CT-Free Attenuation Correction in Paediatric Long Axial Field-of-View Positron Emission Tomography Using Synthetic CT from Emission Data
<p>Illustrative sample patient with banana artifact presented. Panels (<b>a</b>,<b>b</b>) show the normal CT and corresponding PET. The synthetic CT (sCT) and corresponding sPET are seen in (<b>c</b>,<b>d</b>). PET is fused on top of the CT scan in (<b>e</b>), illustrating the mismatch between CT and emission data. The blue line represents the superior part of the liver at the time of CT scanning. Panel (<b>f</b>) shows the sPET fused on top of the sCT.</p> "> Figure 2
<p>Sample patient with metal implant exhibiting streaking artefacts in the CT image (<b>a</b>), which are absent in the sCT image (<b>b</b>). The corresponding PET images are seen for PET and sPET, respectively (<b>c</b>,<b>d</b>). The zoom panels have been magnified by a factor of 2.3.</p> "> Figure 3
<p>Representation of a 1-year-old patient featuring the CT, sCT, and corresponding PET images PET and sPET (<b>a</b>–<b>d</b>). Additionally, a relative percent difference map between the PET and sPET images (<b>e</b>) highlights that the discrepancies in the PET images are localised in the patient’s cranium and left arm.</p> "> Figure 4
<p>Relative max difference (<b>a</b>) and mean difference (<b>b</b>) between the PET and sPET for lesions found in the examinations. The colour and size of each point represent the lesion type and size, respectively.</p> "> Figure 5
<p>Violin-plot showing the mean relative percent difference between PET and sPET for selected organs. The white dot in each presents the median value, and the solid black box represents the interquartile range, whereas the line extends to 1.5 times the interquartile range.</p> "> Figure 6
<p>Violin-plot showing the mean relative difference between PET, PET<sub>60</sub>, sPET<sub>90</sub>, and sPET<sub>60LC</sub> for selected organs.</p> "> Figure A1
<p>Flowchart for the proposed method. In the first step, we pretrain just the generator using paired NAC-PET and CT data from adult patients. This resulting generator is identical to the pre-trained generator from [<a href="#B47-diagnostics-14-02788" class="html-bibr">47</a>]. Next, we train a cGAN where the generator is initialised with weights from the pretraining step. The cGAN is optimized with data from n = 172 paediatric examinations. Finally, in the test phase, we use the trained generator to predict synthetic CT (sCT) images from NAC-PET patches, which are combined into full volumes.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Cohort
2.2. Data Acquisition and Pre-Processing
2.3. Model Architecture and Training
2.4. PET Reconstruction
2.5. Data Analysis
2.5.1. Qualitative Evaluation
2.5.2. Quantitative Evaluation
2.5.3. Evaluation of Reduced Counts
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- El-Nachef, L.; Al-Choboq, J.; Restier-Verlet, J.; Granzotto, A.; Berthel, E.; Sonzogni, L.; Ferlazzo, M.L.; Bouchet, A.; Leblond, P.; Combemale, P.; et al. Human Radiosensitivity and Radiosusceptibility: What Are the Differences? Int. J. Mol. Sci. 2021, 22, 7158. [Google Scholar] [CrossRef] [PubMed]
- Pierce, D.A.; Shimizu, Y.; Preston, D.L.; Vaeth, M.; Mabuchi, K. Studies of the Mortality of Atomic Bomb Survivors. Report 12, Part I. Cancer: 1950–1990. Radiat. Res. 1996, 146, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Brody, A.S.; Frush, D.P.; Huda, W.; Brent, R.L. Radiation Risk to Children From Computed Tomography. Pediatrics 2007, 120, 677–682. [Google Scholar] [CrossRef]
- Bosch de Basea Gomez, M.; Thierry-Chef, I.; Harbron, R.; Hauptmann, M.; Byrnes, G.; Bernier, M.-O.; Le Cornet, L.; Dabin, J.; Ferro, G.; Istad, T.S.; et al. Risk of Hematological Malignancies from CT Radiation Exposure in Children, Adolescents and Young Adults. Nat. Med. 2023, 29, 3111–3119. [Google Scholar] [CrossRef]
- Kertész, H.; Beyer, T.; London, K.; Saleh, H.; Chung, D.; Rausch, I.; Cal-Gonzalez, J.; Kitsos, T.; Kench, P.L. Reducing Radiation Exposure to Paediatric Patients Undergoing [18F]FDG-PET/CT Imaging. Mol. Imaging Biol. 2021, 23, 775–786. [Google Scholar] [CrossRef]
- Schmall, J.P.; Surti, S.; Otero, H.J.; Servaes, S.; Karp, J.S.; States, L.J. Investigating Low-Dose Image Quality in Whole-Body Pediatric 18F-FDG Scans Using Time-of-Flight PET/MRI. J. Nucl. Med. 2021, 62, 123–130. [Google Scholar] [CrossRef]
- Parisi, M.T.; Bermo, M.S.; Alessio, A.M.; Sharp, S.E.; Gelfand, M.J.; Shulkin, B.L. Optimization of Pediatric PET/CT. Semin. Nucl. Med. 2017, 47, 258–274. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, K.; Ibaraki, M.; Nemoto, M.; Watabe, H.; Kimura, Y. A Review on AI in PET Imaging. Ann. Nucl. Med. 2022, 36, 133–143. [Google Scholar] [CrossRef]
- Theruvath, A.J.; Siedek, F.; Yerneni, K.; Muehe, A.M.; Spunt, S.L.; Pribnow, A.; Moseley, M.; Lu, Y.; Zhao, Q.; Gulaka, P.; et al. Validation of Deep Learning–Based Augmentation for Reduced 18F-FDG Dose for PET/MRI in Children and Young Adults with Lymphoma. Radiol. Artif. Intell. 2021, 3, e200232. [Google Scholar] [CrossRef]
- Wang, Y.-R.; Baratto, L.; Hawk, K.E.; Theruvath, A.J.; Pribnow, A.; Thakor, A.S.; Gatidis, S.; Lu, R.; Gummidipundi, S.E.; Garcia-Diaz, J.; et al. Artificial Intelligence Enables Whole-Body Positron Emission Tomography Scans with Minimal Radiation Exposure. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 2771–2781. [Google Scholar] [CrossRef]
- Prenosil, G.A.; Sari, H.; Fürstner, M.; Afshar-Oromieh, A.; Shi, K.; Rominger, A.; Hentschel, M. Performance Characteristics of the Biograph Vision Quadra PET/CT System with a Long Axial Field of View Using the NEMA NU 2-2018 Standard. J. Nucl. Med. 2022, 63, 476–484. [Google Scholar] [CrossRef] [PubMed]
- Spencer, B.A.; Berg, E.; Schmall, J.P.; Omidvari, N.; Leung, E.K.; Abdelhafez, Y.G.; Tang, S.; Deng, Z.; Dong, Y.; Lv, Y.; et al. Performance Evaluation of the UEXPLORER Total-Body PET/CT Scanner Based on NEMA NU 2-2018 with Additional Tests to Characterize PET Scanners with a Long Axial Field of View. J. Nucl. Med. 2021, 62, 861–870. [Google Scholar] [CrossRef] [PubMed]
- Alberts, I.; Hünermund, J.N.; Prenosil, G.; Mingels, C.; Bohn, K.P.; Viscione, M.; Sari, H.; Vollnberg, B.; Shi, K.; Afshar-Oromieh, A.; et al. Clinical Performance of Long Axial Field of View PET/CT: A Head-to-Head Intra-Individual Comparison of the Biograph Vision Quadra with the Biograph Vision PET/CT. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 2395–2404. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.-M.; Li, Y.-H.; Chen, T.; Zhang, W.-G.; Wang, L.-H.; Feng, J.; Li, C.; Zhang, X.; Fan, W.; Hu, Y.-Y. Image Quality and Lesion Detectability in Low-Dose Pediatric 18F-FDG Scans Using Total-Body PET/CT. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 3378–3385. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Hu, Y.; Zhou, C.; Zhao, Y.; Zhang, N.; Zhou, Y.; Yang, Y.; Zheng, H.; Fan, W.; Liang, D.; et al. Reducing Pediatric Total-Body PET/CT Imaging Scan Time with Multimodal Artificial Intelligence Technology. EJNMMI Phys. 2024, 11, 1. [Google Scholar] [CrossRef]
- Chen, W.; Liu, L.; Li, Y.; Li, S.; Li, Z.; Zhang, W.; Zhang, X.; Wu, R.; Hu, D.; Sun, H.; et al. Evaluation of Pediatric Malignancies Using Total-Body PET/CT with Half-Dose [18F]-FDG. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 4145–4155. [Google Scholar] [CrossRef] [PubMed]
- Immonen, E.; Wong, J.; Nieminen, M.; Kekkonen, L.; Roine, S.; Törnroos, S.; Lanca, L.; Guan, F.; Metsälä, E. The Use of Deep Learning towards Dose Optimization in Low-Dose Computed Tomography: A Scoping Review. Radiography 2022, 28, 208–214. [Google Scholar] [CrossRef]
- Kang, E.; Chang, W.; Yoo, J.; Ye, J.C. Deep Convolutional Framelet Denosing for Low-Dose CT via Wavelet Residual Network. IEEE Trans. Med. Imaging 2018, 37, 1358–1369. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, Y.; Kalra, M.K.; Lin, F.; Chen, Y.; Liao, P.; Zhou, J.; Wang, G. Low-Dose CT With a Residual Encoder-Decoder Convolutional Neural Network. IEEE Trans. Med. Imaging 2017, 36, 2524–2535. [Google Scholar] [CrossRef]
- Geng, M.; Deng, Y.; Zhao, Q.; Xie, Q.; Zeng, D.; Zeng, D.; Zuo, W.; Meng, D. Unsupervised/Semi-Supervised Deep Learning for Low-Dose CT Enhancement. arXiv 2018, arXiv:1808.02603. [Google Scholar]
- Park, H.S.; Baek, J.; You, S.K.; Choi, J.K.; Seo, J.K. Unpaired Image Denoising Using a Generative Adversarial Network in X-Ray CT. IEEE Access 2019, 7, 110414–110425. [Google Scholar] [CrossRef]
- Yi, X.; Babyn, P. Sharpness-Aware Low-Dose CT Denoising Using Conditional Generative Adversarial Network. J. Digit. Imaging 2018, 31, 655–669. [Google Scholar] [CrossRef] [PubMed]
- Ng, C.K.C. Artificial Intelligence for Radiation Dose Optimization in Pediatric Radiology: A Systematic Review. Children 2022, 9, 1044. [Google Scholar] [CrossRef] [PubMed]
- Brady, S.L.; Trout, A.T.; Somasundaram, E.; Anton, C.G.; Li, Y.; Dillman, J.R. Improving Image Quality and Reducing Radiation Dose for Pediatric CT by Using Deep Learning Reconstruction. Radiology 2021, 298, 180–188. [Google Scholar] [CrossRef]
- Lee, S.; Choi, Y.H.; Cho, Y.J.; Lee, S.B.; Cheon, J.-E.; Kim, W.S.; Ahn, C.K.; Kim, J.H. Noise Reduction Approach in Pediatric Abdominal CT Combining Deep Learning and Dual-Energy Technique. Eur. Radiol. 2021, 31, 2218–2226. [Google Scholar] [CrossRef]
- Park, H.S.; Jeon, K.; Lee, J.; You, S.K. Denoising of Pediatric Low Dose Abdominal CT Using Deep Learning Based Algorithm. PLoS ONE 2022, 17, e0260369. [Google Scholar] [CrossRef]
- Nagayama, Y.; Goto, M.; Sakabe, D.; Emoto, T.; Shigematsu, S.; Oda, S.; Tanoue, S.; Kidoh, M.; Nakaura, T.; Funama, Y.; et al. Radiation Dose Reduction for 80-KVp Pediatric CT Using Deep Learning–Based Reconstruction: A Clinical and Phantom Study. Am. J. Roentgenol. 2022, 219, 315–324. [Google Scholar] [CrossRef]
- Sun, J.; Li, H.; Li, J.; Cao, Y.; Zhou, Z.; Li, M.; Peng, Y. Performance Evaluation of Using Shorter Contrast Injection and 70 KVp with Deep Learning Image Reconstruction for Reduced Contrast Medium Dose and Radiation Dose in Coronary CT Angiography for Children: A Pilot Study. Quant. Imaging Med. Surg. 2021, 11, 4162–4171. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Li, H.; Wang, B.; Li, J.; Li, M.; Zhou, Z.; Peng, Y. Application of a Deep Learning Image Reconstruction (DLIR) Algorithm in Head CT Imaging for Children to Improve Image Quality and Lesion Detection. BMC Med. Imaging 2021, 21, 108. [Google Scholar] [CrossRef]
- Ladefoged, C.N.; Law, I.; Anazodo, U.; Lawrence, K.S.; Izquierdo-Garcia, D.; Catana, C.; Burgos, N.; Cardoso, M.J.; Ourselin, S.; Hutton, B.; et al. A Multi-Centre Evaluation of Eleven Clinically Feasible Brain PET/MRI Attenuation Correction Techniques Using a Large Cohort of Patients. Neuroimage 2016, 147, 346–359. [Google Scholar] [CrossRef]
- Sepehrizadeh, T.; Jong, I.; DeVeer, M.; Malhotra, A. PET/MRI in Paediatric Disease. Eur. J. Radiol. 2021, 144, 109987. [Google Scholar] [CrossRef] [PubMed]
- Bezrukov, I.; Schmidt, H.; Gatidis, S.; Mantlik, F.; Schäfer, J.F.; Schwenzer, N.; Pichler, B.J. Quantitative Evaluation of Segmentation- and Atlas-Based Attenuation Correction for PET/MR on Pediatric Patients. J. Nucl. Med. 2015, 56, 1067–1074. [Google Scholar] [CrossRef] [PubMed]
- Olin, A.B.; Hansen, A.E.; Rasmussen, J.H.; Jakoby, B.; Berthelsen, A.K.; Ladefoged, C.N.; Kjær, A.; Fischer, B.M.; Andersen, F.L. Deep Learning for Dixon MRI-Based Attenuation Correction in PET/MRI of Head and Neck Cancer Patients. EJNMMI Phys. 2022, 9, 20. [Google Scholar] [CrossRef] [PubMed]
- Ladefoged, C.N.; Hansen, A.E.; Henriksen, O.M.; Bruun, F.J.; Eikenes, L.; Øen, S.K.; Karlberg, A.; Højgaard, L.; Law, I.; Andersen, F.L. AI-Driven Attenuation Correction for Brain PET/MRI: Clinical Evaluation of a Dementia Cohort and Importance of the Training Group Size. Neuroimage 2020, 222, 117221. [Google Scholar] [CrossRef] [PubMed]
- Boulanger, M.; Nunes, J.-C.; Chourak, H.; Largent, A.; Tahri, S.; Acosta, O.; De Crevoisier, R.; Lafond, C.; Barateau, A. Deep Learning Methods to Generate Synthetic CT from MRI in Radiotherapy: A Literature Review. Phys. Medica 2021, 89, 265–281. [Google Scholar] [CrossRef] [PubMed]
- Ladefoged, C.N.; Marner, L.; Hindsholm, A.; Law, I.; Højgaard, L.; Andersen, F.L. Deep Learning Based Attenuation Correction of PET/MRI in Pediatric Brain Tumor Patients: Evaluation in a Clinical Setting. Front. Neurosci. 2019, 12, 1005. [Google Scholar] [CrossRef]
- Ahangari, S.; Beck Olin, A.; Kinggård Federspiel, M.; Jakoby, B.; Andersen, T.L.; Hansen, A.E.; Fischer, B.M.; Littrup Andersen, F. A Deep Learning-Based Whole-Body Solution for PET/MRI Attenuation Correction. EJNMMI Phys. 2022, 9, 55. [Google Scholar] [CrossRef] [PubMed]
- Van Hemmen, H.; Massa, H.; Hurley, S.; Cho, S.; Bradshaw, T.; McMillan, A. A Deep Learning-Based Approach for Direct Whole-Body PET Attenuation Correction. J. Nucl. Med. 2019, 60, 569. [Google Scholar]
- Yang, J.; Sohn, J.H.; Behr, S.C.; Gullberg, G.T.; Seo, Y. CT-Less Direct Correction of Attenuation and Scatter in the Image Space Using Deep Learning for Whole-Body FDG PET: Potential Benefits and Pitfalls. Radiol. Artif. Intell. 2021, 3, e200137. [Google Scholar] [CrossRef]
- Dong, X.; Lei, Y.; Wang, T.; Higgins, K.; Liu, T.; Curran, W.J.; Mao, H.; Nye, J.A.; Yang, X. Deep Learning-Based Attenuation Correction in the Absence of Structural Information for Whole-Body Positron Emission Tomography Imaging. Phys. Med. Biol. 2020, 65, 055011. [Google Scholar] [CrossRef]
- Xue, S.; Bohn, K.P.; Guo, R.; Sari, H.; Viscione, M.; Rominger, A.; Li, B.; Shi, K. Development of a Deep Learning Method for CT-Free Correction for an Ultra-Long Axial Field of View PET Scanner. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Virtual, 1–5 November 2021; pp. 4120–4122. [Google Scholar]
- Liu, F.; Jang, H.; Kijowski, R.; Zhao, G.; Bradshaw, T.; McMillan, A.B. A Deep Learning Approach for 18F-FDG PET Attenuation Correction. EJNMMI Phys. 2018, 5, 24. [Google Scholar] [CrossRef]
- Dong, X.; Wang, T.; Lei, Y.; Higgins, K.; Liu, T.; Curran, W.J.; Mao, H.; Nye, J.A.; Yang, X. Synthetic CT Generation from Non-Attenuation Corrected PET Images for Whole-Body PET Imaging. Phys. Med. Biol. 2019, 64, 215016. [Google Scholar] [CrossRef]
- Armanious, K.; Hepp, T.; Küstner, T.; Dittmann, H.; Nikolaou, K.; La Fougère, C.; Yang, B.; Gatidis, S. Independent Attenuation Correction of Whole Body [18F]FDG-PET Using a Deep Learning Approach with Generative Adversarial Networks. EJNMMI Res. 2020, 10, 53. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Li, Y.; Zou, S.; Xue, H.; Sang, Z.; Liu, X.; Yang, Y.; Zhu, X.; Liang, D.; Zheng, H. Obtaining PET/CT Images from Non-Attenuation Corrected PET Images in a Single PET System Using Wasserstein Generative Adversarial Networks. Phys. Med. Biol. 2020, 65, 215010. [Google Scholar] [CrossRef] [PubMed]
- Hwang, D.; Kang, S.K.; Kim, K.Y.; Choi, H.; Lee, J.S. Comparison of Deep Learning-Based Emission-Only Attenuation Correction Methods for Positron Emission Tomography. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 1833–1842. [Google Scholar] [CrossRef]
- Montgomery, M.E.; Andersen, F.L.; d’Este, S.H.; Overbeck, N.; Cramon, P.K.; Law, I.; Fischer, B.M.; Ladefoged, C.N. Attenuation Correction of Long Axial Field-of-View Positron Emission Tomography Using Synthetic Computed Tomography Derived from the Emission Data: Application to Low-Count Studies and Multiple Tracers. Diagnostics 2023, 13, 3661. [Google Scholar] [CrossRef]
- Li, W.; Huang, Z.; Chen, Z.; Jiang, Y.; Zhou, C.; Zhang, X.; Fan, W.; Zhao, Y.; Zhang, L.; Wan, L.; et al. Learning CT-Free Attenuation-Corrected Total-Body PET Images through Deep Learning. Eur. Radiol. 2024, 34, 5578–5587. [Google Scholar] [CrossRef]
- Vali, R.; Alessio, A.; Balza, R.; Borgwardt, L.; Bar-Sever, Z.; Czachowski, M.; Jehanno, N.; Kurch, L.; Pandit-Taskar, N.; Parisi, M.; et al. SNMMI Procedure Standard/EANM Practice Guideline on Pediatric 18F-FDG PET/CT for Oncology 1.0. J. Nucl. Med. 2021, 62, 99–110. [Google Scholar] [CrossRef]
- Pérez-García, F.; Sparks, R.; Ourselin, S. TorchIO: A Python Library for Efficient Loading, Preprocessing, Augmentation and Patch-Based Sampling of Medical Images in Deep Learning. Comput. Methods Programs Biomed. 2021, 208, 106236. [Google Scholar] [CrossRef]
- Wasserthal, J.; Breit, H.-C.; Meyer, M.T.; Pradella, M.; Hinck, D.; Sauter, A.W.; Heye, T.; Boll, D.T.; Cyriac, J.; Yang, S.; et al. TotalSegmentator: Robust Segmentation of 104 Anatomic Structures in CT Images. Radiol. Artif. Intell. 2023, 5, e230024. [Google Scholar] [CrossRef]
Cohort | Scanner | Inclusion Period | n Total Examinations [M/F] | n ≤ 6 Years | Weight (kg) | Age (Years) |
---|---|---|---|---|---|---|
Train | Siemens Biograph Vision 600 PET/CT | August 2021 to March 2022 | 81 (45/36) | 21/81 | 8.5–78 | 0.7–19 |
Train | LAFOV Siemens Biograph Vision Quadra PET/CT | November 2021 to June 2023 | 91 (48/43) | 23/91 | 4–92 | 0–18 |
Test | LAFOV Siemens Biograph Vision Quadra PET/CT | May 2022 to June 2023 | 23 (9/14) | 3/23 | 13–94 | 1–18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montgomery, M.E.; Andersen, F.L.; Mathiasen, R.; Borgwardt, L.; Andersen, K.F.; Ladefoged, C.N. CT-Free Attenuation Correction in Paediatric Long Axial Field-of-View Positron Emission Tomography Using Synthetic CT from Emission Data. Diagnostics 2024, 14, 2788. https://doi.org/10.3390/diagnostics14242788
Montgomery ME, Andersen FL, Mathiasen R, Borgwardt L, Andersen KF, Ladefoged CN. CT-Free Attenuation Correction in Paediatric Long Axial Field-of-View Positron Emission Tomography Using Synthetic CT from Emission Data. Diagnostics. 2024; 14(24):2788. https://doi.org/10.3390/diagnostics14242788
Chicago/Turabian StyleMontgomery, Maria Elkjær, Flemming Littrup Andersen, René Mathiasen, Lise Borgwardt, Kim Francis Andersen, and Claes Nøhr Ladefoged. 2024. "CT-Free Attenuation Correction in Paediatric Long Axial Field-of-View Positron Emission Tomography Using Synthetic CT from Emission Data" Diagnostics 14, no. 24: 2788. https://doi.org/10.3390/diagnostics14242788
APA StyleMontgomery, M. E., Andersen, F. L., Mathiasen, R., Borgwardt, L., Andersen, K. F., & Ladefoged, C. N. (2024). CT-Free Attenuation Correction in Paediatric Long Axial Field-of-View Positron Emission Tomography Using Synthetic CT from Emission Data. Diagnostics, 14(24), 2788. https://doi.org/10.3390/diagnostics14242788