Fast Prediction of Combustion Heat Release Rates for Dual-Fuel Engines Based on Neural Networks and Data Augmentation
<p>Overall architecture for rapid prediction of combustion heat release rate based on neural networks and data augmentation.</p> "> Figure 2
<p>Architecture diagram of KTW-ReGAN data augmentation method.</p> "> Figure 3
<p>Calculation flowchart of improved GAN model.</p> "> Figure 4
<p>Data parallel architecture diagram based on ensemble learning.</p> "> Figure 5
<p>Probability density maps of different data dimensions under different expanded datasets.</p> "> Figure 6
<p>Correlation heatmap of different datasets in output dimension.</p> "> Figure 7
<p>Schematic diagram of performance results of BNN optimization process.</p> "> Figure 8
<p>Schematic diagram of weight changes under adaptive weight method.</p> "> Figure 9
<p>Schematic diagram of the effect of the adaptive weight method.</p> "> Figure 10
<p>Schematic diagram of CPU logic core utilization.</p> "> Figure 11
<p>Prediction performance display chart (Fp).</p> "> Figure 12
<p>Fitting effect of combustion heat release rate.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Hybrid Framework for Regression Data Augmentation Based on Improved GAN
2.1.1. Construction of Data Pre-Augmentation Method
Algorithm 1 Constrained KNN Based on Multiple Regression (MR-CKNN) |
Require: original input dataset X, original output dataset Y,
original dataset size n, number of nearest neighbors K, augment factor m. Initialize: create empty expanded datasets X_new and Y_new begin for i =1 to n do begin find K nearst neighbors for j = 1 to K do begin generate random interpolation weights calculate new sample x_new based on neighboring nodes calculate new sample y_new based on neighboring nodes additional physical information constraints update the expanded dataset X_new and Y_new end end |
2.1.2. Design of Improved Regression GAN Model
2.2. Dual-Fuel Engine Combustion Prediction Model Based on BNN
2.2.1. Construction of Combustion Prediction Model
2.2.2. Development of Multi-Core Parallel Training Acceleration
2.2.3. Development of Adaptive Weight Performance Balancing Method
Algorithm 2 Precision Balance Method Weight Update Process |
Require: true value y in the training set, number of iterations T,
regressor ht (x), sample weight s, sample dimension N. Initialize: weights = 1/N. for i =1 to T do begin errors ← abs(yi-ht(xi)) weighted error rate (epsilon_t) ← dot(errors,weights)/sum(weights) regression weight (alpha_t) ← (1/2)*ln((1-epsilon_t)/epsilon_t) weight update ← weights *= exp(-alpha_t * errors)/Normalization Factor end |
3. Results and Discussion
3.1. Dataset Related Parameters
3.2. Performance Analysis of Data Augmentation
3.3. Accuracy Performance of Combustion Prediction Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mucahit, A. Natural gas consumption and economic growth nexus for top 10 natural gas-consuming counties: A granger causality analysis in the frequency domain. Energy 2018, 165, 179–186. [Google Scholar]
- Li, M.; Zhang, Q.; Li, G.; Shao, S. Experimental investigation on performance and heat release analysis of a pilot ignited direct injection natural gas engine. Energy 2015, 57, 1251–1260. [Google Scholar] [CrossRef]
- Bao, J.; Qu, P.; Wang, H.; Zhou, C.; Zhang, L.; Shi, C. Implementation of various bowl designs in an HPDI natural gas engine focused on performance and pollutant emissions. Chemosphere 2022, 303, 135275. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Mai, Z.; Yao, X.; Tang, C.; Huang, Z. Towards optimized excess air ratio and substitution rate for a dual fuel HPDI engine. Appl. Therm. Eng. 2024, 253, 123797. [Google Scholar] [CrossRef]
- Yu, S.; Wei, L.; Zhou, S.; Lu, X.; Huang, W. Numerical study on the effects of pilot diesel quantity coupling EGR in a high pressure direct injected natural gas engine. Combust. Sci. Technol. 2024, 196, 1–18. [Google Scholar] [CrossRef]
- Yang, R.; Ran, Z.; Ristow Hadlich, R.; Assanis, D. A Double-Wiebe Function for Reactivity Controlled Compression Ignition Combustion Using Reformate Diesel. J. Energy Resour. Technol. 2022, 144, 112301. [Google Scholar] [CrossRef]
- Chen, L.; Xu, Z.; Liu, S.; Liu, L. Dynamic modeling of a free-piston engine based on combustion parameters prediction. Energy 2022, 249, 123792. [Google Scholar] [CrossRef]
- Xu, G.; Wang, B.; Guan, Y.; Wang, Z.; Liu, P. Early detection of thermoacoustic instability in a solid rocket motor: A generative adversarial network approach with limited data. Appl. Energy 2024, 373, 123776. [Google Scholar] [CrossRef]
- Salimans, T.; Goodfellow, I.; Zaremba, W.; Cheung, V.; Radford, A.; Chen, X. Improved Techniques for Training GANs. Technical report. arXiv 2017, arXiv:1606.03498. [Google Scholar]
- Athey, S.; Imbens, G.W.; Metzger, J.; Munro, E. Using Wasserstein generative adversarial networks for the design of Monte Carlo simulations. J. Econom. 2021, 240, 105076. [Google Scholar]
- Grenga, T.; Nista, L.; Schumann, C.; Karimi, A.N.; Scialabba, G.; Attili, A.; Pitsch, H. Predictive data-driven model based on generative adversarial network for premixed turbulence-combustion regimes. Combust. Sci. Technol. 2023, 195, 3923–3946. [Google Scholar] [CrossRef]
- Nista, L.; Schumann, C.D.K.; Grenga, T.; Attili, A.; Pitsch, H. Investigation of the generalization capability of a generative adversarial network for large eddy simulation of turbulent premixed reacting flows. Proc. Combust. Inst. 2023, 39, 5279–5288. [Google Scholar] [CrossRef]
- Cui, Z.; Lu, Y.; Yan, X.; Cui, S. Compound fault diagnosis of diesel engines by combining generative adversarial networks and transfer learning. Expert Syst. Appl. 2024, 251, 123969. [Google Scholar] [CrossRef]
- Sok, R.; Jeyamoorthy, A.; Kusaka, J. Novel virtual sensors development based on machine learning combined with convolutional neural-network image processing-translation for feedback control systems of internal combustion engines. Appl. Energy 2024, 365, 123224. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, W.; Huang, J. Intelligent Modification Method for Individual Difference of Aero-engine based on CNN-GAN. In Proceedings of the International Conference on Advanced Robotics and Mechatronics (ICARM), Tokyo, Japan, 8–10 July 2024; pp. 400–405. [Google Scholar]
- Bo, L.; Zhang, X.; Wang, H. The research on missing data imputation method of aero-engine’s ACARS Based on GAN-Attention. In Proceedings of the China Aeronautical Science and Technology Conference, Wuzhen, China, 26–27 September 2023; pp. 168–175. [Google Scholar]
- Frid-Adar, M.; Diamant, I.; Klang, E.; Amitai, M.; Goldberger, J.; Greenspan, H. GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification. Neurocomputing 2018, 321, 321–331. [Google Scholar] [CrossRef]
- Bengio, Y.; Lecun, Y.; Hinton, G. Deep learning for AI. Commun. ACM 2021, 64, 58–65. [Google Scholar] [CrossRef]
- Molina, S.; Novella, R.; Gomez-Soriano, J.; Olcina-Girona, M. New combustion modelling approach for methane-hydrogen fueled engines using machine learning and engine virtualization. Energies 2021, 14, 6732. [Google Scholar] [CrossRef]
- Hu, D.; Wang, H.; Yang, C.; Wang, B.; Duan, B.; Wang, Y.; Li, H. Construction of digital twin model of engine in-cylinder combustion based on data-driven. Energy 2024, 293, 130543. [Google Scholar] [CrossRef]
- Žvirblis, T.; Matijošius, J.; Kilikevičius, A. An Experimental Selection of Deep Neural Network Hyperparameters for Engine Emission Prognosis. In Proceedings of the IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream), Vilnius, Lithuania, 25 April 2024; pp. 1–6. [Google Scholar]
- Yaşar, H.; Çağıl, G.; Torkul, O.; Şişci, M. Cylinder pressure prediction of an HCCI engine using deep learning. Chin. J. Mech. Eng. 2021, 34, 7. [Google Scholar] [CrossRef]
- Hu, D.; Wang, H.; Yang, C.; Wang, B.; Yang, Q.; Wang, Y. Construction and verification of dual-fuel engine combustion model. J. Energy Inst. 2024, 112, 101486. [Google Scholar]
- Araujo, N.R.S.; Carvalho, F.S.; Amaral, L.V.; Braga, J.P.; Pujatti, F.J.P.; Sebastião, R.C.O. Kinetic study of the combustion process in internal combustion engines: A new methodological approach employing an artificial neural network. Fuel 2025, 382, 133739. [Google Scholar] [CrossRef]
- Windarto, C.; Ocktaeck, L. A neural network approach on forecasting spark duration effect on in-cylinder performance of a large bore compression ignition engine fueled with propane direct injection. Fuel Process. Technol. 2024, 257, 108088. [Google Scholar] [CrossRef]
- Cesur, I.; Uysal, F. Experimental investigation and artificial neural network-based modelling of thermal barrier engine performance and exhaust emissions for methanol-gasoline blends. Energy 2024, 291, 130393. [Google Scholar] [CrossRef]
- Şahin, S.; Torun, A. Comparison of Engine Performance and Emission Values of Biodiesel Obtained from Waste Pumpkin Seeds with Machine Learning. Agriculture 2024, 14, 227. [Google Scholar] [CrossRef]
- Ebrahimi, K.; Patidar, L.; Koutsivitis, P.; Fogla, N.; Wahiduzzaman, S. Machine Learning Tabulation Scheme for Fast Chemical Kinetics Computation. SAE Int. J. Engines 2023, 17, 477–492. [Google Scholar] [CrossRef]
- Siddique, M.F.; Zaman, W.; Ullah, S.; Umar, M.; Saleem, F.; Shon, D.; Yoon, T.H.; Yoo, D.-S.; Kim, J.-M. Advanced Bearing-Fault Diagnosis and Classification Using Mel-Scalograms and FOX-Optimized ANN. Sensors 2024, 24, 7303. [Google Scholar] [CrossRef]
- Dharmalingam, B.; Annamalai, S.; Areeya, S.; Rattanaporn, K.; Katam, K.; Show, P.-L.; Sriariyanun, M. Bayesian Regularization Neural Network-Based Machine Learning Approach on Optimization of CRDI-Split Injection with Waste Cooking Oil Biodiesel to Improve Diesel Engine Performance. Energies 2023, 16, 2805. [Google Scholar] [CrossRef]
- Sun, H.; Chen, P. Application of Neural Networks in Automotive Engine Misfire. In Proceedings of the IEEE 4th International Conference on Electronic Communications, Internet of Things and Big Data (ICEIB), Taipei, Taiwan, 19–21 April 2024; pp. 261–264. [Google Scholar]
- Karras, T.; Aittala, M.; Hellsten, J.; Laine, S.; Lehtinen, J.; Aila, T. Training generative adversarial networks with limited data. In Proceedings of the 34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, BC, Canada, 6–12 December 2020; pp. 1–37. [Google Scholar]
Paired Datasets | Correlation Coefficient Between Column Means |
---|---|
Original data vs. MR-CKNN data | 0.9999 |
MR-CKNN data vs. KTW-ReGAN data | 0.9997 |
Original data vs. KTW-ReGAN data | 0.9998 |
Datasets | X1_mean | X2_mean | X3_mean | X4_mean | X5_mean | X6_mean | X7_mean |
---|---|---|---|---|---|---|---|
Original dataset | 1331.5 | 116.7 | 30.9 | 18.7 | 10.6 | 4.3 | 160.6 |
MR-CKNN dataset | 1331.5 | 122.7 | 32.0 | 19.0 | 10.9 | 4.1 | 169.4 |
KTW-ReGAN | 1314.0 | 101.3 | 28.8 | 18.4 | 9.9 | 4.6 | 140.4 |
Datasets | X1_std | X2_std | X3_std | X4_std | X5_std | X6_std | X7_std |
---|---|---|---|---|---|---|---|
Original dataset | 359.4 | 60.6 | 10.2 | 6.6 | 5.6 | 1.4 | 75.6 |
MR-CKNN dataset | 360.4 | 56.6 | 9.5 | 6.4 | 5.4 | 1.2 | 68.1 |
KTW-ReGAN | 345.2 | 55.1 | 10.4 | 6.2 | 5.4 | 1.3 | 70.8 |
Datasets | Y1_R2 | Y2_R2 | Y3_R2 | Y4_R2 | Y5_R2 | Y6_R2 | Y7_R2 | Y8_R2 | Y9_R2 |
---|---|---|---|---|---|---|---|---|---|
Original dataset | −1.47 | −4.48 | −26.44 | −24.75 | −4.76 | −100.3 | −18.47 | −22.74 | −4.95 |
GAN dataset | 0.23 | 0.73 | 0.65 | 0.71 | 0.16 | 0.71 | 0.64 | 0.52 | 0.62 |
KTW-ReGAN | 0.61 | 0.83 | 0.84 | 0.85 | 0.69 | 0.81 | 0.85 | 0.87 | 0.85 |
Datasets | Y1_RMSE | Y2_RMSE | Y3_RMSE | Y4_RMSE | Y5_RMSE | Y6_RMSE | Y7_RMSE | Y8_RMSE | Y9_RMSE |
---|---|---|---|---|---|---|---|---|---|
Original dataset | 4.05 | 3.29 | 6.89 | 3.87 | 1.71 | 4.15 | 5.87 | 1.46 | 2.22 |
GAN dataset | 1.42 | 1.29 | 1.33 | 1.28 | 1.49 | 1.25 | 1.27 | 1.27 | 1.49 |
KTW-ReGAN | 0.87 | 0.76 | 0.77 | 0.77 | 0.81 | 0.69 | 0.66 | 0.62 | 0.59 |
Datasets | Y1_MAE | Y2_MAE | Y3_MAE | Y4_MAE | Y5_MAE | Y6_MAE | Y7_MAE | Y8_MAE | Y9_MAE |
---|---|---|---|---|---|---|---|---|---|
Original dataset | 3.47 | 2.86 | 6.04 | 3.67 | 1.61 | 3.49 | 5.36 | 1.35 | 1.99 |
GAN dataset | 2.29 | 1.29 | 1.43 | 1.33 | 3.30 | 1.21 | 1.23 | 1.74 | 1.44 |
KTW-ReGAN | 0.96 | 0.52 | 0.58 | 0.51 | 0.82 | 0.59 | 0.55 | 0.57 | 0.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, M.; Shuai, X.; Ma, Z.; Liu, H.; Wang, Q.; Zhao, F.; Yu, W. Fast Prediction of Combustion Heat Release Rates for Dual-Fuel Engines Based on Neural Networks and Data Augmentation. Designs 2025, 9, 25. https://doi.org/10.3390/designs9010025
Wei M, Shuai X, Ma Z, Liu H, Wang Q, Zhao F, Yu W. Fast Prediction of Combustion Heat Release Rates for Dual-Fuel Engines Based on Neural Networks and Data Augmentation. Designs. 2025; 9(1):25. https://doi.org/10.3390/designs9010025
Chicago/Turabian StyleWei, Mingxin, Xiuyun Shuai, Zexin Ma, Hongyu Liu, Qingxin Wang, Feiyang Zhao, and Wenbin Yu. 2025. "Fast Prediction of Combustion Heat Release Rates for Dual-Fuel Engines Based on Neural Networks and Data Augmentation" Designs 9, no. 1: 25. https://doi.org/10.3390/designs9010025
APA StyleWei, M., Shuai, X., Ma, Z., Liu, H., Wang, Q., Zhao, F., & Yu, W. (2025). Fast Prediction of Combustion Heat Release Rates for Dual-Fuel Engines Based on Neural Networks and Data Augmentation. Designs, 9(1), 25. https://doi.org/10.3390/designs9010025