methods, and a snappshot of the cancer burden worldwide. Int. J. Cancer 2024, 156, 1336–1346. [Google Scholar] [CrossRef] [PubMed]
- Giaquinto, A.N.; Sung, H.; Newman, L.A.; Freedman, R.A.; Smith, R.A.; Star, J.; Jemal, A.; Siegel, R.L. Breast cancer statistics 2024. CA Cancer J. Clin. 2024, 74, 477–495. [Google Scholar] [CrossRef] [PubMed]
- Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 2012, 490, 61–70. [Google Scholar] [CrossRef]
- Wallden, B.; Storhoff, J.; Nielsen, T.; Dowidar, N.; Schaper, C.; Ferree, S.; Liu, S.; Leung, S.; Geiss, G.; Snider, J.; et al. Development and verification of the PAM50-based Prosigna breast cancer gene signature assay. BMC Med. Genom. 2015, 8, 54. [Google Scholar] [CrossRef]
- Dobruch-Sobczak, K.; Gumowska, M.; Mączewska, J.; Kolasińska-Ćwikła, A.; Guzik, P. Immunohistochemical subtypes of the breast cancer in the ultrasound and clinical aspect–literature review. J. Ultrason. 2022, 22, 93–99. [Google Scholar] [CrossRef]
- Gouda, M.A.; Nelson, B.E.; Buschhorn, L.; Wahida, A.; Subbiah, V. Tumor-Agnostic Precision Medicine from the AACR GENIE Database: Clinical Implications. Clin. Cancer Res. 2023, 29, 2753–2760. [Google Scholar] [CrossRef]
- Subbiah, V.; Gouda, M.A.; Ryll, B.; Burris, H.A.; Kurzrock, R. The evolving landscape of tissue-agnostic therapies in precision oncology. CA Cancer J. Clin. 2024, 74, 433–452. [Google Scholar] [CrossRef]
- Zhu, Y.X.; Zhu, X.D.; Wei, X.W.; Tang, C.J.; Zhang, W.W. HER2-targeted therapies in gastric cancer. Biochim. Biophys. Acta (BBA) Rev. Cancer 2021, 1876, 188549. [Google Scholar] [CrossRef]
- ten Haaft, B.H.E.A.; Pedregal, M.; Prato, J.; Klümpen, H.J.; Moreno, V.; Lamarca, A. Revolutionizing anti-HER2 therapies for extrahepatic cholangiocarcinoma and gallbladder cancer: Current advancements and future perspectives. Eur. J. Cancer 2024, 199, 113564. [Google Scholar] [CrossRef]
- Filippini, D.M.; Pagani, R.; Tober, N.; Lorini, L.; Riefolo, M.; Molinari, G.; Burato, A.; Alfieri, S.; Bossi, P.; Presutti, L. HER2-targeted therapies for salivary gland cancers. Oral. Oncol. 2024, 148, 106612. [Google Scholar] [CrossRef]
- Kato, S.; Kim, K.H.; Lim, H.J.; Boichard, A.; Nikanjam, M.; Weihe, E.; Kuo, D.J.; Eskander, R.N.; Goodman, A.; Galanina, N.; et al. Real-world data from a molecular tumor board demonstrates improved outcomes with a precision N-of-One strategy. Nat. Commun. 2020, 11, 4965. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.J.; Hwang, Y.S.; Kim, J.; Ahn, S.H.; Son, B.H.; Kim, H.J.; Ko, B.S.; Kim, J.; Chung, I.Y.; Lee, J.W.; et al. A nomogram for predicting probability of low risk of MammaPrint results in women with clinically high-risk breast cancer. Sci. Rep. 2021, 11, 23509. [Google Scholar] [CrossRef] [PubMed]
- Bodalal, Z.; Trebeschi, S.; Nguyen-Kim, T.D.L.; Schats, W.; Beets-Tan, R. Radiogenomics: Bridging imaging and genomics. Abdom. Radiol. 2019, 44, 1960–1984. [Google Scholar] [CrossRef]
- Avanzo, M.; Stancanello, J.; Pirrone, G.; Sartor, G. Radiomics and deep learning in lung cancer. Strahlenther. Onkol. 2020, 196, 879–887. [Google Scholar] [CrossRef]
- Beig, N.; Bera, K.; Tiwari, P. Introduction to radiomics and radiogenomics in neuro-oncology: Implications and challenges. Neurooncol. Adv. 2020, 2, iv3–iv14. [Google Scholar] [CrossRef]
- Park, J.H.; Kwon, M.J.; Seo, J.; Kim, H.Y.; Min, S.K.; Kim, L.S. Somatic Mutations of TP53 Identified by Targeted Next-Generation Sequencing Are Poor Prognostic Factors for Primary Operable Breast Cancer: A Single- Center Study. J. Breast Cancer 2022, 25, 379–386. [Google Scholar] [CrossRef]
- Mandrekar, J.N. Receiver operating characteristic curve in diagnostic test assessment. J. Thorac. Oncol. 2010, 5, 1315–1316. [Google Scholar] [CrossRef]
- Moon, W.K.; Chen, H.H.; Shin, S.U.; Han, W.; Chang, R.F. Evaluation of TP53/PIK3CA mutations using texture and morphology analysis on breast MRI. Magn. Reson. Imaging 2019, 63, 60–69. [Google Scholar] [CrossRef]
- Sun, K.; Zhu, H.; Chai, W.M.; Yan, F.H. TP53 Mutation Estimation Based on MRI Radiomics Analysis for Breast Cancer. J. Magn. Reson. Imaging 2023, 57, 1095–1103. [Google Scholar] [CrossRef]
- Olivier, M.; Langerod, A.; Carrieri, P.; Bergh, J.; Klaar, S.; Eyfjord, J.; Theillet, C.; Rodriguez, C.; Lidereau, R.; Bieche, I.; et al. The clinical value of somatic TP53 gene mutations in 1,794 patients with breast cancer. Clin. Cancer Res. 2006, 12, 1157–1167. [Google Scholar] [CrossRef]
- Langerod, A.; Zhao, H.; Borgan, O.; Nesland, J.M.; Bukholm, I.R.; Ikdahl, T.; Karesen, R.; Borresen-Dale, A.L.; Jeffrey, S.S. TP53 mutation status and gene expression profiles are powerful prognostic markers of breast cancer. Breast Cancer Res. 2007, 9, R30. [Google Scholar] [CrossRef] [PubMed]
- Coradini, D.; Biganzoli, E.; Ardoino, I.; Ambrogi, F.; Boracchi, P.; Demicheli, R.; Daidone, M.G.; Moliterni, A. p53 status identifies triple-negative breast cancer patients who do not respond to adjuvant chemotherapy. Breast 2015, 24, 294–297. [Google Scholar] [CrossRef] [PubMed]
- Silwal-Pandit, L.; Vollan, H.K.M.; Chin, S.F.; Rueda, O.M.; McKinney, S.; Osako, T.; Quigley, D.A.; Kristensen, V.N.; Aparicio, S.; Borresen-Dale, A.L.; et al. TP53 Mutation Spectrum in Breast Cancer Is Subtype Specific and Has Distinct Prognostic Relevance. Clin. Cancer Res. 2014, 20, 3569–3580. [Google Scholar] [CrossRef] [PubMed]
- Andre, F.; Ismaila, N.; Allison, K.H.; Barlow, W.E.; Collyar, D.E.; Damodaran, S.; Henry, N.L.; Jhaveri, K.; Kalinsky, K.; Kuderer, N.M.; et al. Biomarkers for Adjuvant Endocrine and Chemotherapy in Early-Stage Breast Cancer: ASCO Guideline Update. J. Clin. Oncol. 2022, 40, 1816–1837. [Google Scholar] [CrossRef]
- Tuval, A.; Strandgren, C.; Heldin, A.; Palomar-Siles, M.; Wiman, K.G. Pharmacological reactivation of p53 in the era of precision anticancer medicine. Nat. Rev. Clin. Oncol. 2024, 21, 106–120. [Google Scholar] [CrossRef]
- Glaviano, A.; Foo, A.S.C.; Lam, H.Y.; Yap, K.C.H.; Jacot, W.; Jones, R.H.; Eng, H.; Nair, M.G.; Makvandi, P.; Geoerger, B.; et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol. Cancer 2023, 22, 138. [Google Scholar] [CrossRef]
- Reinhardt, K.; Stückrath, K.; Hartung, C.; Kaufhold, S.; Uleer, C.; Hanf, V.; Lantzsch, T.; Peschel, S.; John, J.; Pöhler, M.; et al. PIK3CA-mutations in breast cancer. Breast Cancer Res. Treat. 2022, 196, 483–493. [Google Scholar] [CrossRef]
- Elfgen, C.; Reeve, K.; Moskovszky, L.; Güth, U.; Bjelic-Radisic, V.; Fleisch, M.; Tausch, C.; Varga, Z. Prognostic impact of PIK3CA protein expression in triple negative breast cancer and its subtypes. J. Cancer Res. Clin. 2019, 145, 2051–2059. [Google Scholar] [CrossRef]
- Andre, F.; Ciruelos, E.M.; Juric, D.; Loibl, S.; Campone, M.; Mayer, I.A.; Rubovszky, G.; Yamashita, T.; Kaufman, B.; Lu, Y.S.; et al. Alpelisib plus fulvestrant for PIK3CA-mutated, hormone receptor-positive, human epidermal growth factor receptor-2-negative advanced breast cancer: Final overall survival results from SOLAR-1. Ann. Oncol. 2021, 32, 208–217. [Google Scholar] [CrossRef]
- Turner, N.C.; Oliveira, M.; Howell, S.J.; Dalenc, F.; Cortes, J.; Gomez Moreno, H.L.; Hu, X.; Jhaveri, K.; Krivorotko, P.; Loibl, S.; et al. Capivasertib in Hormone Receptor-Positive Advanced Breast Cancer. N. Engl. J. Med. 2023, 388, 2058–2070. [Google Scholar] [CrossRef]
- Arun, B.; Couch, F.J.; Abraham, J.; Tung, N.; Fasching, P.A. BRCA-mutated breast cancer: The unmet need, challenges and therapeutic benefits of genetic testing. Br. J. Cancer 2024, 131, 1400–1414. [Google Scholar] [CrossRef] [PubMed]
- Ha, S.M.; Chae, E.Y.; Cha, J.H.; Kim, H.H.; Shin, H.J.; Choi, W.J. Association of BRCA Mutation Types, Imaging Features, and Pathologic Findings in Patients With Breast Cancer With BRCA1 and BRCA2 Mutations. AJR Am. J. Roentgenol. 2017, 209, 920–928. [Google Scholar] [CrossRef] [PubMed]
- Pecchi, A.; Bozzola, C.; Beretta, C.; Besutti, G.; Toss, A.; Cortesi, L.; Balboni, E.; Nocetti, L.; Ligabue, G.; Torricelli, P. DCE-MRI Radiomic analysis in triple negative ductal invasive breast cancer. Comparison between BRCA and not BRCA mutated patients: Preliminary results. Magn. Reason. Imaging 2024, 113, 110214. [Google Scholar] [CrossRef] [PubMed]
- Eloyan, A.; Yue, M.S.; Khachatryan, D. Tumor heterogeneity estimation for radiomics in cancer. Stat. Med. 2020, 39, 4704–4723. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Lee, K.S.; Seo, B.K.; Cho, K.R.; Woo, O.H.; Song, S.E.; Kim, E.K.; Lee, H.Y.; Kim, J.S.; Cha, J. Radiomic machine learning for predicting prognostic biomarkers and molecular subtypes of breast cancer using tumor heterogeneity and angiogenesis properties on MRI. Eur. Radiol. 2022, 32, 650–660. [Google Scholar] [CrossRef]
- Wu, J.; Cui, Y.; Sun, X.L.; Cao, G.H.; Li, B.L.; Ikeda, D.M.; Kurian, A.W.; Li, R.J. Unsupervised Clustering of Quantitative Image Phenotypes Reveals Breast Cancer Subtypes with Distinct Prognoses and Molecular Pathways. Clin. Cancer Res. 2017, 23, 3334–3342. [Google Scholar] [CrossRef]
- Shi, Z.; Huang, X.; Cheng, Z.; Xu, Z.; Lin, H.; Liu, C.; Chen, X.; Liu, C.; Liang, C.; Lu, C.; et al. MRI-based Quantification of Intratumoral Heterogeneity for Predicting Treatment Response to Neoadjuvant Chemotherapy in Breast Cancer. Radiology 2023, 308, e222830. [Google Scholar] [CrossRef]
- Ke, R.; Mignardi, M.; Hauling, T.; Nilsson, M. Fourth Generation of Next-Generation Sequencing Technologies: Promise and Consequences. Hum. Mutat. 2016, 37, 1363–1367. [Google Scholar] [CrossRef]
- Li, Q.Y.; Zhang, X.Y.; Ke, R.Q. Spatial Transcriptomics for Tumor Heterogeneity Analysis. Front. Genet. 2022, 13, 906158. [Google Scholar] [CrossRef]
- Yates, L.R.; Gerstung, M.; Knappskog, S.; Desmedt, C.; Gundem, G.; Van Loo, P.; Aas, T.; Alexandrov, L.B.; Larsimont, D.; Davies, H.; et al. Subclonal diversification of primary breast cancer revealed by multiregion sequencing. Nat. Med. 2015, 21, 751–759. [Google Scholar] [CrossRef]
- Mayrhofer, R.M.; Ng, H.P.; Putti, T.C.; Kuchel, P.W. Magnetic resonance in the detection of breast cancers of different histological types. Magn. Reson. Insights 2013, 6, 33–49. [Google Scholar] [CrossRef]
- Granzier, R.W.Y.; Verbakel, N.M.H.; Ibrahim, A.; van Timmeren, J.E.; van Nijnatten, T.J.A.; Leijenaar, R.T.H.; Lobbes, M.B.I.; Smidt, M.L.; Woodruff, H.C. MRI-based radiomics in breast cancer: Feature robustness with respect to inter-observer segmentation variability. Sci. Rep. 2020, 10, 14163. [Google Scholar] [CrossRef]
TP53 Wild-Type (n = 93) | TP53 Mutant (n = 73) | p | |
---|---|---|---|
Median age (range), years | 54 (36–83) | 53 (30–91) | 0.854 |
Menopausal status | 0.751 | ||
Premenopausal | 40 (43.0%) | 29 (39.7%) | |
Postmenopausal | 53 (57.0%) | 44 (60.3%) | |
BMI, kg/m2 | 23.7 (17.8–35.8) | 25.3 (18.0–44.8) | 0.035 |
Median tumor size (range), cm | 2.0 (0.4–8.5) | 2.5 (0.5–9.5) | 0.014 |
TNM Stage | <0.001 | ||
I | 33 (35.5%) | 11 (15.1%) | |
II | 42 (45.2%) | 27 (37.0%) | |
III | 15 (16.1%) | 31 (42.5%) | |
IV | 3 (3.2%) | 4 (5.5%) | |
Hormone receptor | <0.001 | ||
Negative | 17 (18.3%) | 45 (61.6%) | |
Positive | 76 (81.7%) | 28 (38.4%) | |
HER2 status | 0.001 | ||
Negative | 78 (83.9%) | 45 (61.6%) | |
Positive | 15 (16.1%) | 28 (38.4%) |
Radiomic Features | AUC | 95% CI | p |
---|---|---|---|
TP53 | |||
Composite radiomics score | 0.786 | 0.719–0.854 | <0.001 |
Maximum 3D Diameter | 0.734 | 0.659–0.810 | <0.001 |
Run Length Non-Uniformity | 0.706 | 0.627–0.785 | <0.001 |
Gray Level Non-Uniformity of GLDM | 0.704 | 0.625–0.783 | <0.001 |
Dependence Non-Uniformity | 0.694 | 0.614–0.773 | <0.001 |
Gray Level Non-Uniformity of GLRLM | 0.688 | 0.607–0.770 | <0.001 |
PIK3CA | |||
Coarseness | 0.584 | 0.493–0.676 | 0.072 |
Strength | 0.583 | 0.494–0.671 | 0.067 |
GATA3 | |||
Small Dependence Low Gray Level Emphasis | 0.768 | 0.621–0.915 | <0.001 |
Sphericity | 0.742 | 0.604–0.881 | <0.001 |
Coarseness | 0.737 | 0.592–0.882 | 0.001 |
Low Gray Level Emphasis | 0.725 | 0.580–0.870 | 0.002 |
Low Gray Level Run Emphasis | 0.724 | 0.580–0.869 | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.H.; Kwon, L.M.; Lee, H.K.; Koo, T.; Suh, Y.J.; Kwon, M.J.; Kim, H.Y. Radiomic Analysis of Magnetic Resonance Imaging for Breast Cancer with TP53 Mutation: A Single Center Study. Diagnostics 2025, 15, 428. https://doi.org/10.3390/diagnostics15040428
Park JH, Kwon LM, Lee HK, Koo T, Suh YJ, Kwon MJ, Kim HY. Radiomic Analysis of Magnetic Resonance Imaging for Breast Cancer with TP53 Mutation: A Single Center Study. Diagnostics. 2025; 15(4):428. https://doi.org/10.3390/diagnostics15040428
Chicago/Turabian StylePark, Jung Ho, Lyo Min Kwon, Hong Kyu Lee, Taeryool Koo, Yong Joon Suh, Mi Jung Kwon, and Ho Young Kim. 2025. "Radiomic Analysis of Magnetic Resonance Imaging for Breast Cancer with TP53 Mutation: A Single Center Study" Diagnostics 15, no. 4: 428. https://doi.org/10.3390/diagnostics15040428
APA StylePark, J. H., Kwon, L. M., Lee, H. K., Koo, T., Suh, Y. J., Kwon, M. J., & Kim, H. Y. (2025). Radiomic Analysis of Magnetic Resonance Imaging for Breast Cancer with TP53 Mutation: A Single Center Study. Diagnostics, 15(4), 428. https://doi.org/10.3390/diagnostics15040428